
CVC: a Cooperating Validity Che
kerAaron Stump, Clark W. Barrett, and David L. DillComputer Systems Laboratory, Stanford University, Stanford, CA 94305, USAE-mail: fstump,barrett,dillg�
s.stanford.eduPhone: +1 650 725 3646, Fax: +1 650 725 6949Abstra
t. De
ision pro
edures for de
idable logi
s and logi
al theo-ries have proven to be useful tools in veri�
ation. This paper des
ribesthe CVC (\Cooperating Validity Che
ker") de
ision pro
edure. CVCimplements a framework for
ombining subsidiary de
ision pro
eduresfor
ertain logi
al theories into a de
ision pro
edure for the theories'union. Subsidiary de
ision pro
edures for theories of arrays, indu
tivedatatypes, and linear real arithmeti
 are
urrently implemented. Othernotable features of CVC are the in
orporation of the high-performan
eCha� solver for propositional reasoning, and the ability to produ
e in-dependently
he
kable proofs for valid formulas.1 Introdu
tionDe
ision pro
edures for de
idable logi
s and logi
al theories have been used su
-
essfully in several approa
hes to veri�
ation. They play an important role inveri�
ation based on intera
tive theorem provers (e.g., PVS [8℄), where de
id-able subgoals that arise in proofs of system
orre
tness
an be automati
allydis
harged by de
ision pro
edures, thus redu
ing the burden on the user. Theyhave also been used in more automati
 approa
hes to veri�
ation, where veri-�
ation problems are redu
ed to validity
he
king problems, typi
ally involvingvery large formulas (e.g., [9℄).CVC is a high-performan
e system for
he
king validity of formulas in a rela-tively ri
h de
idable logi
. Atomi
 formulas are appli
ations of predi
ate symbolslike < and = to �rst-order terms like x+ 2 � y and
ar(
ons(x; L)). Formulas arethen the usual boolean
ombinations (built using AND, OR, NOT, et
.) of atomi
formulas. CVC's language provides predi
ate and fun
tion symbols whi
h are
onvenient for modelling systems like hardware, proto
ols, and software. CVCis implemented in around 150K lines of C++.CVC is the su

essor to the Stanford Validity Che
ker (SVC) [1℄. In additionto the ability to produ
e proofs and the in
orporation of an eÆ
ient SAT solver,CVC has many improvements over SVC. The
odebase is mu
h more robust andextensible. The C++ Standard Template Library (STL) is used for eÆ
ient datastru
tures. Su
h seemingly minor features as the syntax for the input languageand the quality of the error messages have been greatly improved, resulting in a

