Automatic Gener ation of I nvariants in Processor
Verification

Jeffrey X. Su, David L. Dill, and Clark W. Barrett

Computer Science Department
Stanford University

Abstract. A central task in formal verification is the definition of invariants,
which characterize the reachable states of the system. When a system is finite-
state, invariants can be discovered automatically.

Our experiencein verifying microprocessorsusing symbolic logic is that finding
adequateinvariantsis extremely time-consuming. We present three techniquesfor
automating the discovery of some of these invariants. All of them are essentially
syntactic transformations on a logical formula derived from the state transition
function. The goal is to eliminate quantifiers and extract small clausesimplied by
the larger formula.

We haveimplemented the method and exercised it on adescription of the FLASH
Protocol Processor (PP), amicroprocessor designed at Stanford for handling com-
municationsin a multiprocessor. We had previously verified the PP by manually
deriving invariants.

Although the method is simple, it discovered 6 out of 7 of the invariants needed
for verification of the CPU of the processor design, and 28 out of 72 invariants
needed for verification of the memory system of the processor. We believethat, in
thefuture, the discovery of invariants can be largely automated by a combination
of different methods, including this one.

1 Introduction

As microprocessors become more complex, an increasingly large fraction of the design
timeis spent on validation. Validation techniques which rely entirely on smulation are
limited because of the many possible cases which must be accounted for. Sometimes,
significant bugs are found after a processor is commercialy released, which is both
embarrassing and costly.

Formal verification techniques have been steadily improving over the last decade,
and several simple microprocessors have been verified [3, 6, 8]. The methods used in
these verification efforts are based on theorem provers, which require a great deal of
expert guidance. In addition, some automatic techniques used on simple processors
(i.e. [9]) are not applicable to pipelined processors. And even though some pipelined
processors have been successfully verified [4, 14, 15, 17], they are either very simpleor
requireagreat dea of work to verify.

Burch and Dill [1] proposed a new method for verifying the control of microproces-
sors. The verification method compares two behavioral descriptions of the processor: a
pipelined implementation and a simpler, unpipelined specification. A symbolic smula-
tor isused to generate acollection of formulasin a quantifier-freefragment of first-order
logic including propositional connectives, equality, and uninterpreted functions. These
formulasarechecked for universal truth by avalidity checker. For anincorrect implemen-
tation, this validity checker can produce a specific example where the implementation
of the processor contradicts its specification. Significant effort has gone into making
thisvalidity checker fast and efficient [7, 18].

For al but the simplest descriptions, the proofsrequireinvariants: alogical formula
characterizing a superset of the states reachable from the initia state of the processor.
Currently, finding appropriate invariants is the single most labor-intensive part of the
verification method.

The most complex design to which we have applied the method is the Stanford
Protocol Processor (PP) [16], designed by the Stanford FLASH group. The proof was
divided into two parts: verification of the CPU and verification of the memory system.
Most of the invariants had to be found by trial and error: we attempted verification;
when it failed, we analyzed the results to see if the problem was a design error (very
rarely), an error from translating the original design to our input language (frequent),
an error in the invariant (frequent), or an invariant that was too weak (frequent). This
process took a few weeks for the CPU, and a few months for the memory system. It
became clear from this experience that even partial automation of invariant discovery
would be a mgjor step towards making processor verification more practical.

The invariant discovery methods described here were inspired by inspecting the
logical formulasinvolved in the verification of the PP. The method isto find aformula
characterizing the set of states reachable from at least one other state. The digunction
of this formula with a formula characterizing the initia state is an invariant, as is
anything implied by the digunction. However, the formula has existential quantifiers,
which is a problem since we are working in a quantifier-free logic. So we employ
several simpletransformationsto extract quantifier-freeformulasthat areimplied by the
origina formula (and, thus, aso invariants).

Perhaps the most surprising result isthat, although the method is seemingly weak, it
findsasignificant number of theinvariantsthat are needed inthe proof of the PP. Indeed,
it discovers 6 out of the 7 invariantsrequired for the CPU verification, and 28 out of 72
invariants required in the memory system. From this, we can reasonably conclude that
the difficulty of verifying the PP would have been gresatly reduced if we had used this
method to find the invariantsinstead of doing it manually. However, we believe that the
the greatest potential of the method will berealized when it isused in combination with
other invariant discovery techniques.

