
Noname manuscript No.
(will be inserted by the editor)

Refutation-Based Synthesis in SMT

Andrew Reynolds · Viktor Kuncak ·
Cesare Tinelli · Clark Barrett ·
Morgan Deters

Received: date / Accepted: date

Abstract We introduce the first program synthesis engine implemented inside
an SMT solver. We present an approach that extracts solution functions from
unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss
novel counterexample-guided techniques for quantifier instantiation that we use
to make finding such proofs practically feasible. A particularly important class
of specifications are single-invocation properties, for which we present a dedicated
algorithm. To support syntax restrictions on generated solutions, our approach can
transform a solution found without restrictions into the desired syntactic form. As
an alternative, we show how to use evaluation function axioms to embed syntactic
restrictions into constraints over algebraic datatypes, and then use an algebraic
datatype decision procedure to drive synthesis. Our experimental evaluation on
syntax-guided synthesis benchmarks shows that our implementation in the CVC4
SMT solver is competitive with state-of-the-art tools for synthesis.

Keywords Synthesis · Satisfiability Modulo Theories · Automated Deduction

Andrew Reynolds
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
E-mail: andrew.reynolds@epfl.ch

Viktor Kuncak
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
E-mail: viktor.kuncak@epfl.ch

Cesare Tinelli
Department of Computer Science, The University of Iowa
E-mail: cesare-tinelli@uiowa.edu

Clark Barrett
Department of Computer Science, New York University
E-mail: barrett@cs.nyu.edu

Morgan Deters
Department of Computer Science, New York University

2 Andrew Reynolds et al.

1 Introduction

The synthesis of functions that meet a given specification is a long-standing funda-
mental goal that has received great attention recently. This functionality directly
applies to the synthesis of functional programs [22,23] but also translates to imper-
ative programs through techniques that include bounding input space, verification
condition generation, and invariant discovery [38–40]. Function synthesis is also an
important subtask in the synthesis of protocols and reactive systems, especially
when these systems are infinite-state [4, 35]. The SyGuS format and competi-
tion [2,3,30], inspired by the success of the SMT-LIB and SMT-COMP efforts [6],
has significantly improved and simplified the process of rigorously comparing dif-
ferent solvers on synthesis problems.

The connection between synthesis and theorem proving was established already
in early work on the subject [16,25]. It is notable that early research [25] found that
the capabilities of theorem provers were the main bottleneck for synthesis. Taking
lessons from automated software verification, recent work on synthesis has made
use of advances in theorem proving, particularly in SAT and SMT solvers. How-
ever, that work avoids formulating the overall synthesis task as a theorem proving
problem directly. Instead, existing work typically builds custom loops outside of
an SMT or SAT solver, often using numerous variants of counterexample-guided
synthesis. A typical role of the SMT solver has been to validate candidate solutions
and provide counterexamples that guide subsequent search, although approaches
such as symbolic term exploration [20] also use an SMT solver to explore a rep-
resentation of the space of solutions. In existing approaches, SMT solvers thus
receive a large number of separate queries, with limited communication between
these different steps.

In this paper, which is an extended and improved version of [31], we revisit the
formulation of the overall synthesis task as a theorem proving problem. We observe
that SMT solvers already have some of the key functionality for synthesis; we show
how to improve existing algorithms and introduce new ones to make SMT-based
synthesis competitive. Specifically, we do the following.

– We show how to formulate an important class of synthesis problems as the
problem of disproving universally quantified formulas and how to synthesize
functions automatically from selected instances of these formulas.

– We present counterexample-guided techniques for quantifier instantiation, which
are crucial to obtain competitive performance on synthesis tasks.

– We discuss techniques to simplify the synthesized functions to help ensure that
they are small and adhere to specified syntactic requirements.

– We show how to encode syntactic restrictions using theories of algebraic data-
types and axiomatizable evaluation functions.

– We show that for an important class of single-invocation properties, the syn-
thesis of functions from relations, the implementation of our approach in CVC4
significantly outperforms leading tools from the SyGuS competition.

1.1 Preliminaries.

Since synthesis involves finding (and so proving the existence of) functions, we use
notions from many-sorted second-order logic to define the general problem.

Refutation-Based Synthesis in SMT 3

Signatures We fix a large enough set S of sort symbols and an (infix) equality
predicate ≈ of type σ × σ for each σ ∈ S, which we always interpret as the
identity relation over (the set denoted by) σ. For every non-empty sort sequence
σ ∈ S+ with σ = σ1 · · ·σnσ, we fix an infinite set Xσ of variables xσ1···σnσ of
type σ1 × · · · × σn → σ. For each sort σ we identity the type () → σ with σ and
call it a first-order type. We assume the sets Xσ are pairwise disjoint and let X
be their union. A signature Σ consists of a set Σs ⊆ S of sort symbols and a set
Σf of function symbols fσ1···σnσ of type σ1 × · · · × σn → σ, where n ≥ 0 and
σ1, . . . , σn, σ ∈ Σs. When n above is 0, we call f a constant symbol. Note that
we consider only first-order function symbols, that is, functions symbols whose
input and output types are all first-order types. We drop the sort superscript from
variables or function symbols when it is clear from context or unimportant. We
assume that, unless stated otherwise, signatures always include a Boolean sort
Bool and constants tt and ff of type Bool (respectively, for true and false). The
union Σ1 ∪Σ2 of a signature Σ1 and a signature Σ2 is the signature Σ such that
Σs = Σs

1 ∪Σs and Σf = Σf
1 ∪Σf . A signature Σ1 is a subsignature of a signature

Σ if Σ = Σ1 ∪Σ2 for some signature Σ2.

Term and formulas Given a many-sorted signature Σ together with quantifiers
and lambda abstractions λxσ1

1 . . . xσn
n t, the notion of well-sorted (Σ-)term, atom,

literal, clause, and formula with variables in X are defined as usual in second-order
logic. Note that all atoms have the form s ≈ t. Having ≈ as the only predicate
symbol causes no loss of generality since we can model other predicate symbols
as function symbols with return sort Bool. We will, however, often write just t in
place of the atom t ≈ tt, to simplify the notation. A Σ-term/formula is ground if
it has no variables, and it is first-order if it has only first-order variables, that is,
variables of first-order type. Free and bound occurrences of a variable in a formula
are also defined as usual. A (Σ-)sentence is a (Σ-)formula with no free variables.

When x = (x1, . . . , xn) is a tuple of variables and Q is either ∀ or ∃, we
write Qxϕ as an abbreviation of Qx1 · · ·Qxn ϕ. If s is a Σ-term or formula and
x = (x1, . . . , xn) has no repeated variables, we write s[x] to denote that all of s’s
free variables are from x; if t = (t1, . . . , tn) is a term tuple, we write s[t] for the
term or formula obtained from s by simultaneously replacing, for all i = 1, . . . , n,
every occurrence of xi in s by ti. When convenient, we will treat tuples like x and
t as the set of their elements.

Interpretations A Σ-interpretation I maps: each σ ∈ Σs to a non-empty set σI ,
the domain of σ in I, with BoolI = {tt,ff}, ffI = ff and ttI = tt; each uσ1···σnσ ∈
X∪Σf to a total function uI : σI1 × · · ·×σIn → σI when n > 0 and to an element
of σI when n = 0. If xσ1

1 , . . . , xσn
n are distinct variables and e1, . . . , en are domain

elements with e1 ∈ σI1 , . . . , en ∈ σIn , we denote by I[x1 7→ e1, . . . , xn 7→ en] the
Σ-interpretation that maps each xi to ei and is otherwise identical to I. The
interpretation I induces a mapping from terms t of sort σ to elements tI of σI

as expected. A satisfiability relation between Σ-interpretations and Σ-formulas
or sets thereof is defined inductively as usual. A satisfying interpretation for a
Σ-formula ϕ models (or is a model of) ϕ. A Σ-interpretation I is term-generated
if each of its domain elements is denoted by a ground Σ-term, that is, if for all
σ ∈ Σs and all e ∈ σI there is a ground Σ-term t such that e = tI .

4 Andrew Reynolds et al.

If Ω is a subsignature of a signature Σ, the Ω-reductt of a Σ-interpretation I
is an Ω-interpretation that interprets its sort and function symbols exactly as I.

An isomorphism from a Σ-interpretation I to a Σ-interpretation J is a family
of bijective mappings {hσ : σI → σJ | σ ∈ Σs} such that for every f ∈ Σf of type
σ1 × · · · × σn → σn+1, and every (v1, . . . , vn) ∈ σI1 × · · · × σIn ,

hσn+1(fI(v1, . . . , vn)) = fJ (hσ1(v1), . . . , hσn(vn))

Two Σ-interpretations I and J are isomorphic, written I ≡ J , if there is an
isomorphism from one to the other. Among other things, it is possible to show
that ≡ is an equivalence relation and that two isomorphic interpretations satisfy
exactly the same Σ-sentences.

Theories A theory is a pair T = (Σ, I) where Σ is a signature and I is a non-empty
class of Σ-interpretations, the models of T , that is closed under isomorphism.1 A
Σ-formula ϕ is T -satisfiable (resp., T -unsatisfiable) if it is satisfied by some (resp.,
no) interpretation in I. A formula ϕ is T -valid, written |=T ϕ, if every model of
T is a model of ϕ. A set Γ of formulas T -entails a Σ-formula ϕ, written Γ |=T ϕ,
if every interpretation in I that satisfies all formulas in Γ satisfies ϕ as well. Two
Σ-formulas are T -equivalent if the T -entail each other. Two Σ-terms s and t are
T -equivalent if s ≈ t is T -valid.

If T1 is a Σ1-theory and T2 is a Σ2-theories, the union T1 ∪ T2 of T1 and
T2, when it exists, is the Σ1 ∪ Σ2 theory whose set of models consists of all the
(Σ1 ∪Σ2)-interpretations whose Σi-reduct is a model of Ti for i = 1, 2.2

The theory of a Σ-structure I is the theory T = (Σ, I) where I consists of all
the Σ-structures that are isomorphic to I.

Sometimes we will extend the signature Σ of a theory T with free or Skolem
constants, (first-order) constant symbols that do not occur in Σ. The set of models
is extended correspondingly as follows. If k is one of the new constants and has
type σ, for every model I of T and every v ∈ σI , the extended theory has a model
that interprets k as v and is otherwise identical to I. It is not difficult to see that,
for satisfiability purposes, free constants in a formula effectively behave like free
variables.

2 Synthesis with SMT Solvers

We are interested in synthesizing computable functions automatically from formal
logical specifications stating properties of these functions. As we show later, under
the right conditions, we can formulate a version of the synthesis problem in first-
order logic alone, which allows us to tackle the problem using SMT solvers.

We consider the synthesis problem in the context of some theory T of signature
Σ that allows us to provide the function’s specification as a Σ-formula. Specifically,
we consider synthesis conjectures expressed as (well-sorted) formulas of the form

∃fσ1···σnσ ∀xσ1
1 · · · ∀x

σn
n P [f, x1, . . . , xn] (1)

1 That is, every Σ-interpretation isomorphic to an interpretation in I is also in I.
2 For T1 ∪ T2 to exist there must be a model I1 of T1 and a model I2 of T2 that agree on

the interpretation they give to the sort and function symbols shared by Σ1 and Σ2.

