A Decision Procedure for an Extensional Theory of Arrays

Aaron Stump, Clark W. Barrett, and David L. Dill Jeremy Levitt
Computer Systems Laboratory 0-In Design Automation, Inc.
Stanford University, Stanford, CA 94305, USA San Jose, CA 95110, USA
E-mail: {stump,dill,barrett@cs.stanford.edu Email: levitt@O0-In.com
Abstract viduals that may be stored in arrays. The d6ris the sort

for primitive values stored in arrays. The set of value sorts
A decision procedure for a theory of arrays is of inter- is defined to be the least s&tsatisfying
est for applications in formal verification, program analy-
sis, and automated theorem-proving. This paper presentsa * VeX
decisiop procedure for an extensional theory of arrays and e r€X aray. € X
proves it correct.
Every value sort except is an array sort. The value sorts
together with/ are all the sorts of the languag¥. and !

1. Introduction need not be distinct.

A decision procedure for a theory of arrays is of interest Definition 1 (dimensionality of a value sort) The dimen-
for applications in formal verification and program analy- Sion din{r) of a value sort- is defined by
sis. Such a procedure is also of value for theorem-provers. o dim(V) =0
The PVS theorem-prover [11] has an undocumented deci-
sion procedure for a theory of arrays [12], and HOL has dim(array,) = dim(r) + 1
some automatic support for a theory of arrays via a library
for finite partial functions [3]. Terms The language has countably infinitely many
Two kinds of array theories have been studied previously. variables and constants, with countably infinitely many of
Extensional theories require that if two arrays store the sameeach distinct sort. The constants are uninterpreted, in the
value at index, for each index, then the arrays must be sense they will not occur in any axiom or axiom scheme.
the same. Non-extensional theories do not make this re-The function symbols of the language are
guirement. This paper is the first to present a procedure for
checking satisfiability of arbitrary quantifier-free formulas ~ ® read. of type @rray, — I — 7), for every value sort
in an extensional theory of arrays and prove its correctness. T

) e write, of type @rray, — I — 7 — array,), for every
2. Theories of arrays value sortr

Decision procedures for various theories of arrays have Subscripts omead andwrite will generally be omitted. In-
been studied previously. Most of these theories can be di-formally,read(a, ¢) will denote the value stored in arrayat
vided into extensional and non-extensional varieties. In this indexi, andwrite(a, i, v) will denote an array which stores
section, several families of array theories are axiomatizedthe same value asfor every index except possiblywhere
in classical first-order multi-sorted logic with equality. The it stores value.
theoryArr decided in this paper is then presented and com- Terms are built up in the usual way from constants and

pared to previously decided theories. variables using the function symbols. Terms whose sort is
an array sort will be called array terms. Terms whose sort
2.1. The language is I will be called index terms. The dimensialim(a) of

an array ternu is the dimension of its sort. Him(a) = n,
Sorts The language has a basic sértor indices into arraya is said to ben-dimensional. Ifn > 1, a is also said
arrays. It also has value sorts, which are the sorts of indi-to be multi-dimensional.

Formulas The atomic formulas of the language are the and the read-over-write scheme. This is because single-
equations between terms of the same sort. Formulas aresorted first-order theories with function symbols and equal-
built up from atomic formulas using propositional connec- ity may be translated into this array theory in such a way
tives and quantifiers in the usual way. A formulglssedif that a first-order formula is valid iff its translation is. The
it has no free variables. Kteral is an atomic formulaor the translation maps constant symbols to index constants,
negation of an atomic formula. keoryis a set of closed ary function symbols ton-dimensional array constants,

formulas. and terms likef(i1,...,i,) t0 nested read expressions
read...readread f',i}),i,)...,d,), wheref’ i},... i,
2.2. Theories are the translations of, iy, ..., ,. The undecidability re-

sults for classical first order logic with just function symbols
Some theories restrict which array sorts are allowed. If a and equality (see, e.g., [5]) can then be applied to show that
theory allows array sorts of dimension at mosit is said to even quite restricted quantified fragments of the extensional
have just:-dimensional arrays. If a theory allows all array theory of arrays are undecidable.
sorts, it is said to have multi-dimensional arrays. A decision procedure foArr may be useful even for
The following scheme, which is schematic in a value applications which require a fully quantified logic. Many
sortr, is called the read-over-write axiom scheme. Infor- theorem provers, such as the widely used PVS [11], pro-
mally, it says that for all arrays, indicesi and;j, and val- vide strategies to reduce goals to subgoals in decidable frag-
uesv of suitable type, reading the value stored atinget ~ ments of their logic.
write(a, i, v) is v if the two indices are equal amdada, j)
if they are different. 2.4. Comparison with related work

