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Abstract

A decision procedure for a theory of arrays is of inter-
est for applications in formal verification, program analy-
sis, and automated theorem-proving. This paper presents a
decision procedure for an extensional theory of arrays and
proves it correct.

1. Introduction

A decision procedure for a theory of arrays is of interest
for applications in formal verification and program analy-
sis. Such a procedure is also of value for theorem-provers.
The PVS theorem-prover [11] has an undocumented deci-
sion procedure for a theory of arrays [12], and HOL has
some automatic support for a theory of arrays via a library
for finite partial functions [3].

Two kinds of array theories have been studied previously.
Extensional theories require that if two arrays store the same
value at indexi, for each indexi, then the arrays must be
the same. Non-extensional theories do not make this re-
quirement. This paper is the first to present a procedure for
checking satisfiability of arbitrary quantifier-free formulas
in an extensional theory of arrays and prove its correctness.

2. Theories of arrays

Decision procedures for various theories of arrays have
been studied previously. Most of these theories can be di-
vided into extensional and non-extensional varieties. In this
section, several families of array theories are axiomatized
in classical first-order multi-sorted logic with equality. The
theoryArr decided in this paper is then presented and com-
pared to previously decided theories.

2.1. The language

Sorts The language has a basic sortI for indices into
arrays. It also has value sorts, which are the sorts of indi-

viduals that may be stored in arrays. The sortV is the sort
for primitive values stored in arrays. The set of value sorts
is defined to be the least setX satisfying� V 2 X� � 2 X ! array� 2 X
Every value sort exceptV is an array sort. The value sorts
together withI are all the sorts of the language.V andI
need not be distinct.

Definition 1 (dimensionality of a value sort) The dimen-
sion dim(�) of a value sort� is defined by� dim(V ) = 0� dim(array� ) = dim(�) + 1

Terms The language has countably infinitely many
variables and constants, with countably infinitely many of
each distinct sort. The constants are uninterpreted, in the
sense they will not occur in any axiom or axiom scheme.
The function symbols of the language are� read� of type (array� ! I ! � ), for every value sort�� write� of type (array� ! I ! � ! array� ), for every

value sort�
Subscripts onreadandwrite will generally be omitted. In-
formally,read(a; i) will denote the value stored in arraya at
indexi, andwrite(a; i; v) will denote an array which stores
the same value asa for every index except possiblyi, where
it stores valuev.

Terms are built up in the usual way from constants and
variables using the function symbols. Terms whose sort is
an array sort will be called array terms. Terms whose sort
is I will be called index terms. The dimensiondim(a) of
an array terma is the dimension of its sort. Ifdim(a) = n,
arraya is said to ben-dimensional. Ifn > 1, a is also said
to be multi-dimensional.



Formulas The atomic formulas of the language are the
equations between terms of the same sort. Formulas are
built up from atomic formulas using propositional connec-
tives and quantifiers in the usual way. A formula isclosedif
it has no free variables. Aliteral is an atomic formula or the
negation of an atomic formula. Atheoryis a set of closed
formulas.

2.2. Theories

Some theories restrict which array sorts are allowed. If a
theory allows array sorts of dimension at mostn, it is said to
have justn-dimensional arrays. If a theory allows all array
sorts, it is said to have multi-dimensional arrays.

The following scheme, which is schematic in a value
sort � , is called the read-over-write axiom scheme. Infor-
mally, it says that for all arraysa, indicesi andj, and val-
uesv of suitable type, reading the value stored at indexj of
write(a; i; v) is v if the two indices are equal andread(a; j)
if they are different.

Axiom scheme 1 (read-over-write)8 a : array� : 8 i : I : 8 j : I : 8 v : V :(i = j ! read(write(a; i; v); j) = v) ^(i 6= j ! read(write(a; i; v); j) = read(a; j))
The following scheme, which is schematic in a value sort� , is called the extensionality axiom scheme. Informally,

it expresses a principle of extensionality for arrays: if two
arrays store the same value at indexi, for each indexi, they
are equal.