Refutation-Based Synthesis in SMT 5

or ∃f ∀xP [f,x], for short, where the second-order variable f represents the func-
tion to be synthesized and P is a Σ-formula encoding properties that f must
satisfy for all possible values of the input tuple x = (x1, . . . , xn). In this setting,
finding a witness for this satisfiability problem amounts to finding a function of
type σ1 × · · · × σn → σ in some model of T that satisfies ∀xP [f,x]. Since we
are interested in automatic synthesis, we restrict ourselves here to methods that
search over a subspace S of solutions representable syntactically as Σ-terms. We
will say then that a synthesis conjecture is solvable if it has a syntactic solution
in S.

In this paper we present two approaches that work with classes L of synthesis
conjectures ∃f ∀xP [f,x] and Σ-theories T where the T -validity of formulas of
the form ∀xP [λx t[x],x] is decidable. In both approaches, we solve the synthesis
conjecture by relying on quantifier-instantiation techniques to produce a first-order
Σ-term t[x] of sort σ such that ∀xP [λx t,x] is T -valid. When this t is found, the
synthesized function is precisely λx t .

In principle, under the right assumptions on T , to determine the solvability of
the conjecture ∃f ∀xP [f,x] an SMT solver supporting the theory T can consider
the satisfiability of the (open) formula ∀xP [f,x] by treating f as an uninterpreted
function symbol. This sort of Skolemization is not usually a problem for SMT
solvers since many of them can process formulas with uninterpreted symbols. The
real challenge is the universal quantification over x because it requires the solver
to construct internally (a finite representation of) an interpretation of f that is
guaranteed to satisfy P [f,x] for every possible value of x [15, 33].

More traditional SMT solver designs to handle universally quantified formulas
have focused on instantiation-based methods to show unsatisfiability. They gen-
erate ground instances of those formulas until a refutation is found at the ground
level [13]. While these techniques are incomplete in general, they have been shown
to be quite effective in practice [27, 34]. For this reason, we advocate approaches
to synthesis geared toward establishing the unsatisfiability of the negation of the
synthesis conjecture:

∀f ∃x¬P [f,x] (2)

We show in this paper how a syntactic solution λx t for (1) can be constructed
from a refutation of (2), as opposed to being extracted from the valuation of f in
a model of ∀xP [f,x].

Two synthesis methods. Proving (2) unsatisfiable poses its own challenge to cur-
rent SMT solvers, namely, dealing with the second-order universal quantification
of f . To our knowledge, no SMT solvers so far have had direct support for higher-
order quantification. In the following, however, we describe two specialized meth-
ods to refute negated synthesis conjectures like (2) that build on existing capabil-
ities of these solvers.

The first method applies to a restricted, but fairly common, case of synthesis
problems ∃f ∀xP [f,x] where every occurrence of f in P is in terms of the form
f(x). In this case, we can express the problem in the first-order form ∀x∃y Q[x, y]
and then tackle its negation using appropriate quantifier instantiation techniques.

The second method applies to theories T with term-generated interpretations.
This class of theories includes the majority of theories of interest in synthesis

6 Andrew Reynolds et al.

such as (versions of) the theories of integer, rational and floating point arith-
metic, bit vectors, strings, constructible arrays, algebraic datatypes, finite sets,
and their combinations.3 The method is well suited for the syntax-guided synthe-
sis paradigm [2, 3] where the synthesis conjecture is accompanied by an explicit
syntactic restriction on the space of possible solutions. It is based on encoding the
syntax of terms as first-order values. We use a deep embedding into an extension
of the background theory T with a theory of algebraic data types, encoding the
restrictions of a syntax-guided synthesis problem.

For the rest of the paper, we fix a Σ-theory T and a class P of quantifier-free Σ-
formulas P [f,x] such that the T -satifiabilty of formulas of the form (¬)P [λx t,x]
with t a Σ-term is decidable. We will consider synthesis conjectures for this theory
from the set L := {∃f ∀xP [f,x] | P ∈ P}.

Our canonical example of T throughout the paper will be the theory of integers.
The signature of this theory contains only two sorts Int and Bool and the usual
operators: the numerals, +, ∗, unary and binary −, <, and ≤ (with the last two of
type Int× Int→ Bool). Let I be the Σ-interpretation that interprets the sort Int as
the integers and interprets the various operators as expected. It is easy to see that
this interpretation is term-generated. The models of T are all the Σ-interpretations
that are isomorphic to I. For this theory, P is the class of all Boolean combinations
of linear equations and inequations. Based on results originally by Presburger,
one can easily argue that the T -satisfiability of formulas of the form (¬)P [λx t,x]
where P ∈ P and t is a linear term is decidable. One can do that with current SMT
solvers after eliminating from P [λx t,x] all occurrences of λx t by β-reduction.

3 Refutation-Based Synthesis

When axiomatizing properties of a desired function f of type σ1 × · · · × σn → σ,
a particularly well-behaved class are single-invocation properties (see, e.g., [17]).
These properties include, in particular, standard function contracts, so they can be
used to synthesize a function implementation given its postcondition as a relation
between the arguments and the result of the function. This is also the form of the
specification for synthesis problems considered in complete functional synthesis
[21–23]. Note that, in our case, we aim to prove that the output exists for all
inputs, as opposed to, more generally, computing the set of inputs for which the
output exists.

A single-invocation property is any formula of the form Q[x, f(x)] obtained by
replacing y with f(x) in a quantifier-free formula Q[x, y] not containing f . Note
that the only occurrences of f in Q[x, f(x)] are in subterms of the form f(x) with
the same tuple x of pairwise distinct variables.4 The conjecture ∃f ∀xQ[x, f(x)]
is logically equivalent to the first-order formula

∀x∃y Q[x, y] . (3)

The equivalence is easy to seem by observing that the conjecture is the Skolemized
version of (3). By the semantics of ∀ and ∃, finding a model I for either formula

3 These are versions that either do not have function symbols denoting partial functions or
make those functions total in some way.

4 An example of a property that is not single-invocation is ∀x1 x2 f(x1, x2) ≈ f(x2, x1).

Refutation-Based Synthesis in SMT 7

amounts (under the axioms of choice) to finding a function h : σI1 ×· · ·×σIn → σI

such that for all e ∈ σI1 × · · · × σIn , the interpretation I[x 7→ e, y 7→ h(e)] satis-
fies Q[x, y]. This section considers the case when P consists of single-invocation
properties and describes a general approach for determining the satisfiability of
formulas like (3) while computing a syntactic representation of a function like h
in the process. For the latter, it will be convenient to assume that the language of
terms contains an if-then-else operator ite of type Bool× σ × σ → σ for each sort
σ, with the usual semantics.

If (3) belongs to a fragment that admits quantifier elimination in T , such
as the linear fragment of integer arithmetic, determining its satisfiability can be
achieved using a method for quantifier elimination [8, 26]. Such cases have been
examined in the context of software synthesis [22]. Here we propose instead an
alternative instantiation-based approach aimed at establishing the unsatisfiability
of the negated form of (3):

∃x ∀y ¬Q[x, y] (4)

or, equivalently, of a Skolemized version ∀y ¬Q[k, y] of (4) for some tuple k of
fresh free constants of the right sort. Finding a T -unsatisfiable finite set Γ of
ground instances of ¬Q[k, y], which is what an SMT solver would do to prove the
unsatisfiability of (4), suffices to solve the original synthesis problem. The reason
is that, then, a solution for f can be constructed directly from Γ , as indicated by
the following result.

Proposition 1 Given x = (xσ1
1 , . . . , xσn

n), let Q[x, yσ] be a Σ-formula such that
∃f ∀xQ[x, f(x)] ∈ L for some fσ1···σnσ not occurring in Q[x, y]. Suppose some
set Γ = {¬Q[x, t1[x]], . . . ,¬Q[x, tp[x]]} where t1[x], . . ., tp[x] are Σ-terms of sort
σ is T -unsatisfiable. Then, one solution for ∃f ∀xQ[x, f(x)] is

λx ite(Q[x, tp], tp, (· · · ite(Q[x, t2], t2, t1) · · ·)) .

Proof Let ` be the solution specified above. Let J be any model of T and let
v = (v1, . . . , vn) be an arbitrary element of σJ1 × · · · × σJn . It is enough to show
that I |= Q[x, `(x)] where I = J [x 7→ v]. Suppose first that I |= Q[x, ti[x]]
for some i ∈ {2, . . . , p} and let m be the greatest such i. Then, by construction,
`(x)I = (tm[x])I , and thus I |= Q[x, `(x)]. If, on the other hand, I |= ¬Q[x, ti[x]]
for all i = 2, . . . , p, then `(x)I = (t1[x])I . Since Γ is T -unsatisfiable, we have that
¬Q[x, t2[x]], . . . ,¬Q[u, tp[x]] |=T Q[x, t1[x]]. It follows that I |= Q[x, `(x)]. ut

Example 1 Let T be the theory of integer arithmetic as described in Section 2.
Now consider the single-invocation property

P [f,x] := f(x) ≥ x1 ∧ f(x) ≥ x2 ∧ (f(x) ≈ x1 ∨ f(x) ≈ x2) (5)

with f of type Int × Int → Int and x = (x1, x2) where x1 and x2 are of type Int.
The synthesis problem ∃f ∀xP [f,x] is solved exactly by the function that returns
the maximum of its two inputs. Since P is single-invocation, we can solve that
problem by proving the T -unsatisfiability of the conjecture ∃x ∀y ¬Q[x, y] where

Q[x, y] := y ≥ x1 ∧ y ≥ x2 ∧ (y ≈ x1 ∨ y ≈ x2) (6)

8 Andrew Reynolds et al.

SynthSI(∃f ∀xQ[x, f(x)]):

1. Let Γ := {}, and let k, e be distinct fresh free constants

2. While Γ is T -satisfiable
If there is a T -model I of Γ satisfying Q[k, e] then

let Γ := Γ ∪ {¬Q[k, t[k]]} for some Σ-term t[x] such that t[k]I = eI

else
return “no solution found”

3. Let {¬Q[k, t1[k]], . . . ,¬Q[k, tp[k]]} be a T -unsatisfiable subset of Γ

4. Return λx ite(Q[x, tp[x]], tp[x], (· · · ite(Q[x, t2[x]], t2[x], t1[x]) · · ·)) for f

Fig. 1 A refutation-based synthesis procedure SynthSI for single-invocation property
∃f ∀xQ[x, f(x)].

After Skolemization, the conjecture becomes ∀y ¬Q[a, y] for fresh constants a =
(a1, a2). When asked to determine the satisfiability of that conjecture, an SMT
solver may, for instance, instantiate it with a1 and then a2 for y, producing the
T -unsatisfiable set {¬Q[a, a1],¬Q[a, a2]}. Since a1 and a2 are fresh, it follows that
{¬Q[x, x1],¬Q[x, x2]} is T -unsatisfiable as well. By Proposition 1, one solution for
∀xP [f,x] is f = λx ite(Q[x, x2], x2, x1), which simplifies to λx ite(x2 ≥ x1, x2, x1),
representing the desired maximum function. ut

3.1 Synthesis by Counterexample-Guided Quantifier Instantiation

Given Proposition 1, the main question is how to get the SMT solver to gener-
ate the necessary ground instances from ∀y ¬Q[k, y]. Typically, SMT solvers that
reason about quantified formulas use heuristic quantifier instantiation techniques
based on E-matching [27], which instantiates universal quantifiers with terms oc-
curring in some current set of ground terms built incrementally from the input
formula. Using E-matching-based heuristic instantiation alone is unlikely to be
effective in synthesis, where required terms need to be synthesized based on the
semantics of the input specification. This is confirmed by our preliminary experi-
ments, even for simple conjectures. We have developed instead a specialized new
technique, which we refer to as counterexample-guided quantifier instantiation, that
allows the SMT solver to quickly converge in many cases to the instantiations that
refute the negated synthesis conjecture (4).

