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Abstract. We present a tool, called Cascade, to check assertions in C
programs as part of a multi-stage verification strategy. Cascade takes
as input a C program and a control file (the output of an earlier stage)
that specifies one or more assertions to be checked together with (option-
ally) some restrictions on program behaviors. For each assertion, Cascade
produces either a concrete trace violating the assertion or a deduction
(proof) that the assertion cannot be violated.

1 Introduction

Software verification is an active area of research [2, 3, 5, 6, 9, 10]. Tools have been
developed which can find bugs in real applications with large code bases. How-
ever, in order to analyze large programs, these tools often make approximations.
As a result, some of the errors reported by such tools can be false.

A promising alternative approach is the idea of two-stage verification [2, 7,
8]. In two-stage verification, a light-weight analysis capable of scaling to large
programs is run first to identify potential bugs. This is followed by a more
detailed analysis of the potential errors identified in the first stage. Cascade
provides a generic back-end for two-stage verification of C programs which can
be easily integrated with any initial stage. Cascade can handle most C constructs
including loops, functions (including recursive functions), structs, pointers, and
dynamic memory allocation.

2 System Description

Cascade consists of about 6000 lines of C++ code. Its overall design is shown
in Fig. 1. The core module takes as input an abstract syntax tree representing
a C program and a control file that specifies one or more potential errors to be
checked. The core module uses symbolic simulation over the abstract syntax tree
to build verification conditions corresponding to the assertions specified in the
control file. The semantics of C statements are hard-coded into the translation
rules that the core module uses to convert C statements into logic formulas.
Cascade uses a bounded model-checking approach to handle loops (and recursive
functions). Loops are unrolled a fixed number of times (this number can be
specified by the user). Cascade models all pointers and addresses in the heap
precisely. The data stored in memory is represented abstractly as integers.
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Fig. 1. Cascade: System design

2.1 Abstract Interfaces

Cascade is designed to be easily customizable. Major components are hidden
behind abstract interfaces. This makes it easy to provide and experiment with a
variety of configurations based on the same basic architecture. The core module
depends on implementations of three generic abstract interfaces: an abstract
syntax tree, a memory module, and a theorem prover.

Abstract Syntax Tree. Cascade has a simple internal representation of pro-
grams as an abstract syntax tree. All operations are done on this internal rep-
resentation, completely separating it from the front end which is responsible
for building the abstract syntax tree. Cascade currently has an implementation
using EDG [4], an industrial-strength parser for C programs, as a front end to
create the abstract syntax tree.

Abstract Theorem Prover. Cascade uses an abstract theorem proving inter-
face. The interface provides an abstract ExprNode object which corresponds to
logical expressions in the underlying theorem prover. It also specifies some stan-
dard operations on ExprNodes like arithmetic operations, Boolean operations
and array operations. Any theorem prover which can support these operations
can easily be used with Cascade. An unsupported operation can be set to return
unknown. Cascade currently uses CVC Lite[1] as its theorem prover. CVC Lite
can produce proofs and concrete counter-examples. An additional advantage of
using CVC Lite is our in-house expertise on using and modifying the theorem
prover.

Abstract Memory Module. All memory operations during simulation are
handled by an abstract interface modeling heap memory. Memory is a mapping
from addresses to values where both of them are ExprNode objects. Functions
like allocate, deallocate, read and write are supported. The memory module also
provides a check valid address function which checks if a given address is valid
or not. This function can be used in assertions. The current implementation of
the abstract memory module uses an array of integers to model memory. We
expect to provide a more precise model of the data in memory using bit-vectors
(which are supported in the latest version of CVC Lite) in the near future.



2.2 Core Module

Simulator. The simulator integrates the various modules. It symbolically sim-
ulates the program, building expressions using the abstract interface to the the-
orem prover, and then checking the expressions corresponding to the assertions
specified in the control file. An interface to the simulator is also exported, en-
abling Cascade to be used as a library that can be integrated with other tools.

AST Manipulator. The AST manipulator module has various functions which
can modify the AST. For example, unrolling of the loops is handled by this
module. This module also interfaces with the control file and integrates the
restrictions on execution paths and variables with the AST.

2.3 The Control File

Execution of the tool is guided by a Control File. A control file specifies the
assertion(s) to be checked. In addition, a control file can be used to constrain
the search for a violating trace by restricting the program paths to be explored
or giving constraints on program variables. The control file allows important
information about feasible violations (perhaps gathered by an earlier stage) to
be communicated to Cascade.

The control file has a simple XML format. It begins with SourceFile sec-
tions which give the paths to C source files. It then has one or more Run sec-
tions, each defining a constrained run of the program. Each run starts with a
single StartPosition and ends with a single EndPosition section. These give
respectively the start point and end point of the simulation to be run. A Run

may optionally specify one or more WayPoint sections. A WayPoint indicates
that Cascade should consider only those program paths which pass through the
WayPoint. Each position (start, end, or waypoint) can also include a command.
Commands include: cascade assume, which takes a Boolean C expression and
adds it as an assumption to the theorem prover; cascade check, which takes a
Boolean C expression and checks whether it is valid at the given position; and
cascade check valid address, which takes a C expression as its argument and
checks if the address represented by the expression is a valid address in memory.

3 An Example

Table 1 gives a small C function which has a NULL pointer access if its argument
is negative. Suppose that a suitable first-stage tool [6, 7, 10] has flagged Line 9 as
a potential error. With no further information, Cascade finds a violating trace in
which the argument is negative. However, suppose the first-stage tool knows from
its analysis that the function f is only called with a positive argument. Using
the control file, the first-stage can constrain the search to only those cases when
a > 0. In this case, Cascade can verify that the assertion cannot be violated.
The code and control file for this example are shown below.



Table 1. Control file example

1 int* f(int a) {
2 int *p, *x, *y;

3 x = (int*) malloc(sizeof(int));
4 y = NULL;

5 if(a>=0)
6 p = x;
7 else

8 p = y;
9 *p = 5;

10 return p;
11 }

<ControlFile>
<SourceFile>

<Name>~/ex/f.c</Name><FileId>1</FileId>

</SourceFile>
<Run><StartPosition><Position>

<FileId>1</FileId><LineNum>1</LineNum>
</Position><Command>

<CascadeFunction>cascade_assume

</CascadeFunction>
<Argument>a>0</Argument>

</Command></StartPosition>
<EndPosition><Position>

<FileId>1</FileId><LineNum>9</LineNum>
</Position><Command>

<CascadeFunction>

cascade_check_valid_address
</CascadeFunction>

<Argument>p</Argument>
</Command></EndPosition></Run>

</ControlFile>

4 Conclusion

Cascade has been successfully run on programs of up to a few hundred lines of
code. For a 400 line example, without any constraints in the control file, the
run-time on a P4 2GHz is less than 1 minute. We expect that with suitably
constrained control files, Cascade will scale to much larger code bases. Although
it is still under development, we hope it will be of use and interest to a broader
community. In addition, we hope to receive feedback and suggestions for fur-
ther improvement. For further information on Cascade, including downloads,
examples and documentation, see http://www.cs.nyu.edu/acsys/cascade/.
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