Axiom scheme 2 (extensionality)8 a : array� : 8 b : array� :(8 i : I : read(a; i) = read(b; i))! a = b
The extensional theories are those axiomatized by the

read-over-write and extensionality axiom schemes. The
non-extensional theories are those axiomatized by just the
read-over-write axiom scheme. Note that since a theory is a
set of closed formulas, quantifier-free array theories have no
variables; all 0-ary symbols are (uninterpreted) constants.

2.3. The theoryArr

The theoryArr decided in this paper is the quantifier-
free fragment of the extensional theory with multi-
dimensional arrays where sortV is defined to be sortI . So
indices are the values stored in 1-dimensional arrays.

The restriction to the quantifier-free fragment is justi-
fied by the fact that the fully quantified theory is undecid-
able, even in the absence of the function symbolswrite�

and the read-over-write scheme. This is because single-
sorted first-order theories with function symbols and equal-
ity may be translated into this array theory in such a way
that a first-order formula is valid iff its translation is. The
translation maps constant symbols to index constants,n-
ary function symbols ton-dimensional array constants,
and terms likef(i1; : : : ; in) to nested read expressions
read(: : : read(read(f 0; i01); i02) : : : ; i0n), wheref 0; i01; : : : ; i0n
are the translations off; i1; : : : ; in. The undecidability re-
sults for classical first order logic with just function symbols
and equality (see, e.g., [5]) can then be applied to show that
even quite restricted quantified fragments of the extensional
theory of arrays are undecidable.

A decision procedure forArr may be useful even for
applications which require a fully quantified logic. Many
theorem provers, such as the widely used PVS [11], pro-
vide strategies to reduce goals to subgoals in decidable frag-
ments of their logic.

2.4. Comparison with related work

In this section, related work is summarized by describing
which theories are decided. These theories often use axiom-
atizations different from but equivalent to that ofArr . All
the theories decided are quantifier-free. Kaplan is the only
one to distinguish the sortsV andI . Many of the previous
theories allow arithmetic operators or uninterpreted func-
tions over sortI to be used in addition to the symbolsread
andwrite. The restriction here to just the essential theory of
arrays is justified by the fact that, as will be shown in Sec-
tion 6 below, the satisfiability procedure forArr is suitable
for incorporation into a framework for cooperating decision
procedures [2]. In such a framework, separate decision pro-
cedures for arithmetic and uninterpreted functions may be
combined with the decision procedure forArr to decide the
combined theory.

The first two works present axioms but no decision pro-
cedure for their theories. With the exception of Levitt’s
work, the others give decision procedures for theories that
are strictly weaker thanArr , either because they restrict the
form of formulas in the theory (e.g., to just equations), dis-
allow equations between arrays, or are non-extensional.

McCarthy In [8], McCarthy introduces the function
symbolsreadandwrite and gives an informal semantics for
an extensional theory of arrays based on them.

Collins and Syme Collins and Syme present in HOL
a theory of finite higher-order partial functions similar to a
theory with multi-dimensional arrays [3].

Kaplan In [6], Kaplan gives a decision procedure for a
non-extensional equational theory with just 1-dimensional
arrays. He considers equations between index terms only,
which is reasonable since his theory contains no non-trivial
equations between arrays. He then shows how to extend his



procedure to decide an extensional equational theory, where
the equations may be between array as well as index terms.
He imposes the restriction that distinct variables of sortI
must receive distinct interpretations.