Axiom scheme 1 (read-over-write
() In this section, related work is summarized by describing

Va:aray, .Vi:I.Vj:I.VYv:V. which theories are decided. These theories often use axiom-
atizations different from but equivalent to thatAufr . All

Y ,) i) the theories decided are quantifier-free. Kaplan is the only
(i #j — readwrite(a,i,v), j) = reada, j)) one to distinguish the sor§ and. Many of the previous
theories allow arithmetic operators or uninterpreted func-
tions over sorf to be used in addition to the symbaésad
andwrite. The restriction here to just the essential theory of
arrays is justified by the fact that, as will be shown in Sec-
tion 6 below, the satisfiability procedure farr is suitable

(i = j — readwrite(a,i,v),j) = v) A

The following scheme, which is schematic in a value sort
7, is called the extensionality axiom scheme. Informally,
it expresses a principle of extensionality for arrays: if two
arrays store the same value at indgfor each index, they

are equal. . . . g
for incorporation into a framework for cooperating decision
Axiom scheme 2 (extensionality) procedures [2]. In such a framework, separate decision pro-
cedures for arithmetic and uninterpreted functions may be
Ya:array,.Vb:array, . combined with the decision procedure far to decide the
(Vi:I.reada,i) =readb,i)) = a=b combined theory.

The first two works present axioms but no decision pro-
The extensional theories are those axiomatized by thecedure for their theories. With the exception of Levitt's
read-over-write and extensionality axiom schemes. Thework, the others give decision procedures for theories that
non-extensional theories are those axiomatized by just theare strictly weaker thaArr , either because they restrict the
read-over-write axiom scheme. Note that since a theory is aform of formulas in the theory (e.g., to just equations), dis-
set of closed formulas, quantifier-free array theories have noallow equations between arrays, or are non-extensional.
variables; all 0-ary symbols are (uninterpreted) constants. McCarthy In [8], McCarthy introduces the function
symbolsread andwrite and gives an informal semantics for
2.3. The theoryArr an extensional theory of arrays based on them.
Collins and Syme Collins and Syme present in HOL
The theoryArr decided in this paper is the quantifier- a theory of finite higher-order partial functions similar to a
free fragment of the extensional theory with multi- theory with multi-dimensional arrays [3].
dimensional arrays where sdrtis defined to be sot. So Kaplan In [6], Kaplan gives a decision procedure for a
indices are the values stored in 1-dimensional arrays. non-extensional equational theory with just 1-dimensional
The restriction to the quantifier-free fragment is justi- arrays. He considers equations between index terms only,
fied by the fact that the fully quantified theory is undecid- which is reasonable since his theory contains no non-trivial
able, even in the absence of the function symivalige - equations between arrays. He then shows how to extend his

procedure to decide an extensional equational theory, where.1. Informal overview
the equations may be between array as well as index terms.

He imposes the restriction that distinct variables of dort The procedure works in two phases. In the first phase,
must receive distinct interpretations. the original goal is transformed into a set of subgoals such
Suzuki and Jefferson In [15], Suzuki and Jeffer- that (i) no subgoal containarite and (ii) the original goal

son present a decision procedure for a theory with just 1-is satisfiable iff one of the subgoals is. Eliminating write
dimensional arrays, where equations between arrays are naéxpressions is straightforward except when they occur as
allowed. The theory has axioms for extensionality and the the left or right hand side of an equation. How to eliminate
existence of constant arrays (arrays that store the same valusuch occurrences of write expressions is the crucial insight
at all indices), but these appear to be included for technicalof this algorithm.

reasons only; the theory decided is equivalent to the one

without those axioms under the restrictions they impose. Definition 2 (=)

They extend their procedure to decide a theory with a new

predicate symboPERM wherePERMa, b) holds iff the @ =zb0 &def Vi:l.i¢ 1 —reada,i) =readb,)
multiset of the values stored imis contained in the mul- _)

tiset of the values stored in Sentences of the theory are Formulas of the formu =z b with 7 #) are called partial
restricted to the formP — PERMa, b), whereP is any ~ €quations.