The new technique is similar to a popular scheme for synthesis known as
counterexample-guided inductive synthesis, implemented in various synthesis ap-
proaches (e.g., [18, 39]), but with the major difference of being built directly into
the SMT solver. The technique is illustrated by the procedure in Figure 1, which
grows a set Γ of ground instances of ¬Q[k, y]. The procedure, which may not ter-
minate in general, terminates either when Γ becomes unsatisfiable, in which case
it has found a solution, or when Γ is satisfiable but all of its models falsify Q[k, e].
When this is the case, the search for a solution is inconclusive. The procedure is
not solution-complete, that is, it is not guaranteed to return a solution whenever
there is one. However, thanks to Proposition 1, it is solution-sound: every λ-term
it returns is indeed a solution of the original synthesis problem.

Refutation-Based Synthesis in SMT 9

Iteration Γ unsat? Γ ∪ Q[a, e] unsat? I |= Γ ∪ Q[a, e] Add to Γ
1 no no {e 7→ 0, a1 7→ 0, a2 7→ 0} ¬Q[a, a1]
2 no no {e 7→ 1, a1 7→ 0, a2 7→ 1} ¬Q[a, a2]
3 yes

Fig. 2 A run of the procedure SynthSI from Figure 1 on input ∃f ∀xQ[x, f(x)], where
Q[a, e] := e ≥ a1 ∧ e ≥ a2 ∧ (e ≈ a1 ∨ e ≈ a2).

3.2 Finding instantiations

The choice of the term t[x] in Step 2 of the procedure is intentionally left under-
specified because it can be done in a number of ways. Having a good heuristic
for such instantiations is, however, critical to the effectiveness of the procedure in
practice. In a Σ-theory T , like integer arithmetic, with a fixed interpretation for
symbols in Σ and a distinguished set of ground Σ-terms denoting the elements of
a sort, a simple, if naive, choice for t in Figure 1 is the distinguished term denoting
the element eI . For instance, if σ is Int in integer arithmetic, t could be a concrete
integer constant (0,±1,±2, . . .). This choice amounts to testing whether points in
the codomain of the sought function f satisfy the original specification P .

More sophisticated choices for t[x], in particular where t contains the variables
x, may increase the generalization power of this procedure and hence its ability
to find a solution. Our implementation in the cvc4 solver relies on the fact that
the model I in Step 2 is constructed from a set of equivalence classes over terms
computed by the solver during its search. The procedure selects a term t among
those in the equivalence class of e, other than e itself, which by construction of I
is such that tI = eI .

Example 2 Consider the single invocation synthesis conjecture ∃f ∀xQ[x, f(x)]
where Q is defined in Equation (6) from Example 1. The procedure from Figure 1
on this input is shown in Figure 2. In Step 1, Γ is initially empty. and we introduce
the fresh free constants a1, a2, and e of sort Int. The columns of the table show
details of the internal state of the procedure on iterations of Step 2. In the first
iteration of Step 2 of the procedure, we determine that Γ is satisfiable, and a model
I exists for Γ ∪Q[a, e]. Since I must satisfy the third conjunct of Q[a, e], it must
be the case that either eI = aI1 , eI = aI2 , or both. Assume the model I is such that
eI = aI1 = aI2 = 0 on this iteration. Assuming our heuristic for instantiation selects
a term whose interpretation in I is the same as e, we choose to add the formula
¬Q[a, a1] to Γ on this step. On the second iteration of Step 2 of the procedure, we
discover both Γ and Γ ∪Q[a, e] are still satisfiable. The model I on this iteration
must satisfy ¬Q[a, a1], which is ¬a1 ≥ a1 ∨ ¬a1 ≥ a2 ∨ (a1 6≈ a1 ∧ a1 6≈ a2) and
simplifies to ¬a1 ≥ a2. Notice that the solver can no longer choose to interpret
eI = aI1 since it must satisfy e ≥ a2 and a2 > a1. Hence, it must be the case
that eI = aI2 on this iteration. Subsequently, we add the formula ¬Q[a, a2] to Γ
on this step, which simplifies to ¬a2 ≥ a1 and together with ¬Q[a, a1] ∈ Γ is
unsatisfiable. ut

The development of more sophisticated criteria for selecting instantiations that
are both complete and efficient and practice is a subject of ongoing work [32].
Quantifier elimination techniques [8, 26] and approaches currently used to infer
invariants from templates [11, 24] are likely to be informative for devising such

10 Andrew Reynolds et al.

∀x y ev(x1, x, y) ≈ x ∀s1 s2 x y ev(leq(s1, s2), x, y) ≈ (ev(s1, x, y) ≤ ev(s2, x, y))

∀x y ev(x2, x, y) ≈ y ∀s1 s2 x y ev(eq(s1, s2), x, y) ≈ (ev(s1, x, y) ≈ ev(s2, x, y))

∀x y ev(zero, x, y) ≈ 0 ∀c1 c2 x y ev(and(c1, c2), x, y) ≈ (ev(c1, x, y) ∧ ev(c2, x, y))

∀x y ev(one, x, y) ≈ 1 ∀c x y ev(not(c), x, y) ≈ ¬ev(c, x, y)

∀s1 s2 x y ev(plus(s1, s2), x, y) ≈ ev(s1, x, y) + ev(s2, x, y)

∀s1 s2 x y ev(minus(s1, s2), x, y) ≈ ev(s1, x, y)− ev(s2, x, y)

∀c s1 s2 x y ev(if(c, s1, s2), x, y) ≈ ite(ev(c, x, y), ev(s1, x, y), ev(s2, x, y))

Fig. 3 Axiomatization of the evaluation operators in grammar R from Section 4.1.

criteria. The advantage of developing these techniques within an SMT solver is that
they directly benefit both synthesis and verification in the presence of quantified
conjectures, thus fostering cross-fertilization between different fields.

4 Refutation-Based Syntax-Guided Synthesis

In syntax-guided synthesis, the functional specification is strengthened by an ac-
companying set of syntactic restrictions on the form of the expected solutions. In
a recent line of work [2, 3, 30], these restrictions are expressed by a grammar R
(augmented with a kind of let binder) defining the language of solution terms,
or programs, for the synthesis problem. In this section, we present a variant of
the approach in the previous section that incorporates the syntactic restriction R
directly into the SMT solver via a deep embedding [42, 44] of the terms meeting
the restriction into the solver’s logic. The main idea is to represent R as a set of
algebraic datatypes and build into the solver an interpretation of these datatypes
in terms of the original theory T .

Our approach is limited to theories T with term-generated interpretations and
to restrictions R that can be expressed as algebraic datatypes, but is generic with
respect to such theories and restrictions.

For simplicity, but without loss of generality, we assume that T has a set of
function symbols≈σ σ Bool for all σ ∈ Σs, ¬Bool Bool, ∧Bool Bool Bool, etc., corresponding
to the various logical connectives and interpreted as expected in every model.5 It
is not difficult to prove that then every quantifier-free formula ϕ can be written
equivalently as an equation tϕ ≈ tt where tϕ is a Boolean term—that is, |=T ϕ⇔
(tϕ ≈ tt) for some term tϕ of type Bool. This allows us to treat function symbols
and logical connectives uniformly. We will then sometimes abuse the notation and
not distinguish between terms of type Bool and quantifier-free formulas.

Before defining T in its full generality, we introduce it with a concrete example.

4.1 An example

Consider again the synthesis conjecture (6) from Example 1, where T is the theory
of linear integer arithmetic, but now with a syntactic restriction R for the solution

5 That is, ¬Bool Bool interpreted as Boolean negation, ∧Bool Bool Bool as Boolean conjunction,
=σ σ Bool as the equality function, and so on.

Refutation-Based Synthesis in SMT 11

space expressed by these algebraic datatypes:

I := x1 | x2 | zero | one | plus(I, I) | minus(I, I) | if(B, I, I)

B := leq(I, I) | eq(I, I) | and(B,B) | not(B)

The datatypes are meant to encode a term signature that includes nullary con-
structors for the integer variables x1 and x2 of (6), and constructors for the symbols
of the arithmetic theory T . Terms of sort I (resp., B) refer to theory terms of sort
Int (resp., Bool).

Instead of T , we now consider its combination Tev with the theory of the
datatypes above extended with two evaluation operators, that is, two function
symbols evI Int Int Int and evB Int Int Bool respectively embedding I in Int and B in Bool.
We define Tev so that all of its models satisfy the formulas in Figure 3. The eval-
uation operators effectively define an interpreter for programs (i.e., terms of sort
I and B) with input parameters x1 and x2.

If the syntactic restriction R is expressed in the SyGuS language [30], it is possi-
ble to instrument an SMT solver that supports (user-defined) algebraic datatypes,
quantifiers and linear arithmetic so that it constructs automatically from R both
the datatypes I and B and the two evaluation operators. Reasoning about I and
B can be done with the datatype subsolver as long as the solver is able to decide
the satisfiability of ground formulas as well as enumerate their models. Moreover,
for each model I of a formula ϕ and each free varibale x in ϕ, the solver must
be able to present the value xI as a constructor term, that is, a term containing
only constructor symbols. Reasoning about the evaluation operators is achieved
by reducing ground terms of the form ev(d, t1, t2) where d is a constructor term to
smaller terms by using the axioms from Figure 3 as rewrite rules, orienting each
equation/equivalence from left to right.

For instance, the formula P [f,x] in Equation (5) from Example 1 can be re-
stated in Tev as the formula below where g is a variable of type I:

Pev[g,x] := ev(g,x) ≥ x1 ∧ ev(g,x) ≥ x2 ∧ (ev(g,x) ≈ x1 ∨ ev(g,x) ≈ x2)

In contrast to P [f,x], the new formula Pev[g,x] (equivalent to P [λx ev(g,x),x])
is first-order, with the role of the second-order variable f now played by the first-
order variable g.

When asked for a solution for (5) under the restriction R, the instrumented
SMT solver will try to determine instead the Tev-unsatisfiability of ∀g ∃x¬Pev[g,x].
Instantiating g in the latter formula with s := if(leq(x1, x2), x2, x1), say, produces
a formula that the solver can prove to be Tev-unsatisfiable. This suffices to show
that the program ite(x1 ≤ x2, x2, x1), the analogue of s in the language of T , is a
solution of the synthesis conjecture (5) under the syntactic restriction R.

In the following we provide a general and formal definition of the theory Tev
mentioned in the example above, as well as a description of the synthesis procedure
that we use with this theory.

4.2 From T to Tev

Let T be the background Σ-theory fixed in Section 2 but with the additional
assumptions that

12 Andrew Reynolds et al.

1. T is the theory of some term-generated interpretation, and
2. its associated satisfiability procedure can also find a model for each formula ϕ

it determines to be T -satisfiable, and output the values of ϕ’s free variables in
that model as ground Σ-terms.

The theory Tev is an extension of T . Its construction depends on the syntax
restriction R and on a tuple x = (xσ1

1 , . . . , xσk

k) of variables with σ1, . . . , σk ∈ Σs.
We fix such a tuple and consider conjectures of the form ∃f ∀xP [f,x] from L.