Suzuki and Jefferson In [15], Suzuki and Jeffer-
son present a decision procedure for a theory with just 1-
dimensional arrays, where equations between arrays are not
allowed. The theory has axioms for extensionality and the
existence of constant arrays (arrays that store the same value
at all indices), but these appear to be included for technical
reasons only; the theory decided is equivalent to the one
without those axioms under the restrictions they impose.
They extend their procedure to decide a theory with a new
predicate symbolPERM, wherePERM(a; b) holds iff the
multiset of the values stored ina is contained in the mul-
tiset of the values stored inb. Sentences of the theory are
restricted to the formP ! PERM(a; b), whereP is any
(quantifier-free) sentence not containingPERM. Arr does
not have thePERM predicate, but inspection of the way
Suzuki and Jefferson extend their algorithm to treatPERM
shows that it could just as easily be used to extend the algo-
rithm for Arr , as long as their restriction disallowing equa-
tions between array terms were retained.

Downey and Sethi In [4], Downey and Sethi present
a decision procedure for an extensional equational theory
with just 1-dimensional arrays. Equations between array
terms are allowed. They prove that determining the invalid-
ity of an equation in their theory of arrays is NP-complete.

Nelson and Oppen In [10], Nelson and Oppen describe
an extensional theory of arrays. Their theory allows multi-
dimensional arrays. They do not present their satisfiabil-
ity procedure for the extensional theory, but in [9], Nelson
gives a detailed presentation of a satisfiability procedure for
a non-extensional theory.

Levitt In Chapter 5 of his PhD thesis [7], Levitt presents
a decision procedure for an extensional theory of arrays
based on solving equations and canonizing terms, in the
style of Shostak [13]. A detailed proof of correctness is
not given, and has proved elusive to the authors. In con-
trast, a detailed proof of correctness is given below for the
procedure forArr .

3. The satisfiability procedure for Arr

Arr is decided by a refutation procedure. The procedure
decides satisfiability of conjunctions of literals, which are
equations and disequations between terms. Deciding satis-
fiability of arbitrary boolean combinations of atomic formu-
las can be reduced to this problem by well-known means.
A conjunction of literals whose satisfiability is to be tested
will be called a goal. Comma will be used to denote con-
junction. Two goals are said to beequisatisfiablewhen one
is satisfiable iff the other is.

3.1. Informal overview

The procedure works in two phases. In the first phase,
the original goal is transformed into a set of subgoals such
that (i) no subgoal containswrite and (ii) the original goal
is satisfiable iff one of the subgoals is. Eliminating write
expressions is straightforward except when they occur as
the left or right hand side of an equation. How to eliminate
such occurrences of write expressions is the crucial insight
of this algorithm.

Definition 2 (= )a =I b ,def 8 i : I : i 62 I ! read(a; i) = read(b; i)
Formulas of the forma =I b with I 6= ; are called partial
equations.

The crucial observation is that

write(a; i; v) = b , (a =fig b ^ read(b; i) = v):
write expressions occurring as sides of equations may thus
be eliminated by introducing partial equations.

The second phase of the procedure is based on the ob-
servation that in the absence ofwrite, arrays behave like
uninterpreted functions andread behaves like function ap-
plication. So in the absence ofwrite, a congruence closure
algorithm (cf. [1]) could be used to decide the theory. The
algorithm must be modified to work with partial equations
as well as equations, but this can be done. For simplicity, the
very simple congruence closure algorithm described in [14]
is used, but it should be possible to modify a more complex
algorithm.

3.2. Formal presentation

Figure 1 presents our procedure as a proof system. The
proof system determines a non-deterministic procedure,
where rules are applied bottom-up to analyze a goal into
one or more subgoals. The system may be thought of as
a rewrite system, where, for each rule, the goal below the
line is rewritten to the subgoals above the line. The sys-
tem resembles a Gentzen-Schütte system where only left
rules of the corresponding sequent system are used (i.e., a
sequent system where sequents are restricted to be of the
form�) ?). The derivable objects of this system are sets
of literals. It is intended that a set of literals be derivable iff
their conjunction is unsatisfiable. Adeductionof a goal is a
tree obtained by applying the proof rules bottom-up to that
goal. A goal to which no rule can be applied is said to be
normal.