mu
h more usable system. The following is an example of CVC input:list : TYPE = DATATYPE
ons (
ar : REAL;
dr : list); null END;L1; L2 : list;x; y : REAL;P : [[REAL; REAL℄�> BOOLEAN℄;QUERY (x = 2 � y� 1) AND (L1 = L2 WITH
ar := x) =>P(x+ y;
ar(L1)) => P(3 � y� 1; x);The example �rst de
lares an indu
tive datatype of lists. Then it de
lares someuninterpreted
onstants and an uninterpreted binary predi
ate P. It then queriesa formula, whi
h in this
ase is valid. The WITH operator performs fun
tionalupdating of a data stru
ture.2 Cooperating de
ision pro
eduresEarly work by Nelson and Oppen showed that under
ertain restri
tions, inde-pendent de
ision pro
edures for quanti�er-free logi
al theories in
lassi
al �rst-order logi
 with equality
an be
ombined to obtain a de
ision pro
edure forthe union of the theories [7℄. The most basi
 restri
tion is that the theories maynot share fun
tion and predi
ate symbols other than the equality symbol. Theunion of the theories
an
ontain terms like
ar(L) + 3 � x whi
h have fun
tionsymbols from the signatures of more than one theory. A variant of the Nelson-Oppen approa
h is implemented in CVC [2℄. The subsidiary de
ision pro
edures
urrently implemented are for the following theories.Arrays: The theory of arrays implemented [10℄ has fun
tion symbols forreading from a lo
ation i in an array a (syntax: a[i℄) and fun
tionally updatingan array a to
ontain a given value v at a given index i (syntax: a WITH [i℄ := v).Arrays are extensional, whi
h leads to validity of non-trivial equalities betweenupdated arrays su
h as (assuming a is an array)((a WITH [1℄ := 100) WITH [2℄ := 200) =((a WITH [2℄ := 200) WITH [1℄ := 100):Indu
tive datatypes: CVC allows the user to de
lare indu
tive datatypeslike lists and trees. Indu
tive datatypes are determined by a set of
onstru
tors,like
ons and null, whi
h
onstru
t members of the datatype out of some
on-stituent elements (possibly none at all); and sele
tors, like
ar and
dr, whi
hretrieve
onstituent elements from members of the datatype. Sele
tors are
on-sidered partial fun
tions, so
ar(null) is
onsidered to be unde�ned. When adatatype is de
lared, testers like
ons? and null? are automati
ally added.
?(x)is true i� x was
onstru
ted using
onstru
tor
. CVC's language has spe
ial syn-tax for tuples and re
ords, whi
h are spe
ial
ases of indu
tive datatypes.Linear real arithmeti
: The theory of linear real arithmeti
 has the usualfun
tion symbols for addition, subtra
tion, and arithmeti
 negation, as well as formultipli
ation and division by a
onstant. There are also the usual predi
ate sym-bols for arithmeti

omparison. CVC implements a version of Fourier-Motzkinvariable elimination to handle inequalities.

3 ProofsCVC
an optionally produ
e proofs for every formula it reports valid. The proofsare represented using a variant of the Edinburgh Logi
al Framework (LF) [5℄,extended with features for more
onveniently representing multi-arity fun
tionslike the tuple-forming operator and n-ary addition [12℄. The proofs
an be eÆ-
iently
he
ked by a proof
he
ker
alled
ea [11℄, whi
h ships with CVC.4 Cha�Given the great advan
es that have been made in propositional SAT solving toolsin the last de
ade, mu
h greater performan
e on problems with boolean stru
ture
an be a
hieved by in
orporating a modern SAT solver. CVC in
orporates theCha� SAT solver [6℄ to do its propositional reasoning. The Cha�
ode is modi�edto assert CVC literals (atomi
 formulas or their negations) in its sear
h for asatisfying assignment. When the rest of CVC dis
overs a
ontradi
tion, a
on
i
t
lause is added to Cha�
ontaining the relevant assertions. CVC determineswhi
h assertions are relevant to the
ontradi
tion by reusing the infrastru
turethat produ
es proofs in order to tra
k assumptions [3℄. This approa
h greatlyimproves performan
e.5 Performan
eFigure 5
ompares CVC and its prede
essor SVC on ben
hmarks from pro
essorveri�
ation. Size is the size in kilobytes of the formula represented with maximalsharing of
ommon subexpressions in ASCII. Running times are in se
onds onan 850MHz PIII. CVC is faster than SVC on all but a handful of the examples.All but the last three examples were part of SVC's suite of ben
hmarks, andhen
e are among the examples that SVC
ould be expe
ted to perform best on.test size (Kb) SVC time CVC timefb 12 11 10 1.0 0.2fb 5 12 11 4.2 0.3fb 6 12 8 1.1 0.2dlx-dmem 71 0.2 1.8dlx-p
 87 0.2 0.9dlx-reg�le 71 0.2 3.8pp-bloaddata-a 32 0.6 1.6pp-bloaddata 31 8.8 4.1pp-dmem2 30 8.6 1.4pp-invariant 29 0.3 0.2ibm-full-5 350 16.1 2.3ibm-full-10 370 15.0 2.3bool dlx2 aa 238 > 10000 0.7