For generality, we do not discuss here any concrete language to specify the
restriction R. Instead, we assume that it is possible to express R by a context-free
grammar whose production rules can be faithfully encoded as a set of algebraic
datatype definitions.6 We use these datatypes to construct Tev.

The datatype restriction

Let D be a theory of algebraic datatypes [7] with signature Ω and set of constructor
symbols Ωc which shares no sort and no function symbols with T . We denote the
constructors of D by c, possibly with subscripts. We call constructor term any
term, possibly with variables, all of whose functions symbols are constructors.

We make the following assumptions on Ω:

1. There is a ground constructor term of type σ for each σ ∈ Ωs.
2. The number of ground constructor terms of size n is finite for each n > 0.
3. There is an injective mapping s : Ωc → Σf ∪ x, a mapping m : Ωs → Σs, and

an injective mapping m : X→ X such that
– for all x ∈ x, there is a cx ∈ Ωc with m(cx) = x;
– for all cδ1···δnδ ∈ Ωc, m(c) and has type s(δ1)× · · · × s(δn)→ s(δ) in Σ;
– for all δ ∈ Ωs and x ∈ Xδ, m(x) ∈ Xs(δ).

Intuitively, D captures the symbols and the syntax of some fragment of the
language of quantifier-freeΣ-formulas with variables in x. Some sorts of T , possibly
including Bool, are represented by one or more sorts of D; some function symbols
f of T are represented in D by a constructor cf whose type maps to the type of
f ; and every variable x in x is represented in D by a (constant) constructor cx
whose sort maps to the sort of x. Finally, every variable of datatype δ is mapped to
a variable of the corresponding type s(δ). Note that the correspondence between
sorts in D and sorts in T needs not be one-to-one; this allows for greater flexibility
in expressing language fragments. The fact that neither s nor m needs to be
surjective corresponds to restricting the sorts and the function symbols in the
fragment.

We will use m also to denote the homomorphic extension of the union of the
two m’s to constructor terms. Intuitively, this extension maps each constructor
term to the term in T it represents.

Example 3 Looking back at the example in Section 4.1 we have that

Ωs = {I, B}
Ωc = {xI1, xI2, zeroI, oneI, plusI I I, minusI I I, ifB I I I, leqI I B, eqI I B, andB B B, notB B}
s = {I 7→ Int, B 7→ Bool}
m = {x1 7→ x1, x2 7→ x2, zero 7→ 0, . . . , if 7→ ite, . . . , not 7→ ¬}
6 We make this assumption to simplify the presentation. The SyGuS language [30] defines

a more general class of restrictions R for which this is not necessarily possible.

Refutation-Based Synthesis in SMT 13

SynthSG(∃g ∀xPev[g,x]):

1. Let Γ = ∅, let n = 1
2. Loop

(a) While Γ is not n-satisfiable in Tev
If the n-unsatisfiability proof shows that Γ is actually Tev-unsatisfiable then

return “no solution”
else

increase n by some positive amount
(b) Let I be a model of Tev satisfying Γ with size(gI) ≤ n
(c) If there is a model J of Tev satisfying ¬Pev[gI ,x] then

let Γ = Γ ∪ {Pev[g, t]} where t are ground Σ-terms such that tJ = xJ

else
return gI as a solution

Fig. 4 A refutation-based syntax-guided synthesis procedure SynthSG for ∃g ∀xPev[g,x]. The
expression size(d) denotes the size of constructor term d.

If d is the constructor term leq(plus(x1, z), plus(z, one)), say, where z is a variable
of type I and y = m(z), then m(d) = x1 + y ≤ x2 + 1. ut

The theory Tev

The theory Tev has a signature Σev that extends the union of Σ and Ω with the
following families of new function symbols:

{evδ σ1···σk m(δ) | δ ∈ Ds}

{≈δ δ Bool| δ ∈ Ds}

Tev is the union7 of T , D and the theory consisting of all Σev-interpretations
that interpret the symbols eqδδ Bool like the equality predicate and satisfy the
following formulas for each cδ1···δnδ ∈ Ωc:

∀z1 · · · zk ev(c, z1, · · · zk) ≈ zi where m(c) = xi for some i = 1, . . . , k (7)

∀z ev(c(s1, . . . , sn), z) ≈ m(c)(ev(s1, z), . . . , ev(sn, z)) where m(c) /∈ x (8)

Our synthesis procedure applies to conjectures in the class

L2 := {∃g ∀xP [λz ev(g, z), x] | P [f,x] ∈ P}

where instead of terms of the form f(t1, . . . , tk) in P we have, modulo β-reductions,
terms of the form ev(g, t1, , . . . , tk).

Let ∃g ∀xϕ[g,x] ∈ L2 and observe that g is the only term of type δ ∈ Ωs

in ϕ and it occurs there only in terms of the form ev(d, t). We say that a set
{ϕ[g, t1], . . . , ϕ[g, tn]} of instances of a formula ϕ like the above is n-satisfiable in
Tev if the set is satisfied by a model of Tev that interprets g as a ground constructor
term of size at most n. Our procedure relies on the following fact.

Proposition 2 For any n > 0, n-satisfiability in Tev is decidable.

7 We omit the technical and somewhat tedious proof that such union theory exists.

14 Andrew Reynolds et al.

Iteration I J Added Formula
1 {g 7→ x1, . . .} {x1 7→ 0, x2 7→ 1, . . .} Pev[g, 0, 1]
2 {g 7→ x2, . . .} {x1 7→ 1, x2 7→ 0, . . .} Pev[g, 1, 0]
3 {g 7→ one, . . .} {x1 7→ 2, x2 7→ 0, . . .} Pev[g, 2, 0]
4 {g 7→ plus(x1, x2), . . .} {x1 7→ 1, x2 7→ 1, . . .} Pev[g, 1, 1]
5 {g 7→ if(leq(x1, one), one, x1), . . .} {x1 7→ 1, x2 7→ 2, . . .} Pev[g, 1, 2]
6 {g 7→ if(leq(x1, x2), x2, x1), . . .} none

Fig. 5 A run of the procedure SynthSG from Figure 4 on input ∃g ∀xPev[g,x], where Pev[g,x]
is ev(g,x) ≥ x1 ∧ ev(g,x) ≥ x2 ∧ (ev(g,x) ≈ x1 ∨ ev(g,x) ≈ x2).

Proof Let {ϕ[g, t1], . . . , ϕ[g, tn]} be as in the definition of n-satisfiability. By our
assumptions, there is a finite number of ground constructor terms of size at most
n. For each such term d, each formula ϕ[d, ti] can be effectively reduced to an
Tev-equivalent quantifier-free Σ-formula ψ[ti] by using the axioms (7) and (8) as
rewrite rules oriented from left to right. The satisfiability of {ψ[t1], . . . , ψ[tn]} can
then be checked by the decision procedure for T . ut

Given a synthesis conjecture ∃g ∀xPev[g,x] ∈ L2 where g is the datatype vari-
able standing for the program to be synthesized, we use a procedure analogous to
that in Section 3 to extract a solution for g from a refutation of ∀g ∃x¬Pev[g,x].
The main difference, of course, is that now g ranges over the datatype representing
the restricted solution space.

The procedure is described in Figure 4. It maintains a set Γ of ground instances
of Pev[g,x] and an integer n representing an upper bound on the size of g. In each
iteration of the main loop, it first determines if Γ is n-unsatisfiable. If it is, it might
be because Γ itself is Tev-unsatisfiable. In that case, the procedure has determined
that the conjecture has no solution in the solution space defined by the restriction
R and so it quits with failure. Otherwise, it has determined only that there are
no solutions of size at most n and so it increments n. If the procedure finds that
Γ is n-satisfiable in a model I, it checks the Tev-satisfiability of ¬Pev[g

I ,x]. Note
that since gI is a ground constructor term, this check is effective, as explained
in the proof of Proposition 2. If that formula has a model J this means that the
candidate solution gI has a counterexample, a tuple of input values, denoted by
the terms t, for which gI fails to satisfy its specification Pev. The procedure then
adds the clause Pev[g, t

J] to Γ , and repeats the main loop. That addition has the
effect of requiring explicitly that all subsequent candidate solutions for g satisfy
the specification Pev for that counterexample for gI . Note that the terms t exist
because T is the theory of a term-generated interpretation. If instead ¬Pev[g

I ,x]
is Tev-unsatisfiable, the procedure has determined that gI satisfies Pev[g

I ,x] for
all possible values of x and so it returns it as a solution.

The returned term gI is a ground constructor term. A solution of the original
conjecture ∃f ∀xP [f, x] is then, by construction, the term m(gI).

We implemented the procedure SynthSG in the cvc4 solver [5]. Figure 5 shows
a run of the procedure for the conjecture from Section 4.1. We show the relevant
values for g in the model I from Step (2a), and for x1 and x2 in Step (2c) for 6
iterations. Each successive model I interprets g as a term that meets the specifica-
tion Pev for all inputs xJ found for previous candidates. After the sixth iteration,
the procedure finds the candidate if(leq(x1, x2), x2, x1) For this term, the procedure

Refutation-Based Synthesis in SMT 15

cannot find an input value that falsifies Pev, indicating that it is a solution for the
synthesis conjecture.

Proposition 3 The procedure SynthSG has the following properties:

1. (Solution Soundness) If it returns a term d as a solution, then ∀xPev[d,x] is
Tev-satisfiable.

2. (Refutation Soundness) If it answers “no solution”, then ∃g ∀xPev[g,x] is Tev-
unsatisfiable.

3. (Solution Completeness) it terminates (with a solution) whenever its input
conjecture is satisfiable.

Proof (1) For solution soundness, suppose the procedure returns some ground
constructor term d as a solution. We have that ¬Pev[d,x] is Tev-unsatisfiable. Thus,
∃x¬Pev[d,x] is Tev-unsatisfiable and so ∀xPev[d,x] is Tev-satisfiable.

(2) For refutation soundness, suppose the procedure returns “no solution”.
Then, there is a Γ = {Pev[g, t1], . . . , Pev[g, tn]} that is Tev-unsatisfiable, where
t1, . . . , tn are tuples of ground terms. This means that ∀xPev[g,x] is Tev-unsatisfiable,
making ∃g ∀xPev[g,x] Tev-unsatisfiable as well.

(3) For solution completeness, suppose that ∃g ∀xPev[g,x] is Tev-satisfiable.
Then there is a ground constructor term d0 of minimal size n0 such that ∀xPev[d0,x]
is Tev-satisfiable. Observe first that all the satisfiability tests in the procedure are
effective. In particular, the one in Step (2a) is so by Proposition 2; the one in
Step (2c) because gI contains no variables. Hence it is enough to show that both
loops in the procedure are terminating.

The while loop in Step (2a) terminates because the n counter is incremented
at every iteration of the while loop. If the loop does not terminate for another
reason, the value of n will eventually reach some value k ≥ n0, after which the
loop condition will fail. This is because Γ is a consequence of ∃g ∀xPev[g,x], and
hence by assumption is satisfied by a model I where gI is d0, whose size is at most
k, and hence by definition Γ is k-satisfiable in Tev.