Phase 1:

(ext)
�; read(a; k) 6= read(b; k)�; a 6= b k is not free in the conclusion;a andb are arrays

(r-over-w)
�[v]; i = j �[read(a; j)]; i 6= j�[read(write(a; i; v); j)]

(w-elim)
�; a =I b; i 2 I �; a =i;I b; read(b; i) = v; i 62 I�; write(a; i; v) =I b

(w-elim-helper)
�; b =I a�; a =I b b is a write expression, anda is not

Phase 2:

(partial-eq)
�; a =I b; read(a; i) = read(b; i); i 62 I �; a =I b; i 2 I�; a =I b

wherea � b; I 6= ;; read(a; i) occurs in�
(trans)

�; a =I b; a =I0 c; b =I[I0 c�; a =I b; a =I0 c I 6= ; andI 0 6= ;
(subst)

�[y]; x = y�[x]; x = y x � y; x 6� y, x not in�[ ]
(symm)

�; y =I x�; x =I y x � y
Both phases:

(2-split)
�; i = j �; i 2 I�; i 2 (j; I) ( 62-expand)

�; i 62 I; i 6= j�; i 62 (j; I)
(2-empty) �; i 2 ; (ax) �; x 6= x

Figure 1. The decision procedure as a proof system



The system has two phases. Some rules may be applied
in just one phase, while others may be applied in either
phase. The rules of phase 1 are applied to a goal until no
rule applies, and then the rules of phase 2 are applied. The
procedure stops and reports that the original conjunction is
satisfiable if it encounters a normal subgoal. Otherwise, it
reports that the original goal is unsatisfiable. As mentioned
before, phase 2 is a modified congruence closure algorithm.
The core congruence closure algorithm consists of just the
rules (symm) and (subst) [14].

The set-theoretic operators have their usual meanings;
note thati; I denotesfig [ I, whereI does not containi. �[ ] denotes acontext, which is an expression contain-
ing one or more occurrences of a single free variable. The
expression obtained by substituting the termt for the con-
text’s free variable is written�[t]. In the rule (subst), since
the side condition requires that�[ ] contain no occurrences
of the termx, applying (subst) replaces all occurrences ofx
in �[x] with the termy. � denotes syntactic identity. The
symbol� denotes an ordering on terms by size, which is
defined on terms in the usual way. Letx � y iff x andy are
such that the size ofx is less than or equal to the size ofy.
The variants� and� are derived from� in the usual way.

3.3. Avoiding non-termination in phase 2

In phase 2, applications of (partial-eq) and (trans) must
be restricted to avoid certain sources of non-termination.
There is nothing preventing (partial-eq) and (trans) from be-
ing applied repeatedly with the same partial equations, be-
cause for both rules, the partial equations are retained in the
goal. For (partial-eq), this form of non-termination may be
prevented by adding a side condition to the rule that pre-
vents it from being applied if, informally,read(a; i) and
read(b; i) are already known to be equal or ifi is already
known to be equal to an element ofI. Formally, the proce-
dure can test whether or nott andt0 are already known to
be equal by applying all the rules of phase 2 except (partial-
eq) and (trans) to the current goal witht 6= t0 added, and
seeing whether or not that goal is reported unsatisfiable. If
neither (2-split) nor (62-expand) applies to the current goal,
then this is equivalent just to comparing normal forms as de-
termined by the core congruence closure algorithm. So in
an implementation, this non-termination may easily be pre-
vented. A similar approach can be used to prevent (trans)
from being applied repeatedly to the same formulas. The re-
quired machinery, however, has been omitted from the proof
system for simplicity.

4. Correctness of the Procedure

A satisfiability procedure issoundiff when it reports a
goal unsatisfiable, the goal is indeed unsatisfiable. A pro-

cedure iscompleteiff when it reports a goal satisfiable, the
goal is indeed satisfiable. A procedure iscorrect iff it ter-
minates on all inputs, and it is sound and complete. In this
section, a detailed proof of completeness for the satisfiabil-
ity procedure forArr is given. The proof of termination is
routine and omitted for lack of space. The following theo-
rem implies soundness.