(quantifier-free) sentence not containiRERM Arr does

not have thePERM predicate, but inspection of the way
Suzuki and Jefferson extend their algorithm to tleeRM
shows that it could just as easily be used to extend the algo-

rithm for Arr , as long as their restriction disallowing equa- yrite expressions occurring as sides of equations may thus
tions between array terms were retained. be eliminated by introducing partial equations.
Downey and Sethi In [4], Downey and Sethi present The second phase of the procedure is based on the ob-
a decision procedure for an extensional equational theoryseryation that in the absence wfite, arrays behave like
with just 1-dimensional arrays. Equations between array yninterpreted functions amgad behaves like function ap-
terms are allowed. They prove that determining the invalid- pjication. So in the absence wfite, a congruence closure
ity of an equation in their theory of arrays is NP-complete. a|gorithm (cf. [1]) could be used to decide the theory. The
Nelson and Oppen In [10], Nelson and Oppen describe gigorithm must be modified to work with partial equations
an extensional theory of arrays. Their theory allows multi- a5 well as equations, but this can be done. For simplicity, the
dimensional arrays. They do not present their satisfiabil- yery simple congruence closure algorithm described in [14]

ity procedure for the extensional theory, but in [9], Nelson js ysed, but it should be possible to modify a more complex
gives a detailed presentation of a satisfiability procedure for g|gorithm.

a non-extensional theory.

Levitt In Chapter 5 of his PhD thesis [7], Levitt presents 3 2 Formal presentation
a decision procedure for an extensional theory of arrays
based on solving equations and canonizing terms, in the
style of Shostak [13]. A detailed proof of correctness is
not given, and has proved elusive to the authors. In con-
trast, a detailed proof of correctness is given below for the
procedure foArr .

The crucial observation is that

write(a,i,v) = b < (a =g; bAreadb,i) = v).

Figure 1 presents our procedure as a proof system. The
proof system determines a non-deterministic procedure,
where rules are applied bottom-up to analyze a goal into
one or more subgoals. The system may be thought of as
a rewrite system, where, for each rule, the goal below the
line is rewritten to the subgoals above the line. The sys-
3. The satisfiability procedure for Arr tem resembles a Gentzen-Schitte system where only left

rules of the corresponding sequent system are used (i.e., a

Arr is decided by a refutation procedure. The procedure Sequent system where sequents are restricted to be of the
decides satisfiability of conjunctions of literals, which are formI" = 1). The derivable objects of this system are sets
equations and disequations between terms. Deciding satisOf literals. It is intended that a set of literals be derivable iff
fiability of arbitrary boolean combinations of atomic formu- their conjunction is unsatisfiable. deductiorof a goal is a
las can be reduced to this problem by well-known means. tree obtained by applying the proof rules bottom-up to that
A conjunction of literals whose satisfiability is to be tested goal. A goal to which no rule can be applied is said to be
will be called a goal. Comma will be used to denote con- hormal
junction. Two goals are said to leguisatisfiablavhen one
is satisfiable iff the other is.

Phase 1:

(ext)

(r-over-w)

(w-elim)

(w-elim-helper)

Phase 2:

(partial-eq)

(trans)

(subst)

(symm)

(e-empty)

I, read(a, k) # read(b, k)
[a#b

k is not free in the conclusiom; andb are arrays

F[U]a L= F[readaaj)]a LF]
['[readwrite(a, i,v), 7)]