6 Related workCVC is similar to the ICS system [4℄. ICS implements a version of Shostak's al-gorithm for
ombining de
ision pro
edures, whi
h is less general than the frame-work implemented in CVC. Other features of CVC that distinguish it from ICSare{ in
orporation of a state-of-the-art SAT solver{ the ability to produ
e independently veri�able proofs{ support for arbitrary indu
tive datatypes{ implementation in C++ (ICS is written in O
aml)Other
ooperating de
ision pro
edures in
lude:{ Simplify at Compaq SRC (http://resear
h.
ompaq.
om/SRC/es
/Simplify.html){ STeP at Stanford (http://www-step.stanford.edu/){ Vampyre at Berkeley (http://www-
ad.ee
s.berkeley.edu/ rupak/Vampyre/)7 Final remarksA Linux exe
utable together with basi
 examples and do
umentation is freelyavailable at http://verify.stanford.edu/CVC. We thank the anonymous re-viewers for their
omments. This work was supported under ARPA/Air For
e
ontra
t F33615-00-C-1693 and NSF grants CCR-9806889 and CCR-0121403.Referen
es1. C. Barrett, D. Dill, and J. Levitt. Validity
he
king for
ombinations of theorieswith equality. In M. Srivas and A. Camilleri, editors, Formal Methods In Computer-Aided Design, volume 1166 of LNCS, pages 187{201. Springer-Verlag, 1996.2. C. Barrett, D. Dill, and A. Stump. A Framework for Cooperating De
ision Pro-
edures. In David M
Allester, editor, 17th International Conferen
e on ComputerAided Dedu
tion, volume 1831 of LNAI, pages 79{97. Springer-Verlag, 2000.3. C. Barrett, D. Dill, and A. Stump. Che
king Satis�ability of First-Order For-mulas by In
remental Translation to SAT. In 14th International Conferen
e onComputer-Aided Veri�
ation, 2002.4. J. Filliâtre, S. Owre, H. Rue�, and N. Shankar. ICS: integrated
anonizer andsolver. In G. Berry, H. Comon, and A. Finkel, editors, 13th International Confer-en
e on Computer-Aided Veri�
ation, 2001.5. R. Harper, F. Honsell, and G. Plotkin. A Framework for De�ning Logi
s. Journalof the Asso
iation for Computing Ma
hinery, 40(1):143{184, January 1993.6. M. Moskewi
z, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Cha�: Engineeringan EÆ
ient SAT Solver. In 39th Design Automation Conferen
e, 2001.7. G. Nelson and D. Oppen. Simpli�
ation by
ooperating de
ision pro
edures. ACMTransa
tions on Programming Languages and Systems, 1(2):245{57, 1979.8. S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Veri�
ation System. InD. Kapur, editor, 11th International Conferen
e on Automated Dedu
tion, volume607 of LNAI, pages 748{752. Springer-Verlag, 1992.9. J. Skakkeb�k, R. Jones, and D. Dill. Formal veri�
ation of out-of-order exe
utionusing in
remental
ushing. In 10th International Conferen
e on Computer AidedVeri�
ation, 1998.

10. A. Stump, C. Barrett, D. Dill, and J. Levitt. A De
ision Pro
edure for an Exten-sional Theory of Arrays. In 16th IEEE Symposium on Logi
 in Computer S
ien
e,pages 29{37. IEEE Computer So
iety, 2001.11. A. Stump and D. Dill. Faster Proof Che
king in the Edinburgh Logi
al Framework.In 18th International Conferen
e on Automated Dedu
tion, 2002.12. A. Stump and D. Dill. Produ
ing Proofs from an Arithmeti
 De
ision Pro
edurein Ellipti
al LF. In 3rd International Workhsop on Logi
al Frameworks and Meta-Languages, 2002. (a

eptan
e pending).