Theorem 1 (equisatisfiability) The conclusion of each
rule of the system is satisfiable iff one of its premises is sat-
isfiable.

Proof: The proof is routine. Consider just the rule (trans).
If a =I b anda =I0 c are true in some model, then it is
easy to see by the definition of= that b =I[I0 c is also
true in some model. Ifc agrees witha at every index except
those inI 0 anda agrees withb at every index except those
in I, then clearlyi 62 I [ I 0 implies thatc agrees witha ati and also thata agrees withb at i. Hence,c agrees withb
at i. For the other direction, if the premise has a model, so
does the conclusion, since the conclusion is a subset of the
premise.2

Recall that a normal goal is one to which no rule applies.
By the equisatisfiability theorem, to prove completeness of
the algorithm it suffices to show that any normal goal is
satisfiable. This may be done by constructing a model for a
normal goal. The following lemma is easily established.

Lemma 1 (effect of phase 1)A goal that is normal with
respect to phase 1 of the algorithm contains no write ex-
pressions and no disequations between array expressions.

4.1. A convenient form for normal goals

In preparation for constructing a model, several trans-
formations, which are not actually performed by the algo-
rithm, are applied to a normal goal to give an equisatisfiable
normal goal�, which is in a more convenient form. If the
normal goal contains equations of the formx = x, clearly
they may be removed and the result will be equisatisfiable.
Next, modify the goal by doing the following. LetG be the
goal as it currently stands. If there is a term of the form
read(a; i) in G that is not the left hand side of any equation
in G, choose a constant symbolc not occurring inG, and
modify G by replacingread(a; i) everywhere in it withc
and adding the equationread(a; i) = c to it. If there is no
such termread(a; i) in G, stop. It is easy to show that the
resulting goal is normal and equisatisfiable with the original
normal goal. This resulting goal consists of formulas of one
of the following four forms, wherex, y, andz are constant
symbols:

I. read(x; y) = z



II. x 6= y
III. x =I y, where every element ofI is a constant symbol

IV. x = y
Since this resulting goal is normal, no formulax = y of
the form (IV) has its left hand side appearing anywhere else
in the goal, since otherwise (subst) would apply. Let� be
this resulting goal, except without the equations of the form
(IV). � will be said to be inconvenient normal form. Any
modelM of � may be extended to a model of� with those
equations of the form (IV) by giving the same interpretation
for the constantx as for the constanty, if M interpretsy,
and a single arbitrary interpretation for bothx andy other-
wise.

4.2. Construction of a model

In this section, a kind of term model for the goal� in
convenient normal form is constructed. Several definitions,
in terms of�, are required. The fact that the core congru-
ence closure algorithm (rules (subst) and (symm)) is correct
is used (see [14] for the proof).

Definition 3 (! and ) Let! and be the ternary
relations defined, respectively, bya!I b iff (a =I b) 2 �a I b iff (b =I a) 2 �

Note that for anyI,!I and!I need not be symmetric,
since(a =I b) 2 � does not imply(b =I a) 2 �.

Definition 4 (� ) Let� be the least ternary relation sat-
isfying

1. a �; a, for every array constanta appearing in�
2. (a!I b) _ (b!I a)! a �I b

Definition 5 (
�� ) Let

�� be the least ternary relation con-
taining� and satisfying(9 c : a �I c ^ c ��I0 b)! a ��I[I0 b
Definition 6 (

��) Let
�� be the binary relation defined bya �� b iff 9 I : a ��I b

The context will help distinguish
�� and

��. Note that
��

is an equivalence relation.

Definition 7 (chains) A chain of applications of a ternary
symbolR like � or ! , called anR-chain, is defined to
be a conjunction of the form(a1 RI1 a2) ^ (a2 RI2 a3) ^: : : ^ (an�1 RIn�1 an), withn � 2.