The main loop terminates because, once n = k, by our assumptions on the
datatype signature Ω, the set S of ground constructor terms with size ≤ k is
finite. The subset S0 of S of terms such that ∀xPev[d,x] is Tev-satisfiable is non-
empty. The value of gI on each iteration in Step (2b) is unique. This is because
each d chosen on prior iterations are such that Γ contains Pev[g, t] for some t where
¬Pev[d, t] is Tev-satisfiable. By our assumptions on T , this implies all models I of Γ
are such that gI 6= d. Hence, a model I where gI with gI ∈ S0 will be eventually
chosen in Step (2b). At that point, the test in Step (2c) will fail and gI will be
returned. ut

Note the procedure is not refutation complete: it can diverge if, but only if,
the input synthesis conjecture has no solution.

4.3 Early pruning by symmetry breaking

The procedure SynthSG in Figure 4 effectively considers multiple candidate solu-
tions for the negated synthesis conjecture ∀x ¬Pev[g,x]. A concrete implementa-
tion of the procedure can be obtained through a form of branch and bound search,

16 Andrew Reynolds et al.

where the bound is on the size of the the ground constructor terms representing
candidate solutions. For efficiency, it is important for such an implementation to
avoid spending time considering candidate solutions that are equivalent to one
another. Our implementation of the procedure within cvc4 uses blocking clauses
to express at some point that all remaining candidate solutions for g in the current
branch of the search are equivalent to previously considered solutions, forcing the
search of that branch to be abandoned. These clauses may significantly increase
performance.

This is typical in SMT solvers based on the DPLL(T) architecture which check
the satisfiability of a quantifier-free formula ϕ in a background Σ-theory T by
combining a SAT solver, used to check the propositional satisfiability ϕ, with a
(set of) theory solvers for checking the T -satisfiability of an evolving set M of Σ-
literals representing a (partial) truth value assignment for the atoms of ϕ. If at any
time a theory solver determines a subset C of M to be T -unsatisfiable, it adds the
blocking clause

∨
l∈C ¬l to the SAT solver, indicating that at least one literals in

M must be retracted. Blocking clauses, in addition to expressing that the current
set M is Tev-unsatisfiable, can also be used to prune future search branches by
prohibiting a certain combination of literals to be reasserted again in the set M .
The same mechanism is used in some advanced approaches to SAT and SMT also
to break symmetries [1,12]. We can understand symmetries informally here as the
existence of several solutions for a subproblem which are, however, equivalent for
all interesting purposes.

Symmetries arise in procedure SynthSG because distinct constructor terms
in Tev typically represent terms in T that are T -equivalent. For instance, in the
example of Section 4.1 the arithmetic terms x1 + x2, x2 + x1, and x1 + (0 + x2),
corresponding respectively to the constructor terms plus(x1, x2), plus(x2, x1), and
plus(x1, plus(zero, x2)) are all T -equivalent. This means that once, plus(x1, x2), say,
is considered as a candidate solution the others should not because they represent
essentially the same solution.

Breaking symmetries. To show how we break symmetries in our implementation of
the procedure SynthSG let us start with the following observation. First, for each
constructor cδ1···δnδ ∈ Σc

ev and i = 1, . . . , n let sδδic,i be the selector for the i-the

argument of c. Also, let isδ Boolc denote the corresponding tester.8 Then, a set of Σev-
literals M entails part of the shape that the values of a datatype variable g must
have in in all models of M . For instance, if M = {isplus(g), iszero(splus,1(g))}, then all
the Tev-models of M must interpret g as a constructor term of the form plus(zero, d)
for some d. We will write dg,M [z] to denote the smallest constructor term such
that each variable of z occurs in the term at most once and M |=Tev ∃z dg,M ≈ g.
Intuitively, dg,M is a template that expresses everything that M entails about
the shape of g, and nothing more. The idea is to consider only terms dg,M whose
analogues m(dM,g) in T are unique up to equivalence, for some suitable equivalence
relation ≡.

To define ≡ we assume that every Σ-term t can be effectively reduced to
some T -equivalent, unique and irreducible term, which we denote by t↓ and call a

8 The selector sc,i is such that sc,i(c(d1, . . . , dn)) = di for all constructor terms d1, . . . , dn
of respective type δ1, . . . , δn. The tester isc is such that, for all terms d of type δ, isc(d) = tt
iff the top symbol of d is c.

Refutation-Based Synthesis in SMT 17

m(dg,M0
) ∈ S m(dg,M0

)↓∈ N m(dg,M) m(dg,M)↓ Blocking Clause
(z′1 + z′2) + z′3 z′1 + z′2 + z′3 z1 + (z2 + z3) z1 + z2 + z3 ¬(isplus(g) ∧ isplus(splus,2(g)))

z′1 z′1 0 + z1 z1 ¬(isplus(g) ∧ iszero(splus,1(g)))
x1 + x2 x1 + x2 x2 + x1 x1 + x2 ¬(isplus(g) ∧ isx2 (splus,1(g)) ∧ isx1 (splus,2(g)))

ite(z′1, z
′
2, z
′
3) ite(z′1, z

′
2, z
′
3) ite(¬z1, z2, z3) ite(z1, z3, z2) ¬(isite(g) ∧ isnot(site,1(g)))

Fig. 6 Symmetry breaking clauses for the grammar from the example in Section 4.1. Assuming
there are no models for M0, we conclude there are no models for M .

normal form of t.9 Then two Σ-terms t and u are ≡-equivalent if there is a bijective
renaming ρ of the variables of u↓ such that t↓ and ρ(u↓) are T -equivalent.

When checking Tev-satisfiability, we maintain a set of terms S indicating the
shapes of terms we have considered (or are currently considering) for a datatype
variable g so far, and a set N containing the normal forms for all terms in S. At
any time we are asked to check the Tev-satisfiability of a set M with a free datatype
variable g and m(dg,M) is not in S, we add that term to S and construct the term
u = m(dg,M)↓. If u is ≡-equivalent to a term m(dg,M0

)↓ in N for some subset
M0 of M , then we produce the blocking clause

∨
l∈C ¬l, for some minimal C ⊆M

such that dg,C = dg,M . Otherwise, we add u to N .

In this method, we use the same normal form t↓ for terms t that is used by
theory solver for T in cvc4, making this method parametric in the background
theory considered.

Examples of blocking clauses are shown in Figure 6. The first clause assumes
that we have already determined that there are no solutions where g is interpreted
as a term of the form (z′1 + z′2) + z′3 for any z′1, z

′
2, z
′
3. It is not useful to consider

the case where g is a term of the form z1 + (z2 + z3), by noting their normal forms
are equivalent up to renaming of variables. More generally, this scheme restricts
our search to consider only left-associated chains of applications of associative
operators. The other cases are similar, ensuring that the solver avoids solutions
involving addition with 0, sums of monomials with identical normal forms, and
terms where Boolean simplification results in a previously considered term.

5 Single Invocation Techniques for Syntax-Guided Problems

In this section, we considered the combined case of single-invocation synthesis
conjectures with syntactic restrictions R, giving two alternative solving methods.
The method uses the deep embedding introduced in Section 4 to encode the first-
order variant of the synthesis conjecture. This approach handles the exploration
of different cases natively within the SMT solver while explicitly modeling the
syntax of terms returned in each case using the embedding. The second method
is based on dividing the synthesis process into two steps, where we first solve
the synthesis conjecture while ignoring its associated syntactic restrictions, and
afterwards reconstruct an equivalent solution meeting them.

To simplify the exposition we restrict ourselves to sets R of syntactic restric-
tions expressed by a datatype I for programs and a datatype B for Boolean expres-
sions. The general case of syntactic restrictions with more datatypes is similar.

9 Note that this assumption is pragmatic and can be made arbitrarily mild. For instance,
depending on the theory, in the worst case one can always consider every term to be irreducible.

18 Andrew Reynolds et al.

Iteration Γ unsat? Γ ∪QB[a, e] unsat? I |= Γ ∪QB[a, e] Add to Γ
1 no no {e 7→ x1, a1 7→ 0, a2 7→ 0} ¬QB[a, x1]
2 no no {e 7→ x2, a1 7→ 0, a2 7→ 1} ¬QB[a, x2]
3 yes

Fig. 7 A run of the procedure SynthSI from Figure 1 on input ∃g ∀xQB[x, g(x)], where
QB[a, e] is ev(and(leq(x1, e), and(leq(x2, e), or(eq(e, x1), eq(e, x2)))),a).

5.1 Method 1: Encode Single Invocation Property in Tev

We consider first the case in which both of the following two conditions hold:

1. S contains the constructor ifB I I I, mapped to the if-then-else logical operator
ite, and

2. the function to be synthesized is specified by a single-invocation property that
can be expressed as a term of sort B.

This is the case for the syntactic restrictions R from the example in Section 4.1.
To solve this conjecture, we may encode the synthesis conjecture into the language
of R, and use the procedure SynthSI from Figure 1, since by the above properties
of R it is guaranteed to find solutions meeting our syntactic requirements.

Example 4 Consider the single invocation property ∃f ∀xQ[x, f(x)] where Q is
defined in Equation (6) from Example 1, where f has type Int × Int → Int. As-
sume the syntactic restrictions R from Section 4.1 are given for solutions of this
conjecture. We may rephrase this conjecture as ∃g ∀xQB[x, g(x)], where

QB[x, y] := ev(and(leq(x1, y), and(leq(x2, y), or(eq(y, x1), eq(y, x2)))),x) (9)

g is a function of type Int × Int → I, and y is of type I where I is a datatype
that encodes integer terms that meet the syntactic restrictions R. A run of the
procedure SynthSI from Figure 1 on input ∃g ∀xQB[x, g(x)] is shown in Figure 7.
In Step 1, we initialize Γ to ∅, and introduce the fresh free constants a1, a2 of sort
Int, and e of sort I. On the first iteration of Step 2 of the procedure, we find that Γ
is satisfiable, and that Γ ∪QB[a, e] has a model I. In contrast to the run described
in Figure 2 where e was of sort Int, the e in Figure 7 is of sort I. As such, the
heuristic used in Figure 2, which considered the relation between terms of sort Int,
is no longer applicable for choosing an instance to add to Γ . Instead, assume we
use a heuristic that adds instances to Γ based on the value of e in model I, which
interprets the datatype I as the set of terms built from its constructors. One such
model I interprets e as the term x1. Assuming this model, we add the instance
¬QB[a, x1] to Γ , after which we discover both Γ and Γ ∪ QB[a, e] are satisfiable.
Assuming the model on the next iteration interprets e as x2, we add the instance
¬QB[a, x2] to Γ , which together with the previous instance are unsatisfiable. This
tells us that the solution

λx ite(ev(and(leq(x1, x1), and(leq(x2, x1), or(eq(x1, x1), eq(x1, x2)))),x), x1, x2)(10)

is a solution for g in ∃g ∀xQB[x, g(x)]. The analogue of this solution

λx ite(x1 ≤ x1 ∧ x2 ≤ x1 ∧ (x1 ≈ x1 ∨ x1 ≈ x2), x1, x2) (11)

is a solution for f in ∃f ∀xQ[x, f(x)] that meets the syntactic restrictions R. ut

Refutation-Based Synthesis in SMT 19

reconstruct(t, δ):

1. A := ∅ ; t′ := t↓
2. for i = 1, 2, . . .

(a) (u, U) := rcon(t′, δ, A);
(b) if U is empty, return u; otherwise, for each datatype δj occurring in U

let di be the ith term in a fair enumeration of the elements of δj
add (m(di)↓,m(di), δj) to A

rcon(t, δ, A):

if (t, u, δ) ∈ A, return (u, ∅); otherwise, do one of the following:
(1) choose a f(t1, . . . , tn) s.t. f(t1, . . . , tn)↓ = t and m(c) = f for some cδ1...δnδ in δ

let (ui, Ui) = rcon(ti↓, δi, A) for i = 1, . . . , n
return (f(u1, . . . , un), U1 ∪ . . . ∪ Un)

(2) return (t, {(t, δ)})

Fig. 8 A procedure reconstruct for finding a term equivalent to t that meets the syntactic
restrictions specified by datatype δ.