I'Na=7zb,i€Z T,a=,70b, readb,i)=v,i¢Z
I, write(a,i,v) =7 b

I b=¢

a
——— bis awrite expression, andis not
F, a =1 b

[, a =7 b, read(a,i) =readb,i), i ¢Z T, a=zb i€l

F, a =1 b
wherea = b; 7 # (; read(a, i) occurs inl*

I'Sa=zb, a=pc, b=qpc

I #DandZ’ £ 0

I'a=z0b, a=1c

yl, =1y .
F[x], T=y xry, xZy,znotinl[]
y Y=17

Fal’_I?J vy

1= IieT D,i€Z, 1#
T i€ (1) (#-expand) = =7 5.7)
I,iel (@x) I'z#z

Figure 1. The decision procedure as a proof system

The system has two phases. Some rules may be appliededure iscompletdff when it reports a goal satisfiable, the
in just one phase, while others may be applied in either goal is indeed satisfiable. A procedurectmrectiff it ter-
phase. The rules of phase 1 are applied to a goal until nominates on all inputs, and it is sound and complete. In this
rule applies, and then the rules of phase 2 are applied. Thesection, a detailed proof of completeness for the satisfiabil-
procedure stops and reports that the original conjunction isity procedure forArr is given. The proof of termination is
satisfiable if it encounters a normal subgoal. Otherwise, it routine and omitted for lack of space. The following theo-
reports that the original goal is unsatisfiable. As mentioned rem implies soundness.
before, phase 2 is a modified congruence closure algorithm.

The core congruence closure algorithm consists of just theTheorem 1 (equisatisfiability) The conclusion of each
rules (symm) and (subst) [14]. rule of the system is satisfiable iff one of its premises is sat-

The set-theoretic operators have their usual meaningsjsfiable.
note thati,Z denotes{i} U Z, whereZ does not contain
i. T'[] denotes aontext which is an expression contain- Proof: The proofis routine. Consider just the rule (trans).
ing one or more occurrences of a single free variable. Thelf a =z b anda =z ¢ are true in some model, then it is
expression obtained by substituting the terfor the con- easy to see by the definition ef_ thatb =7z cis also
text’s free variable is writtei[t]. In the rule (subst), since true in some model. if agrees withu at every index except
the side condition requires thRf] contain no occurrences those inZ’ anda agrees withb at every index except those
of the termz, applying (subst) replaces all occurrencesof in Z, then clearlyi ¢ Z U ' implies thatc agrees withu at
in T[] with the termy. = denotes syntactic identity. The ¢ and also that agrees withb ati. Hencec agrees withh
symbol < denotes an ordering on terms by size, which is ati. For the other direction, if the premise has a model, so
defined on terms in the usual way. LeK y iff = andy are does the conclusion, since the conclusion is a subset of the
such that the size af is less than or equal to the sizepf premise.d

The variants< and> are derived fronx in the usual way. . . .
Recall that a normal goal is one to which no rule applies.

By the equisatisfiability theorem, to prove completeness of
the algorithm it suffices to show that any normal goal is
satisfiable. This may be done by constructing a model for a
normal goal. The following lemma is easily established.

3.3. Avoiding non-termination in phase 2

In phase 2, applications of (partial-eq) and (trans) must
be restricted to avoid certain sources of non-termination.
There is nothing preventing (partial-eq) and (trans) from be-
ing applied repeatedly with the same partial equations, be-
cause for both rules, the partial equations are retained in th
goal. For (partial-eq), this form of non-termination may be
prevented by adding a side condition to the rule that pre-
vents it from being applied if, informallyead(a, i) and
read,¢) are already known to be equal oriifs already))
known to be equal to an elementBf Formally, the proce- In p_reparatl(_)n for constructing a model, several trans-
dure can test whether or nbaindt’ are already known to ~ formations, which are not actually performed by the algo-
be equal by applying all the rules of phase 2 except (partial-”thmv are applled.to a nprmal goal to give an equisatisfiable
eq) and (trans) to the current goal with# ¢ added, and normal goall’, Wh|c_:h is in a more convenient form. If the
seeing whether or not that goal is reported unsatisfiable. [f"ormal goal contains equations of the foim= , clearly
neither €-split) nor Z-expand) applies to the current goal, they may t_)e removed and t_he result will _be equisatisfiable.
then this is equivalent just to comparing normal forms as de- Next, modify the goal by doing the following. L€t be the
termined by the core congruence closure algorithm. So in90@l as it currently stands. If there is a term of the form
an implementation, this non-termination may easily be pre- 'éada, i) in G that is not the left hand side of any equation
vented. A similar approach can be used to prevent (trans)" G choose a constant symbehot occurring inG;, and
from being applied repeatedly to the same formulas. The re-modify G by replacingread(a, i) everywhere in it withc

quired machinery, however, has been omitted from the proof@nd adding the equatiarad(a, i) = cto it. If there is no
system for simplicity. such ternread(a, 7) in G, stop. It is easy to show that the

resulting goal is normal and equisatisfiable with the original
normal goal. This resulting goal consists of formulas of one
of the following four forms, where, y, andz are constant
symbols:

Lemma 1 (effect of phase 1)A goal that is normal with
respect to phase 1 of the algorithm contains no write ex-
ressions and no disequations between array expressions.