� The chain is denoted(a1 RI1 a2 RI2 : : : RIn�1 an):� n is thelengthof the chain.� Theunion along the chainis defined to be
S1�j<n Ij .� The chain is said to befrom x to y iff a1 � x andan � y.

a a’ b

a a’ b

a
a’

b’

c

b

Figure 2. Standard forms for � -chains

Lemma 2 (standard form for chains) Supposea ��I b,
with I 6= ;. Then one of the following is true:

i. there is a! -chain froma to b or from b to a, where
the union along the chain isI

ii. for somec, there is a! -chain froma to c and another
fromb to c, where the union of the unions along the two
chains isI.

Figure 2 shows the possibilities.

Proof Let C be a� -chaina1 �I1 : : : �In�1 an froma to b, with I = S1�i�n�1 Ii. AssumeC is of mini-
mal length of all such chains. For everyi with 1 � i �n � 1, let $i be either!Ii or  Ii , and suppose we
havea1 $i : : : $n�1 an. It is easy to prove that if
this latter chain is not of one of the forms described in
(i) and (ii), there must be ani with 1 < i � n � 1
such that$i�1 is  Ii�1 and$i is !Ii . So we haveai�1  Ii�1 ai !Ii ai+1. So bothai =Ii�1 ai�1 andai =Ii ai+1 are in�. It must be the case that bothIi�1 andIi are non-empty, since otherwise (subst) would apply to re-
place the left hand side of one of those equations by the right
hand side of the other. No rules can apply, since� is nor-
mal. Since bothIi�1 andIi are non-empty, (trans) would
be applicable, unless the conditions described in Section 3.3
for preventing non-termination were keeping it from being
applied. This implies that eitherai�1 =Ii�1[Ii ai+1 orai+1 =Ii�1[Ii ai�1 is in �, sincea1 anda2 must be their



own normal forms as determined by the core congruence
closure algorithm. Hence, we haveai�1 �Ii�1[Ii ai+1.
So the chaina1 �I1 : : : ai�1 �Ii�1[Ii ai+1 : : : �In�1 an,
whose union isI, has smaller length thanC. This contra-
dicts the assumption thatC is of minimal length of such
chains.2

Now an interpretation, given as a function[[ ]] from the
constant and function symbols of� to their interpretations,
is defined. [[ ]] is defined to map every constant symbola
of basic typeI to a itself. [[ ]] will map array constants to
functions. To satisfy extensionality, functions that give the
same value for every input are required to be equal. First

let ?C be a new symbol not occurring in�, for every
��-

equivalence classC. Define[[read]] to be the operation of
function application, except that when it is given?C , it may
just return?C . Intuitively, for an array constanta, [[a]] will
be a function mapping all but a finite number of inputs to a

default value?C . Formally, supposea is in
��-equivalence

classC. Define[[a]] to be the function that returns?C for
every input, except those assigned values by the following:

Definition 8 (interpretation of array constants)
for every constant symbolb of the same type asa,

for every setI such thata ��I b,
for every index constanti not appearing inI,
if read(b; i) = x 2 � for somex, then
the value of[[a]] for input [[i]] is defined to be[[x]].

Notice that the body of Definition 8 may specify the
value for[[a]] on inputimore than once. So for[[ ]] to be well-
defined, if the value of[[a]] on inputi is specified to be[[x1]]
and[[x2]], we need[[x1]] = [[x2]]. So if a ��I b anda ��I0 c
with i not inI and not inI 0, then for[[ ]] to be well-defined,
it must be the case that ifread(b; i) = x1; read(c; i) = x2 2�, then[[x1]] = [[x2]]. Since the conditionsa ��I b, a ��I0 c,i not in I, andi not in I 0 together implyb ��I[I0 c andi
not inI [ I 0, the following lemma suffices to prove that[[ ]]
is indeed well-defined.

Lemma 3 (well-definedness of[[ ]]) If a ��I b, i not in I,
and read(a; i) = x1; read(b; i) = x2 2 �, thenx1 � x2.

The proof of this lemma relies on the following sub-
lemma.