In contrast to the procedure SynthSG, the advantage of running the procedure
SynthSI in the way described in this example is that only the outputs of a solution
need to be synthesized and not conditions in ite-terms. Moreover, it maintains the
benefits of the theoretical properties stated in Proposition 3, given a fair strategy
for selecting candidate terms for instantiation. However, the selection criteria for
instantiation in Figure 7 is much weaker than the one used in Figure 2. In Figure 7,
we assumed the procedure interpreted e as x1 and x2 on the two iterations of the
run. However, it may have interpreted e as zero on the first iteration, or one on the
second iteration instead. Assuming a fair strategy for enumerating solutions for
e1, the number of iterations of Step 2 of the procedure could have been up to four.
Since the efficiency of our approach for synthesis is highly dependent upon having
a good method for selecting instances to add to Γ , we describe an alternative
method in the following.

5.2 Method 2: Solve Single Invocation Property, Reconstruct Solution in R

An alternative approach to solve single-invocation synthesis conjectures with syn-
tactic restrictions R is to run the procedure SynthSI from Figure 1 as is, ignoring
the restrictions, and subsequently reconstructs from its returned solution one that
satisfies them. This has two significant advantages over the method described in
Section 5.1. First, reasoning about conjectures directly allows us more powerful
criteria for selecting instantiations, as seen in the differences between the runs
in Figure 2 and Figure 7. Second, our experimental evaluation found that the
overhead of solving ground satisfiability problems that involve an embedding into
datatypes for syntax-guided problems is significant with respect to the performance
of the solver on problems with no syntactic restrictions.

Figure 8 presents a procedure, called reconstruct, that takes as input a term
t and a datatype I, and attempts to construct a term that is equivalent to t and
meets the syntactic restrictions specified by datatype I. This procedure maintains
an evolving set A of triples of the form (u↓, u, δ), where δ is the datatype I or B,
u is a term satisfying the restrictions specified by δ, and ↓ is the normalization
operator as described in Section 4.3. The procedure incrementally makes calls to

20 Andrew Reynolds et al.

the (non-deterministic) subprocedure rcon, which takes a normal form term t, a
datatype δ and the set A above, and returns a pair (u, U) where u is a term
equivalent to the input t to reconstruct, and U is a set of pairs of the form (u′, δ′)
where u′ is a subterm of u that fails to satisfy the syntactic restriction expressed
by datatype δ′. The procedure rcon may either try to match t to a term whose top
symbol f has an analogue c in δ, or simply return the set {(t, δ)}, indicating that
it failed to match t to the syntactic restriction given by δ. Overall, the procedure
alternates between calling rcon and adding triples to A until rcon(t, δ, A) returns
a pair of the form (s, ∅), indicating that u is a term T -equivalent to t that satisfies
the syntactic restrictions embodied by I and B.

Example 5 Consider the single invocation property ∃f ∀xQ[x, f(x)] where Q is
defined in Equation (6) from Example 1, assume the syntactic restrictions R from
Section 4.1 are given for solutions of this conjecture. Say we use the procedure
SynthSI from Figure 1 for finding a solution to this conjecture, and that SynthSI
returns the solution λxu for f , where u = ite((−1∗x1)+x2 ≤ 0, x1, x2). Note that
this solution is indeed a solution for our conjecture, but it does not meet the syn-
tactic restrictions given by the datatype I in R, since it contains the multiplication
operator ∗ and unary minus −. To construct from that a solution that meets the
syntactic restrictions represented by datatype I, we run the procedure reconstruct
from Figure 8 on u and I. We let A = ∅, and call rcon(u↓, I, A). The intermediate
calls of a run of rcon(u, I, ∅) are shown below, where we assume that u′↓= u′ for
all subterms u′ of u.

t δ return
ite((−1 ∗ x1) + x2 ≤ 0, x1, x2) I (ite((−1 ∗ x1) + x2 ≤ 0, x1, x2), {(−1 ∗ x1, I)})

(−1 ∗ x1) + x2 ≤ 0 B ((−1 ∗ x1) + x2 ≤ 0, {(−1 ∗ x1, I)})
x1 I (x1, ∅)
x2 I (x2, ∅)
0 I (0, ∅)

(−1 ∗ x1) + x2 I ((−1 ∗ x1) + x2, {(−1 ∗ x1, I)})
(−1 ∗ x1) I (−1 ∗ x1, {(−1 ∗ x1, I)})

In more detail, on the initial call to rcon, since A is empty and ite is the analogue of
constructor ifBII in I, the procedure rcon may choose to return a pair based on the
result of calling rcon((−1∗x1)+x2 ≤ 0,B, A), rcon(x1, I, A), and rcon(x2, I, A). We
may similarly traverse the function symbols of all subterms of u, with the exception
of (−1 ∗ x1). On the recursive call to rcon(−1 ∗ x1, I, ∅), the procedure chooses to
returns a pair whose second component contains (−1 ∗ x1, I), indicating it failed
to produce a solution that met our syntactic restrictions. Overall, rcon(u, I, ∅)
returns the pair (u, {(−1 ∗ x1, I)}). Since the second component is non-empty,
in the procedure reconstruct, we enumerate the first element of I, x1 say, whose
analogue m(x1) in T is x1, and add the triple (x1, x1, I) to A. This indicates that
there is a term in grammar I (as witnessed by x1) that is equivalent to x1. The
call to rcon(u, I, A) will again return the same value, after which we pick another
triple to add to A and repeat. This process continues until we enumerate the
term minus(x2, x1) say, whose analogue m(minus(x2, x1)) in T is x2 − x1. Assume
(x2 − x1)↓ = (−1 ∗ x1) + x2. We add the pair ((−1 ∗ x1) + x2, x2 − x1, I) to A.

Refutation-Based Synthesis in SMT 21

After doing so, the subcall to rcon((−1 ∗ x1) + x2, I, A) returns (x2 − x1, ∅), and
hence rcon(s, I, A) may return (ite(x2 − x1 ≤ 0, x1, x2), ∅). This indicates that
λx1x2 ite(x2 − x1 ≤ 0, x1, x2) is equivalent to λx1x2 ite((−1 ∗ x1) + x2 ≤ 0, x1, x2)
and thus is a solution for our conjecture, and moreover meets the restrictions
specified by I. ut

The procedure reconstruct depends upon a normal forms for terms. Since the
top symbol of t is generally ite, this normalization includes both low-level rewrit-
ing of literals within t, but also includes high-level rewriting techniques such as
ite simplification, redundant subterm elimination and destructive equality reso-
lution. Also, notice that we are not insisting that every two T -equivalent terms
have the same normal form, and thus normal forms only under-approximate T -
equivalence between terms. Having a stronger term reduction mechanism that re-
duces larger sets of terms to the same normal form allows us to compute a tighter
under-approximation of T -equivalence, thus improving the performance of the re-
construction. This is the case for theories such as linear arithmetic whose normal
form for terms is a sorted list of monomials, as opposed for instance to theories
such as bitvectors, where distinct terms in normal form may be still equivalent to
one another.

We use several optimizations, omitted in the description of the procedure in
Figure 8, to increase the likelihood that the procedure terminates in a reasonable
amount of time. For instance, in our implementation the return value of rcon is not
recomputed every time A is updated. Instead, we maintain an evolving directed
acyclic graph whose nodes are a triples of the form (t, δ, f), where t is a term δ is
a datatype, and f is either a function (in which case we call it a complete node)
or a distinguished symbol � (in which case we call it an incomplete node). In this
graph, complete nodes have children of the form (t1, δ1, f1), . . . , (tn, δn, fn), where
f(t1, . . . , tn)↓= t and there is a cδ1...δnδ in δ such that m(c) = f , and incomplete
nodes have no children. We then enumerate datatype terms di for all datatypes δ
that occur in incomplete nodes (t, δ,�), replacing such a node with a correspond-
ing graph containing only complete nodes if we find a di such that m(di)↓= t.
We succeed in finding a term t that meets the syntactic restrictions specified by
datatype δ if we construct a graph of this form with root node (t, δ, f) that con-
tains no incomplete nodes, where the solution can be extracted by traversing this
graph.

Another important optimization is that our implementation simultaneously
tries multiple alternatives considering a term t with restrictions δ. For instance, in
Example 5, when calling rcon on (−1∗x1)+x2 ≤ 0 and B, we chose to match it to
(−1∗x1)+x2 ≤ 0 whose top symbol ≤ has an analogue leq in B. However, we may
have choosen to match it to ¬((−1∗x1)+x2 > 0) instead, noting not is also in B. In
terms of the directed acyclic graph described above, we introduce multiple nodes
of the form (t, δ, f1), . . . , (t, δ, fn) when considering a term t with restrictions δ.
These nodes are chosen in a way such that the size of the graph does not diverge.
Whenever the graph whose root node is (t, δ, fi) contains only complete nodes for
any i, we remove the nodes (t, δ, fj) for j 6= i from the graph, direct their inward
edges to (t, δ, fi), and prune their children accordingly. Again, we succeed for t
and δ when we construct a graph with root node (t, δ, f) containing no incomplete
nodes.

22 Andrew Reynolds et al.

array (31) bv (13) hd (44) icfp (50) int (90) Total (228)
time # time # time # time # time # time

cvc4+si 31 63.0 6 0.1 44 0.9 0 0.0 52 21.6 133 85.6
cvc4+si-r (31) 56.9 (7) 14.0 (44) 0.9 (50) 5426.8 (89) 22.8 (221) 5521.4
cvc4+sg 1 3.4 0 0.0 26 1253.8 1 0.5 27 1378.0 55 2635.7
enum 3 15.4 2 28.3 38 197.5 0 0.0 36 2482.0 79 2723.1
stoch 1 0.4 0 0.0 32 655.9 0 0.0 35 702.0 68 1358.3
sketch 9 2993.6 0 0.0 35 2829.7 0 0.0 17 146.4 61 5969.8
stoast 0 0.0 0 0.0 25 2384.3 1 1.2 6 36.6 32 2422.1

Fig. 9 Results for single-invocation synthesis conjectures with syntactic restrictions, showing
times (in seconds) and number of benchmarks solved by each solver and configuration over 5
benchmark classes with a 1800s timeout. The number of benchmarks solved by configuration
cvc4+si-r are in parentheses because its solutions do not necessarily satisfy the given syntactic
restrictions.

Although the overhead of this procedure can be significant when large sub-
terms do not meet the syntactic restrictions, we found that in practice it quickly
terminates successfully for a majority of the solutions we considered where recon-
struction was possible, as we discuss in the next section. Furthermore, it makes
our implementation more robust, since it effectively treats in the same way dif-
ferent properties that are equal modulo normalization (which is parametric in the
built-in theories we consider).