4.1. A convenient form for normal goals

4. Correctness of the Procedure

A satisfiability procedure isoundiff when it reports a
goal unsatisfiable, the goal is indeed unsatisfiable. A pro- |. readz,y) = z

. z#y

lll. 2 =7 y, where every element dfis a constant symbol
V. x=y

Since this resulting goal is normal, no formuta= y of

the form (IV) has its left hand side appearing anywhere else
in the goal, since otherwise (subst) would apply. Ldie

this resulting goal, except without the equations of the form
(IV). T will be said to be inconvenient normal formAny
modelM of I' may be extended to a model biwith those
equations of the form (IV) by giving the same interpretation
for the constant as for the constany, if M interpretsy,

and a single arbitrary interpretation for battandy other-
wise.

4.2. Construction of a model

In this section, a kind of term model for the gdalin
convenient normal form is constructed. Several definitions,
in terms ofT", are required. The fact that the core congru-
ence closure algorithm (rules (subst) and (symm)) is correct

The chain is denote@t; Rz, a» Rz, ... Rz, , an).
n is thelengthof the chain.
Theunion along the chaiis defined to beJ, ;_,, Z;.

The chain is said to bérom z to y iff a; = z and
an =Y.

a_—-a_—= ... —=Db
A= a8 = .. = b

a\a’
T

ba __—=
b =

is used (see [14] for the proof).

Definition 3 (—_and «_) Let—_and«_ be the ternary
relations defined, respectively, by

a—zb iff
a+7z1b iff

(a=zb)el
(b:za)EF

Note that for anyZ, —7 and—7 need not be symmetric,
since(a =z b) € " does notimplyb =7 a) € T.

Definition 4 (=_) Leta_ be the least ternary relation sat-
isfying
1. a =y a, for every array constant appearing inl’

2. (a—=zb)vV(b—za) 2 amzhd

Definition 5 (Q_) Let~_be the least ternary relation con-
taining ~_ and satisfying

(Je.a =z c/\cézl b) = a éIUI/ b
Definition 6 (é) Let~ be the binary relation defined by
arb iff 3T.a=zb

The context will help distinguisﬁﬁ_ and~. Note that~
is an equivalence relation.

Definition 7 (chains) A chain of applications of a ternary
symbolR like ~_ or —_, called anR-chain, is defined to
be a conjunction of the forrfu; Rz, a2) A (as Rz, a3) A
... N(ap—1 Rz, , ay), withn > 2.

Figure 2. Standard forms for =~_-chains

Lemma 2 (standard form for chains) Supposes ~7 b,
with Z # (. Then one of the following is true:

i. there is a—_-chain froma to b or from b to a, where
the union along the chain i&

ii. for somec, there is a—_-chain froma to ¢ and another
fromb to ¢, where the union of the unions along the two
chainsisZ.

Figure 2 shows the possibilities.

Proof LetC be a~_-chaina; ~z, ... =z, _, a, from
atob, withZ = |, ,<,,_1 Zi- AssumeC is of mini-

mal length of all such chains. For everwith 1 < i <

n — 1, let +»; be either—7, or <—z,, and suppose we
havea; «»; ... <n_1 a,. Itis easy to prove that if
this latter chain is not of one of the forms described in
(i) and (i), there must be anwith 1 < ¢ < n —1
such that«;_; is <z, , and+<; is —z,. So we have
Aj—1 $T,_, A —I; Ajy1- So bOtha,v =7, Qj—1 and

a; =1, a;4+1 areinl. It must be the case that bath.; and

7; are non-empty, since otherwise (subst) would apply to re-
place the left hand side of one of those equations by the right
hand side of the other. No rules can apply, sificds nor-

mal. Since botl¥;_;, andZ; are non-empty, (trans) would
be applicable, unless the conditions described in Section 3.3
for preventing non-termination were keeping it from being
applied. This implies that either;_; =z, ,uz;, aiy1 OF

ai+1 =z,_,uz; ai—1 1S in T, sincea; anda,; must be their

own normal forms as determined by the core congruenceSinceI" is normal, no rules can apply. So we must have

closure algorithm. Hence, we hawg | =7, ,uz;, Git1-
So the chaim1 X7, ---0j—1 RT;_UL; Aitl--- R, An,
whose union i<, has smaller length thafi. This contra-
dicts the assumption that is of minimal length of such
chains.d