Lemma 4 (certain reads equal along chains)Supposea1; : : : ; an, andi are such thata1 !I1 : : : !In�1 an for
someI1; : : : ; In�1, wherei is not in

S1�j�n�1 Ij . Sup-
pose there is a constantx such that read(a1; i) = x 2 �.
Then read(an; i) = x 2 �.

Proof The proof is by induction onn. The base case is triv-
ial. For the induction case, supposeread(a1; i) = x 2 �.

Since� is normal, no rules can apply. So we must haveI1 6= ;, since otherwise (subst) would apply witha1 = a2
and read(a1; i). Furthermore, since (partial-eq) cannot
apply, it must be the case that the conditions of Section 3.3
for preventing non-termination are what is prohibiting its
application witha1 =I1 a2 and read(a; i). In particular,
it must be the case thatread(a2; i) is already known to
be equal toread(a1; i). The other possibility, namely thati is known to be equal to an element ofI, is excluded
becausei is not in I by hypothesis, and correctness of
the core congruence closure algorithm would requirei to
appear inI in a normal goal ifi were known to be equal
to an element ofI. For read(a1; i) andread(a2; i) to have
the same normal form with respect to the core congruence
closure algorithm, we must haveread(a2; i) = x 2 �;
this follows from the definition of convenient normal form.
Now the induction hypothesis may be applied to conclude
thatread(an; i) = x 2 �. 2
Proof (of Lemma 3) Supposea ��I b and supposeI 6= ;. Then by Lemma 2, there is either a! -chain
from a to b or from b to a, or there is a constantc
such that there is a! -chain from a to c and another
from b to c. By Lemma 4, in the first case either
read(b; i) = x1 2 � or read(a; i) = x2 2 �, and in the sec-
ond,read(c; i) = x1; read(c; i) = x2 2 �. Since� is nor-
mal, for allx, y, andz, read(x; i) = y; read(x; i) = z 2 �
implies y � z, since otherwise (subst) would apply.
So in either case,x1 � x2. If I = ;, then it must be
the case thata � b, since read(a; i) and read(b; i) are
both in �; otherwise, (subst) would apply. But again,
read(a; i) = x; read(a; i) = y 2 � implies thatx � y. 2
Lemma 5 (correctness of the constructed model)The
model constructed in the previous section satisfies every
formula of the goal� in convenient normal form.

Proof Consider the types (I), (II), and (III) of formulas
from the list in section 4.1; recall that goals in convenient
normal form consist of formulas of just these types.

Case I: read(x; y) = z Sincex is an array constant,x �; x, and so the construction of Definition 8 will assign
the value that function[[x]] takes on argument[[y]] to be[[z]].
Hence[[read(x; y)]] = [[z]].

Case II: x 6= y Since all disequations in� are between
index expressions,x andy must be index constants. Hence,[[x]] = x and[[y]] = y, by construction. Ifx � y, then the
goal would not be normal, because (ax) would apply. So the
interpretation satisfiesx 6= y.

Case III: x =I y It must be shown that for every
index constant not in[[I]], [[x]] and[[y]] give the same value.[[x]] and[[y]] have the same default value since they are in the

same
��-equivalence class. For those index constantsi not



in I that appear in a formula of the formread(y; i) = z 2 �,
they store the same values, by Definition 8.2

From the fact that a model has been constructed for a
normal goal, the main result now follows.

Theorem 2 (completeness)The satisfiability procedure
for Arr is complete.

5. Complexity analysis

Observe that each application of (w-elim) or (partial-eq)
leads to one new subgoal for each element of the indexing
setI in the rule. The size ofI is easily seen to be bounded
by the sizeN of the original goal�. So any deduction from� may be viewed as a tree with branching factor no more
thanN . It is not hard to show, in fact, thatN is an upper
bound on the number of branching nodes in the tree, so there
are at mostO(NN ) = O(2N lgN ) branches. Each branch
can be shown to be of polynomial length, so the algorithm
runs in worst-case exponential time.