6 Experimental Evaluation

We implemented the techniques from the previous sections in the SMT solver
cvc4 [5], which has support for quantified formulas and a wide range of theories
including arithmetic, bitvectors, and algebraic datatypes. We considered multiple
configurations of cvc4 corresponding to the techniques mentioned in this paper.
Configuration cvc4+sg executes the syntax-guided procedure from Section 4,
even in cases where the synthesis conjecture is single-invocation. Configuration
cvc4+si-r executes the procedure from Section 3 on all benchmarks having con-
jectures that it can deduce are single-invocation. This configuration simply ignores
any syntax restrictions on the expected solution. Finally, configuration cvc4+si
uses the same procedure used by cvc4+si-r but then attempts to reconstruct any
found solution as a term in required syntax, as described in Section 5.2.

6.1 Benchmarks with syntactic restrictions

We evaluated our implementation on 308 benchmarks taken from the 2014 SyGuS
competition [2] and the general track of the 2015 competition. The benchmarks
are in a new format for specifying syntax-guided synthesis problems [30], which is
supported in the latest parser of cvc4. These 308 benchmarks have an associated
grammar specifying syntactic restrictions on the possible solutions.

All experiments were run on the StarExec cluster [41].10 We provide compar-
ative results of cvc4 against entrants of the general track of the 2015 SyGuS
competition, which was won by cvc4. The other entrants of this competition were
the enumerative CEGIS solver ESolver [43] (denoted enum), a solver based

10 A detailed summary can be found at http://lara.epfl.ch/w/cvc4-synthesis.

Refutation-Based Synthesis in SMT 23

on Stochastic search techniques [37] (denoted stoch), as well as Sketch [39] and
Sosy Toast. We further divide our set of benchmarks into single-invocation and
non-single-invocation properties. In total, cvc4 discovered that 228 of the 308
benchmarks could be rewritten into a form that was single-invocation.

Benchmarks with single-invocation synthesis conjectures. The results for bench-
marks with single-invocation properties are shown in Figure 9. Configuration
cvc4+si-r found a solution (although not necessarily in the required language)
very quickly for a majority of benchmarks. It terminated successfully for 221 of
228 benchmarks, and in less than a second for 186 of those. Not all solutions
found using this method met the syntactic restrictions. Nevertheless, our meth-
ods for reconstructing these solutions into the required grammar, implemented in
configuration cvc4+si, succeeded in 133 cases, or 60% of the total. This is 54
more benchmarks than the 79 solved by the next best solver, ESolver. In total,
cvc4+si solved 66 benchmarks that ESolver did not, while ESolver solved 12
that cvc4+si did not. For each of these 12 benchmarks, cvc4 was able to find a
solution, but timed out trying to reconstruct the solution into the required syntax.

The solutions returned by cvc4+si-r were often large, having on the order of
10K subterms for harder benchmarks. However, after exhaustively applying sim-
plification techniques during reconstruction with configuration cvc4+si, we found
that the size of those solutions was comparable to that of the solutions produced
by other solvers. For instance, among the 66 benchmarks solved by both ESolver
and cvc4+si, the former produced a smaller solution in 25 cases. However, only
in 4 cases did cvc4+si produce a solution that had 20 more subterms than the
solution produced by ESolver. This indicates that in addition to having a high
precision, the techniques from Section 5 used for solution reconstruction are gen-
erally effective at producing succinct solutions for this benchmark library.11

Configuration cvc4+sg does not take advantage of the fact that a synthesis
conjecture is single-invocation. However, it was able to solve 55 of these bench-
marks. In addition to being solution complete, cvc4+sg always produces solutions
of minimal term size, something not guaranteed by the other solvers and cvc4 con-
figurations. We found the solutions returned by cvc4+sg were no larger than those
returned by ESolver on the 50 benchmarks they both solved. This provides an
experimental confirmation that the fairness techniques for term size described in
Section 4 ensure minimal size solutions.

We observe that for certain classes of benchmarks, configuration cvc4+si
scales significantly better than state-of-the-art synthesis tools. For instance, for
benchmarks from the array class12, whose solutions are loop-free programs that
compute the first instance of an element in a sorted array, cvc4+si was able to re-
construct solutions for arrays of size 15 (the largest benchmark in the class) in 0.3
seconds, and solved each of the benchmarks in the class but 8 within 1 second. In
contrast, the next best tool of those shown in Figure 11 was Sketch, which solved
a problem for an array of length 7 in approximately 2 minutes, but timed out for
larger benchmarks. Similarly, for the parametric class of problems for synthesizing

11 As an exception, for the array class of benchmarks, cvc4+si found solutions that were
rewritten into exponentially larger ones during solution reconstruction in order to meet the
given syntactic restrictions.
12 These benchmarks, as contributed to the SyGuS benchmark set, use integer variables only;

they were generated by expanding fixed-size arrays and contain no operations on arrays.

24 Andrew Reynolds et al.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cvc4+si 0.01 0.01 0.02 0.03 0.1 0.1 0.3 0.4 0.6 1.2 1.9 2.6 5.9 9.9
cvc4+sg 1.6 – – – – – – – – – – – – –
enum 0.01 1033.0 – – – – – – – – – – – –
stoch 0.3 4.4 997.7 – – – – – – – – – – –
sketch 3.1 284.0 – – – – – – – – – – – –
stoast 28.7 – – – – – – – – – – – – –

Fig. 10 Results for parametric benchmarks class encoding the maximum of n integers. The
columns show the run time for solvers with a 1800s timeout.

int (8) invg (26) invgu (26) MP (12) vctrl (8) Total (80)
time # time # time # time # time # time

cvc4+sg 2 0.1 20 2601.0 21 908.1 4 925.5 5 807.7 52 5242.4
enum 3 1.3 23 7.8 23 9.5 9 67.6 4 262.8 62 349.0
stoch 3 5.2 10 4.6 21 40.7 2 65.4 3 317.3 39 433.2
sketch 3 15.6 9 68.1 8 65.5 0 0.0 0 0.0 20 149.2
stoast 2 1.1 0 0.0 14 2805.8 0 0.0 1 21.4 17 2828.2

Fig. 11 Results for non-single-invocation synthesis conjectures with syntactic restrictions,
showing times (in seconds) and numbers of benchmarks solved over 5 benchmark classes with
a 1800s timeout.

a function that computes the maximum of n integer inputs, cvc4+si outperforms
the other tools shown here by an order of magnitude or more. Figure 10 shows the
comparison with other tools on such benchmarks. The Stochastic solver is able to
solve the problem for n = 3 in approximately 15 minutes, whereas cvc4 scales to
n = 15 and more.

Benchmarks with non-single-invocation synthesis conjectures. The configuration
denoted cvc4+sg is the only cvc4 configuration that can process benchmarks
with synthesis conjectures that are not single-invocation. The results for cvc4 and
the other entrants of the 2015 SyGuS competition on the 80 non-single-invocation
benchmarks from our set are shown in Figure 11. Configuration cvc4+sg solved 52
of them, while ESolver solved 62. In more detail, ESolver solved 12 benchmarks
that cvc4+sg did not, while cvc4+sg solved 2 benchmarks (from the vctrl class)
that ESolver could not solve. In terms of precision, cvc4+sg is competitive
with the state of the art on these benchmarks, solving less than esolver, but
nevertheless noticeably more than the other solvers of the 2015 competition.

Overall results. In total, over the entire SyGuS 2014 benchmark set, 185 bench-
marks can be solved by a configuration of cvc4 that, whenever possible, runs
the methods for single-invocation properties described in Section 3, and otherwise
runs the method described in Section 4. This number is 44 higher than the 141
benchmarks solved in total by ESolver. Running both configuration cvc4+sg
and cvc4+si in parallel13 solves 193 benchmarks, indicating that cvc4 is highly
competitive with state-of-the-art tools for syntax guided synthesis. cvc4’s perfor-
mance is noticeably better than all other solvers on single-invocation properties,
where our new quantifier instantiation techniques give it a distinct advantage.

13 cvc4 has a portfolio mode that allows it to run multiple configurations at the same time.

Refutation-Based Synthesis in SMT 25

cvc4+si-r AlchemistCSDT AlchemistCS
time # time # time

Total (73) 73 30.1 43 2340.8 33 1460.0

Fig. 12 Results for conditional linear arithmetic synthesis conjectures without syntactic re-
strictions. Table shows runtime and number solved for a 1800s timeout.

6.2 Benchmarks without syntactic restrictions

We also evaluated our implementation on 73 benchmarks from the conditional
linear integer arithmetic track of the 2015 competition that do not have associated
syntactic restrictions. We found that 71 of these 73 benchmarks had conjectures
that were single-invocation. This track was won by cvc4. Here, we compare against
the other entrants of this track, two versions of the Alchemist tool [36].

The results over the 73 benchmarks are shown in Figure 12. The most recent
version of cvc4 is able to solve every benchmark in this set with a total time of 30.1
seconds, solving 66 of the 73 within 1 second. By contrast, the second best solver
configuration, AlchemistCSDT, is able to solve only 43 of the 73 benchmarks.
This shows that the techniques in cvc4 for handling single invocation properties
are able to scale significantly better than existing approaches for synthesis for
linear arithmetic.

All 43 benchmarks solved by AlchemistCSDT were also solved by cvc4. For
these 43 benchmarks, the average term size of solutions produced by Alchemist was
116.4, and the average term size of solutions produced by cvc4 was 317.8. For 37
benchmarks, Alchemist produced a solution smaller or the same size as cvc4, and
for 13 benchmarks, cvc4 produced a solution smaller or the same size as Alchemist.
For 23 benchmarks, the solution produced by cvc4 did not have more than 10 more
subterms than the solution produced by Alchemist. Thus, we conclude that cvc4

is able to find solutions much faster than existing approaches, but could benefit
from additional techniques to minimize solution size. For instance, such techniques
could be run as a post-processor to the solutions that cvc4 produces, which can
be large but are produced in a highly efficient manner. The development of such
techniques is the subject of future work.

7 Related Work

Early work on synthesis established a connection with automated theorem prov-
ing [16, 25], including the formulation of certain synthesis problems using ∀∃ for-
mulas. This early work used resolution-based techniques. It was noted early on
that the capabilities of theorem provers were a bottleneck for effective synthesis.

The work on software synthesis procedures [21–23] introduces a particular no-
tion of synthesis equivalent to decision procedures. Whereas the proposed frame-
work of synthesis procedures is more general, the reported instances of that frame-
work are based on modified quantifier elimination procedures; they were imple-
mented and have theoretical completeness properties but do not have the efficiency
and scalability of SMT solvers.

Recent work on synthesis has made use of advances in theorem proving, par-
ticularly in SAT and SMT solvers, which have already proven successful in re-
lated domains of hardware and software verification. The traditional strength of

26 Andrew Reynolds et al.

SAT and SMT solvers has been on non-quantified formulas, so many algorithms
implement the quantifier alternation outside of the solver. These approaches typ-
ically generate a sequence of increasingly more precise non-quantified queries to
the solver and make use of counterexamples returned to refine the query. This
approach is often called Counterexample-Guided Inductive Synthesis (CEGIS).
A tool that pioneered recent interest in synthesis from complex specifications is
SKETCH [38, 38, 39], which has been applied in a number of domains and uses a
SAT solver. Other approaches use SMT solvers combined with dedicated imple-
mentations of search outside of the solver, which can take domain-specific con-
straints into account, such as synthesis of bit-manipulating programs [18, 28]. A
typical role of the SMT solver has been to validate candidate solutions and provide
counterexamples that guide subsequent search. SMT solvers thus receive a large
number of separate queries, with limited communication between these different
steps. Approaches such as symbolic term exploration [19, 20] also use an SMT
solver to explore a representation of the space of solutions, although they are also
implemented outside an SMT solver.