Now an interpretation, given as a functifpq from the
constant and function symbols Bfto their interpretations,
is defined. [_] is defined to map every constant symhol
of basic typel to a itself. [_] will map array constants to

I, # 0, since otherwise (subst) would apply with = a5

and read(a,,7). Furthermore, since (partial-eq) cannot
apply, it must be the case that the conditions of Section 3.3
for preventing non-termination are what is prohibiting its
application witha; =z, a» andreada,i). In particular,

it must be the case thaead(a,,i) is already known to

be equal taeada;,i). The other possibility, namely that

i is known to be equal to an element &f is excluded
because is not in Z by hypothesis, and correctness of
the core congruence closure algorithm would requite

functions. To satisfy extensionality, functions that give the appear inZ in a normal goal ifi were known to be equal
same value for every input are required to be equal. Firstiq g element of. Forread(a,, i) andread(a,, i) to have

let 1~ be a new symbol not occurring in, for every%-
equivalence clas§’. Define[read) to be the operation of
function application, except that when itis giveg, it may
just returnL¢. Intuitively, for an array constant, [a] will

be a function mapping all but a finite number of inputs to a

default valuel . Formally, suppose is in é—equivalence
classC. Define[a] to be the function that returnsc for
every input, except those assigned values by the following:

Definition 8 (interpretation of array constants)
for every constant symbaélof the same type ag

for every sefZ such thata éI b,
for every index constaritnot appearing iriZ,
if read(b, i) = = € I for somer, then
the value ofla] for input[é] is defined to béz].

Notice that the body of Definition 8 may specify the
value for[a] on inputi more than once. So fdf to be well-
defined, if the value ofa] on inputi is specified to bz |
and[z.], we needz;] = [z2]. Soifa ~7 banda ~7 ¢
with ¢ notinZ and not inZ’, then for[] to be well-defined,
it must be the case thatiéad(b, i) = x1,read(c,i) = x2 €
T, then[z,] = [x]. Since the conditions ~7 b, a ~7 c,

i notinZ, andi not in Z' together implyb ézuzl c andi
notinZ UZ’, the following lemma suffices to prove thg
is indeed well-defined.

Lemma 3 (well-definedness of]) If a ~7 b, i notinZ,
and reada,i) = x1,readb,i) = 2 € T, thenz; = x».

The proof of this lemma relies on the following sub-
lemma.

Lemma 4 (certain reads equal along chains)Suppose
ai,...,a,, ands are such thats; —z, ... —»7,_, ay for
someZs, ..., Z,—1, whereiis notinlJ, ., _, Z;. Sup-
pose there is a constantsuch that reafh;,i) = = € T.
Thenreada,,,i) =z € I.

Proof The proofis by induction on. The base case is triv-
ial. For the induction case, supposada;,i) = = € I

the same normal form with respect to the core congruence
closure algorithm, we must haveadas,i) = = € T}

this follows from the definition of convenient normal form.
Now the induction hypothesis may be applied to conclude
thatreada,,i) =z € I'. O

Proof (of Lemma 3) Supposes ~7 b and suppose
T # 0. Then by Lemma 2, there is either-a_-chain
from a to b or from b to a, or there is a constant
such that there is a»_-chain froma to ¢ and another
from b to ¢. By Lemma 4, in the first case either
readb,i) = z; € ' orreada,i) = x5 € I', and in the sec-
ond,readc,i) = z1,readc,i) = x5 € I'. Sincel is nor-
mal, for allz, y, andz, read(z, i) = y,readz,i) =z € T
implies y z, since otherwise (subst) would apply.
So in either caser; = z». If Z = 0, then it must be
the case that = b, sinceread(a,i) andreadb,:) are
both in I'; otherwise, (subst) would apply. But again,
read(a,i) = z,reada,i) = y € [implies thatr = y. O

Lemma 5 (correctness of the constructed modelrhe
model constructed in the previous section satisfies every
formula of the goal” in convenient normal form.