Theorem 3 (NP-completeness)The problem of testing a
conjunction of literals for satisfiability inArr is NP-
complete.

Proof Downey and Sethi showed that a subproblem of
the problem decided here is NP-hard [4]. To show that the
problem is in NP, observe that the size of the model con-
structed in the previous section for a goal� in convenient
normal form is polynomial in the size of�. The conver-
sion of a normal goal to convenient normal form incurs at
most a polynomial expansion of the goal. So the size of the
model constructed is polynomial in the size of the normal
goal. Hence a model can be nondeterministically guessed
in polynomial time. Checking whether or not a conjunction
of literals is satisfied by a model can be done deterministi-
cally in polynomial time. So satisfiability of a conjunction
of literals can be checked nondeterministically in polyno-
mial time.2
6. Extensions

In this section, several extensions to the refutation pro-
cedure forArr are considered. Due to lack of space, cor-
rectness proofs are omitted.

6.1. Propagating all entailed equations

Full incorporation of the satisfiability procedure into the
framework for cooperating procedures of [2] requires that
the procedure can discover all equations between terms oc-
curring in a satisfiable goal that are entailed by that goal.

The procedure forArr always does this for index terms but
not always for array terms. If the rules of Figure 3 are added
to phase 2, however, it can be shown that ift andt0 are ar-
ray terms in a normal goal that are entailed to be equal, thent ��; t0.

(trans2)
�; a =I b; b =I0 c; a =I[I0 c�; a =I b; b =I0 c

whereI 6= ; andI 0 6= ;
(patch)

�; :�; a =i; I b �; �; a =I b�; a =i; I b
where� is read(a; i) = read(b; i)

Figure 3. Rules to propagate entailed equa-
tions

6.2. Propagating properly entailed disjunctions

Definition 9 (proper entailment of disjunctions) A dis-
junction that is entailed when neither of its disjuncts is
entailed is said to beproperly entailed.

Incorporating the procedure into the framework of [2] also
requires it to have the following property. Let� and be
equations whose sides appear in goal�. If the procedure re-
ports� satisfiable, then� cannot properly entail�_ . The
original procedure forArr does not have this property; an
example is the normal goala =fig b; a =fjg b; read(b; i) =v; read(b; j) = v0, which entailsi = j _ a = b but nei-
ther i = j nor a = b. It can be proved, however, that the
modified procedure of section 6.1 does have this property.

6.3. Allowing constant arrays

Constant arrays are arrays that store a single value for
all indices. The language is extended with function sym-
bolsconst� for each value sort� , and the following axiom
schema is added:8x : � : 8 i : I : read(const(x); i) = x

The procedure of section 6.1 is modified to obtain a pro-
cedure for this extended theory by adding the rules of Fig-
ure 4. (const-elim1) is added to both phases, and (const-
symm) and (const-elim2) are added to phase 2. To ensure
that the conclusion of (const-elim2) entails its premise, the
simplifying assumption is made that the interpretation of the
typeI of indices is infinite. With this modified procedure,
goals that are normal with respect to phase 2 may fail to be
normal with respect to phase 1. For example, the applica-
tions of const in the goalconst(write(a; i; v)) = const(b)



are removed using (const-elim2) in phase 2, but this adds
the equationwrite(a; i; v) = b to the goal, which could be
analyzed with the (w-elim) rule of phase 1. So it is neces-
sary to repeat the phases.

(const-elim1)
�[x]�[read(const(x); i)]

(const-symm)
�; a =I const(x)�; const(x) =I a

wherea is not of the formconst(y)
(const-elim2)

�; x = y�; const(x) =I const(y)
Figure 4. Rules to treat constant arrays

7. Conclusion

A refutation procedure for an extensional theory of
multi-dimensional arrays has been presented and proved
correct. The theoryArr decided essentially subsumes all
previously decided array theories. The procedure is suitable
for incorporation into a framework for cooperating decision
procedures.
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