Constructive logic has recognized the usefulness of explicit witnesses, taking
the (arguably extreme) viewpoint of requiring all quantifiers to be backed up by
witnesses. The efforts have largely evolved around logical foundations, interac-
tive provers [10], and type systems. For decidable theories such as integer linear
arithmetic the constructive requirements are less relevant; what is more important
are algorithmic aspects of automated reasoners. Insights from constructive logic
are more likely to be relevant for more general synthesis tasks, such as synthesis
of recursive and higher-order functions, which fall outside of the current SyGuS
format.

Reactive synthesis considers a more general scenario of synthesizing a transition
system that potentially interacts with a specified environment in each step of the
execution. Often the specifications are given in linear temporal logic [29] or its
fragments [9]. The unbounded and infinite execution traces present a source of
infinity for such a model, even if the transition system itself is finite. The original
techniques for this problem are based on automata theory and appear to have very
high lower bounds on complexity. Recent breakthroughs in bounded synthesis,
however, leverage SMT solvers [14], reducing a number of classes of reactive and
distributed synthesis problems to quantified constraints over bounded linear order,
providing further evidence that SMT solvers with support for quantifiers are a
natural underlying technology for synthesis.

8 Conclusion

We have shown that SMT solvers, instead of just acting as subroutines for auto-
mated software synthesis tasks, can be instrumented to perform synthesis them-
selves. We have presented a few approaches for enabling SMT solvers to construct
solutions for the broad class of syntax-guided synthesis problems and discussed
their implementation in cvc4. This is, to the best of our knowledge, the first
implementation of synthesis inside an SMT solver and it already shows consid-
erable promise. Using a novel quantifier instantiation technique and a solution
enumeration technique for the theory of algebraic datatypes, our implementation
is highly competitive with the state of the art represented by the systems that

Refutation-Based Synthesis in SMT 27

participated in the 2015 syntax-guided synthesis competition. Moreover, for the
important class of single-invocation problems when syntax restrictions permit the
if-then-else operator, our implementation significantly outperforms those systems.

Acknowledgements We would like to thank Liana Hadarean for helpful discussions on the
normal form used in cvc4 for bit vector terms, and Tim King for his contributions to the
ground linear arithmetic solver in CVC4.

References

1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult sat instances in the
presence of symmetry. In: Proceedings of the 39th annual Design Automation Conference,
pp. 731–736. ACM (2002)

2. Alur, R., Bodik, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit, H., Mad-
husudan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A., Singh, R., Solar-
Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. To Appear in Marktoberdrof
NATO proceedings (2014). http://sygus.seas.upenn.edu/files/sygus_extended.pdf,
retrieved 2015-02-06

3. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A., Singh,
R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: FMCAD, pp.
1–17. IEEE (2013)

4. Alur, R., Martin, M.M.K., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.:
Synthesizing finite-state protocols from scenarios and requirements. In: E. Yahav (ed.)
Haifa Verification Conference, LNCS, vol. 8855, pp. 75–91. Springer (2014). DOI
10.1007/978-3-319-13338-6 7

5. Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanovic, D., King, T., Reynolds, A.,
Tinelli, C.: CVC4. In: Proceedings of CAV’11, LNCS, vol. 6806, pp. 171–177. Springer
(2011)

6. Barrett, C., Deters, M., de Moura, L.M., Oliveras, A., Stump, A.: 6 years of SMT-COMP.
JAR 50(3), 243–277 (2013). DOI 10.1007/s10817-012-9246-5

7. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability
in the theory of inductive data types. Journal on Satisfiability, Boolean Modeling and
Computation 3, 21–46 (2007)

8. Bjørner, N.: Linear quantifier elimination as an abstract decision procedure. In: J. Giesl,
R. Hähnle (eds.) IJCAR, LNCS, vol. 6173, pp. 316–330. Springer (2010). DOI 10.1007/
978-3-642-14203-1 27

9. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1)
designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). DOI 10.1016/j.jcss.2011.08.007.
URL http://dx.doi.org/10.1016/j.jcss.2011.08.007

10. Constable, R.L., Allen, S.F., Bromley, M., Cleaveland, R., Cremer, J.F., Harper, R.W.,
Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.:
Implementing mathematics with the Nuprl proof development system. Prentice Hall (1986)

11. Cousot, P.: Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In: R. Cousot (ed.) VMCAI, LNCS,
vol. 3385, pp. 1–24. Springer (2005). DOI 10.1007/978-3-540-30579-8 1

12. Déharbe, D., Fontaine, P., Merz, S., Paleo, B.W.: Exploiting symmetry in smt problems.
In: Automated Deduction–CADE-23, pp. 222–236. Springer (2011)

13. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. Tech.
rep., J. ACM (2003)

14. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5-6), 519–539 (2013). DOI
10.1007/s10009-012-0228-z. URL http://dx.doi.org/10.1007/s10009-012-0228-z

15. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiability mod-
ulo theories. In: Proceedings of CAV’09, LNCS, vol. 5643, pp. 306–320. Springer (2009).
DOI http://dx.doi.org/10.1007/978-3-642-02658-4 25

16. Green, C.C.: Application of theorem proving to problem solving. In: D.E. Walker, L.M.
Norton (eds.) IJCAI, pp. 219–240. William Kaufmann (1969)

28 Andrew Reynolds et al.

17. Jacobs, S., Kuncak, V.: Towards complete reasoning about axiomatic specifications. In:
Verification, Model Checking, And Abstract Interpretation, pp. 278–293. Springer Berlin
Heidelberg (2011)

18. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program
synthesis. In: J. Kramer, J. Bishop, P.T. Devanbu, S. Uchitel (eds.) ICSE, pp. 215–224.
ACM (2010). DOI 10.1145/1806799.1806833

19. Kneuss, E., Koukoutos, M., Kuncak, V.: Deductive program repair. In: D. Kroening, C.S.
Pasareanu (eds.) CAV, LNCS, vol. 9207, pp. 217–233. Springer (2015). DOI 10.1007/
978-3-319-21668-3 13

20. Kneuss, E., Kuraj, I., Kuncak, V., Suter, P.: Synthesis modulo recursive functions. In:
A.L. Hosking, P.T. Eugster, C.V. Lopes (eds.) OOPSLA, pp. 407–426. ACM (2013). DOI
10.1145/2509136.2509555

21. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In: B.G.
Zorn, A. Aiken (eds.) PLDI, pp. 316–329. ACM (2010). DOI 10.1145/1806596.1806632

22. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Software synthesis procedures. CACM 55(2),
103–111 (2012). DOI 10.1145/2076450.2076472

23. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthesis for linear arithmetic
and sets. STTT 15(5-6), 455–474 (2013). DOI 10.1007/s10009-011-0217-7

24. Madhavan, R., Kuncak, V.: Symbolic resource bound inference for functional programs.
In: A. Biere, R. Bloem (eds.) CAV, LNCS, vol. 8559, pp. 762–778. Springer (2014). DOI
10.1007/978-3-319-08867-9 51

25. Manna, Z., Waldinger, R.J.: A deductive approach to program synthesis. TOPLAS 2(1),
90–121 (1980). DOI 10.1145/357084.357090

26. Monniaux, D.: Quantifier elimination by lazy model enumeration. In: T. Touili, B. Cook,
P. Jackson (eds.) CAV, LNCS, vol. 6174, pp. 585–599. Springer (2010). DOI 10.1007/
978-3-642-14295-6 51

27. de Moura, L.M., Bjørner, N.: Efficient e-matching for SMT solvers. In: F. Pfenning (ed.)
CADE, LNCS, vol. 4603, pp. 183–198. Springer (2007). DOI 10.1007/978-3-540-73595-3
13

28. Perelman, D., Gulwani, S., Grossman, D., Provost, P.: Test-driven synthesis. In: M.F.P.
O’Boyle, K. Pingali (eds.) PLDI, p. 43. ACM (2014). DOI 10.1145/2594291.2594297

29. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, January 11-13, 1989, pp. 179–190 (1989). DOI 10.1145/75277.75293

30. Raghothaman, M., Udupa, A.: Language to specify syntax-guided synthesis problems.
CoRR abs/1405.5590 (2014). URL http://arxiv.org/abs/1405.5590

31. Reynolds, A., Deters, M., Kuncak, V., Barrett, C.W., Tinelli, C.: Counterexample guided
quantifier instantiation for synthesis in CVC4. In: Computer Aided Verification (CAV).
Springer (2015)

32. Reynolds, A., King, T., Kuncak, V.: An instantiation-based approach for solving quantified
linear arithmetic. CoRR abs/1510.02642 (2015)

33. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett., C.: Quantifier instan-
tiation techniques for finite model finding in SMT. In: M.P. Bonacina (ed.) Proceedings
of the 24th International Conference on Automated Deduction (Lake Placid, NY, USA),
Lecture Notes in Computer Science, vol. 7898, pp. 377–391. Springer (2013)

34. Reynolds, A., Tinelli, C., Moura, L.D.: Finding conflicting instances of quantified formulas
in SMT. In: Formal Methods in Computer-Aided Design (FMCAD) (2014)

35. Ryzhyk, L., Walker, A., Keys, J., Legg, A., Raghunath, A., Stumm, M., Vij, M.: User-
guided device driver synthesis. In: J. Flinn, H. Levy (eds.) OSDI, pp. 661–676. USENIX
Association (2014)

36. Saha, S., Garg, P., Madhusudan, P.: Alchemist: Learning guarded affine functions. In:
D. Kroening, C.S. Psreanu (eds.) Computer Aided Verification, Lecture Notes in Computer
Science, vol. 9206, pp. 440–446. Springer International Publishing (2015). DOI 10.1007/
978-3-319-21690-4 26. URL http://dx.doi.org/10.1007/978-3-319-21690-4_26

37. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. SIGPLAN Not. 48(4),
305–316 (2013). DOI 10.1145/2499368.2451150. URL http://doi.acm.org/10.1145/
2499368.2451150

38. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013). DOI 10.1007/
s10009-012-0249-7

39. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinatorial
sketching for finite programs. In: J.P. Shen, M. Martonosi (eds.) ASPLOS, pp. 404–415.
ACM (2006). DOI 10.1145/1168857.1168907

Refutation-Based Synthesis in SMT 29

40. Srivastava, S., Gulwani, S., Foster, J.S.: Template-based program verification and program
synthesis. STTT 15(5-6), 497–518 (2013). DOI 10.1007/s10009-012-0223-4

41. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: a cross-community infrastructure for logic
solving. In: Proceedings of the 7th International Joint Conference on Automated Reason-
ing, Lecture Notes in Artificial Intelligence. Springer-Verlag (2014)

42. Svenningsson, J., Axelsson, E.: Combining deep and shallow embedding for EDSL. In:
Trends in Functional Programming - 13th International Symposium, TFP 2012, St.
Andrews, UK, June 12-14, 2012, Revised Selected Papers, pp. 21–36 (2012). DOI
10.1007/978-3-642-40447-4 2

43. Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M., Alur, R.:
Transit: Specifying protocols with concolic snippets. In: PLDI, pp. 287–296. ACM (2013).
DOI 10.1145/2491956.2462174. URL http://doi.acm.org/10.1145/2491956.2462174

44. Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep em-
bedding. In: Theorem Proving in Higher Order Logics, 17th International Conference,
TPHOLs 2004, Park City, Utah, USA, September 14-17, 2004, Proceedings, pp. 305–320
(2004). DOI 10.1007/978-3-540-30142-4 22