Proof Consider the types (1), (II), and (lll) of formulas
from the list in section 4.1; recall that goals in convenient
normal form consist of formulas of just these types.

Case |: read(z,y) = z Sincex is an array constant,

x &g x, and so the construction of Definition 8 will assign
the value that functiofiz] takes on argumetiiy] to be[z].
Hence[readz,y)] = [#].

Casell: z # y Since all disequations il are between
index expressiong, andy must be index constants. Hence,
[x] = z and[y] = y. by construction. Iz = y, then the
goal would not be normal, because (ax) would apply. So the
interpretation satisfies # y.

Case lll: = =7z y It must be shown that for every
index constant not ifiZ], [«] and[y] give the same value.
[«] and[y] have the same default value since they are in the

* . . .
same~-equivalence class. For those index constamist

in Z that appear in a formula of the foread(y, i) = z € T, The procedure foArr always does this for index terms but
they store the same values, by Definitioris. not always for array terms. If the rules of Figure 3 are added
to phase 2, however, it can be shown thataindt' are ar-
From the fact that a model has been constructed for a5y terms in a normal goal that are entailed to be equal, then

normal goal, the main result now follows. : L@ y
Theorem 2 (completeness)he satisfiability procedure T aerb b q— c
for Arr is complete. (trans2) , A =710, 0 =1 C Q4 =7ur

F,azzb,b:pc

5. Complexity analysis whereZ #) andZ’ # §

Observe that each application of (w-elim) or (partial-eq) (patch) [, ¢, a=i70 T, ¢, a=1b
leads to one new subgoal for each element of the indexing [,a=;zb
setZ in the rule. The size df is easily seen to be bounded where¢ is read(a, i) = readb, i)
by the sizelV of the original goal’. So any deduction from
I' may be viewed as a tree with branching factor no more Figure 3. Rules to propagate entailed equa-
thanN. It is not hard to show, in fact, tha¥ is an upper tions
bound on the number of branching nodes in the tree, so there
are at mosO(NY) = O(2"¥') branches. Each branch
can be shown to be of polynomial length, so the algorithm
runs in worst-case exponential time.

6.2. Propagating properly entailed disjunctions

Definition 9 (proper entailment of disjunctions) A dis-
junction that is entailed when neither of its disjuncts is
entailed is said to beroperly entailed

Theorem 3 (NP-completenessYhe problem of testing a
conjunction of literals for satisfiability inArr is NP-
complete.

Incorporating the procedure into the framework of [2] also
requires it to have the following property. Letandy be
equations whose sides appear in dadlf the procedure re-

" portsI satisfiable, theid cannot properly entaip v). The
original procedure foArr does not have this property; an
example is the normal goal=y;, b,a =¢;, b,readb, i) =
v,readb, j) = v/, which entailsi = j V a = b but nei-
theri = j nora = b. It can be proved, however, that the
Jnodified procedure of section 6.1 does have this property.

Proof Downey and Sethi showed that a subproblem of
the problem decided here is NP-hard [4]. To show that the
problem is in NP, observe that the size of the model con
structed in the previous section for a g@ain convenient
normal form is polynomial in the size df. The conver-
sion of a normal goal to convenient normal form incurs at
most a polynomial expansion of the goal. So the size of the
model constructed is polynomial in the size of the normal
goal. Hence a model can be nondeterministically guesse
in polynomial time. Checking whether or not a conjunction
of literals is satisfied by a model can be done deterministi-
cally in polynomial time. So satisfiability of a conjunction
of literals can be checked nondeterministically in polyno-
mial time. O

6.3. Allowing constant arrays

Constant arrays are arrays that store a single value for
all indices. The language is extended with function sym-
bolsconst for each value sort, and the following axiom
schema is added:

6. Extensions
Vao:7.Vi:I.readconstz),i) = «

In this section, several extensions to the refutation pro- The procedure of section 6.1 is modified to obtain a pro-
cedure forArr are considered. Due to lack of space, cor- cedure for this extended theory by adding the rules of Fig-

rectness proofs are omitted. ure 4. (const-eliml) is added to both phases, and (const-
) _ _ symm) and (const-elim2) are added to phase 2. To ensure
6.1. Propagating all entailed equations that the conclusion of (const-elim2) entails its premise, the

simplifying assumption is made that the interpretation of the
Full incorporation of the satisfiability procedure into the type I of indices is infinite. With this modified procedure,
framework for cooperating procedures of [2] requires that goals that are normal with respect to phase 2 may fail to be
the procedure can discover all equations between terms ocnhormal with respect to phase 1. For example, the applica-
curring in a satisfiable goal that are entailed by that goal. tions of constin the goalconstwrite(a,i,v)) = constb)

are removed using (const-elim2) in phase 2, but this adds [4]
the equatiorwrite(a, ¢,v) = b to the goal, which could be

analyzed with the (w-elim) rule of phase 1. So it is neces- [5]
sary to repeat the phases. 6]

t-elim1 Al
(const-elim1) F[reacKconS(SU)a Z)] 17
I', a =7 cons{z) .
(const-symm) I, constz) =z a °l

wherea is not of the formconsty)
[10]

Irz=y
I, constz) =7 consty) [11]

(const-elim2)

Figure 4. Rules to treat constant arrays

i 12
7. Conclusion {13%
A refutation procedure for an extensional theory of
multi-dimensional arrays has been presented and provedi4)
correct. The theorrr decided essentially subsumes all
previously decided array theories. The procedure is suitable
for incorporation into a framework for cooperating decision
procedures. [15]

8. Acknowledgements

We thank the anonymous reviewers for their very help-
ful criticism. The first author was supported during part of
this work by a National Science Foundation Graduate Fel-
lowship. Support was also provided in part by NSF contract
CCR-9806889-002 and ARPA/AirForce contract F33615-
00-C-1693. This paper does not necessarily reflect the po-
sition or the policy of the U.S. Government; no official en-
dorsement should be inferred.

References

[1] L. Bachmair and A. Tiwari. Abstract Congruence Clo-
sure and Specializations. In D. McAllester, edit@7th
International Conference on Automated Deductieolume
1831 ofLecture Notes in Artificial Intelligencegpages 64—
78. Springer-Verlag, 2000.

[2] C. Barrett, D. Dill, and A. Stump. A Framework for Co-
operating Decision Procedures. In D. McAllester, editor,
17th International Conference on Computer Aided Deduc-
tion, volume 1831 of_ecture Notes in Atrtificial Intelligence
pages 79-97. Springer-Verlag, 2000.

[3] G. Collins and D. Syme. A Theory of Finite Maps. Gon-
ference on Higher Order Logic Theorem Proving and its Ap-
plications 1995.

P. Downey and R. Sethi. Assignment Commands with Array
ReferencesJournal of the ACM25(4):652-666, Oct. 1978.
E. Borger, E. Gradel, and Y. Gurevicithe Classical Deci-
sion Problem Springer, 1997.

D. Kaplan. Some Completeness Results in the Mathematica
Theory of ComputationJournal of the ACM15(1):124-34,
Jan. 1968.

J. Levitt. Formal Verification Techniques for Digital Sys-
tems PhD thesis, Stanford University, 1999.

J. McCarthy. Towards a Mathematical Science of Computa-
tion. InIFIP Congress 621962.

G. Nelson. Techniques for Program Verification. Techhic
Report CSL-81-10, Xerox PARC, June 1981.

G. Nelson and D. Oppen. Simplification by cooperating de
cision proceduresACM Transactions on Programming Lan-
guages and Systeniy2):245-57, 1979.

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype-Veri
fication System. In D. Kapur, editdt1th International Con-
ference on Automated Deductjomolume 607 ofLecture
Notes in Artificial Intelligence pages 748-752. Springer-
Verlag, 1992.

H. Ruess. Private communication. 2000.

R. Shostak. Deciding combinations of theorie3ournal

of the Association for Computing Machiner§1(1):1-12,
1984.

A. Stump, D. Dill, J. Giesl, and C. Barrett. On
a Very Simple Abstract Higher-Order Congruence Clo-
sure Algorithm. In preparation 2000. Available from
http://verify.stanford.edu/~ stump/.

N. Suzuki and D. Jefferson. Verification Decidability o
Presburger Array Programs. Rroceedings of a Confer-
ence on Theoretical Computer Scient877. University of
Waterloo, Waterloo, Ontario, Canada.