The rest of the paper is organized as follows: related work in invariant generation
is discussed in Section 2. The logic and processor model are described in Section 3.
Our methods for automatically finding invariants along with proofs of their correctness
are presented in Section 4. Experimenta results are provided in Section 5, and some
concluding remarks are given in Section 6.

2 Generating Invariants

There are existing methods to find invariants automatically. Manna and Pnueli show
how to generate invariants for proving safety propertiesin fair transition systems [11],
and these methods have been extended by Bensalem et al [13]. Their methods can be
classified as either top-down or bottom-up.

Top-down invariant generation begins with an assertion that we desireto provefor a
given system. If thisassertion isnot valid in general, then various heuristics are applied
to strengthen the assertion. However, this method is not guaranteed ever to produce
a valid assertion. Bottom-up methods, on the other hand, simply look at the system
and use it to deduce assertions which are always valid. Bottom-up invariants tend to be
simplepropertiesof thesystem, and few practically interesting propertiesare likely to be
generated using only bottom-up methods. The two methods can be combined by using
invariantsgenerated by the bottom-up method as strengthening assertionsfor atop-down
approach. The Stanford Temporal Prover (STeP) is a system which implements these
methods in a tool for program verification [10]. Many properties of simple examples
can be proved with very little manual effort by using the automatic methods provided
by STeP.

Althoughthere areinherent differences between our verification model and that used
by STeP, theideas of top-down and bottom-up invariant generation are applicableto the
approach wetake. Oursare bottom-up syntactic methodsfor extracting simpleinvariants
from the state transition function of an implementation. These invariants are then used
to limit theinitial state space in our verification modd. If the automatic invariants are
not sufficient, additional assertions can be added manually in a top-down manner until
avalid verification condition is obtai ned.

3 Logicand Processor Model

A processor is modeled as aMealy machine M =(Q), X', A, 6, 1, q0), where @ is afinite
set of states, go € @ istheinitia state, £ and A are finite sets of inputs and outpults,
8 isthe state transition function which maps @ x X' to), and » is the output function
which maps @ x X' to A. Werequire é to be total (defined for all inputsand states). In
therest of the paper, we will assume that M is given.

The techniques we use to find invariants are based on syntactic manipulation of
formulas in first-order logic. We will use the standard Boolean connectives as well as
an if-then-else (ite) construct: we write (ite o §) to mean if o then 3 else y. Within
the formulas, we will use the following variable conventions: x € X, and w, z € @,
where w isthe old or previous state and z represents the new or current state.

We aso assume that 6 can be expressed as a formula in quantifier-free first-order
logic (we obtain this formula by symbolic simulation). Thisformulais dependent on a
statew and an input x. We will denotethe syntactic representation of the state transition
function depending on variables w and x by 7[w, x].

We will dedl primarily with Boolean logical formulas containing a single free vari-
able which can range over the states of M. Such a formula will be called a state

predicate and will be written as a symbol followed by the state variable (usualy z) in
sguare brackets (i.e. I[z]). Asaspecia case, we define theinitial state predicate as:

Qolz] = z = qo.
We al so define the predecessor state predicate as.

Plz] = Iw,x. z = 7[w, x].

Intuitively, P[z] holds exactly when z has at |east one predecessor.
A state predicate which istrue for al reachable statesis called an invariant. Formally,

Definition 1 (Invariant) Let 7[z] be a state predicate. I[Z] isan invariant if:
Base Rule: Qo[Z] = I[Z], and
Induction Rule: I[w/z] = I[r[w,Xx]/Z] !
arevalid logical formulas(i.e. truefor all possibleinterpretations of free variables). O

By this definition, the predecessor state predicate is an invariant. In practice, how-
ever, it is both difficult and computationally expensive to deal with invariants which
contain quantifiers (especialy in automatic methods). Thus we seek to find equivalent
or weaker invariants which are implied by the predecessor state predicate and which do
not contain quantifiers. We use the foll owing theorem as the basis for three techniques
to automatically generate such invariants.

Theorem 1. If I[Z] isa state predicate and Vz. P[z] = I[z] isvalid, then Qo[Z] V I[Z]
isaninvariant.

BaseRule : Clearly, Qo[z] = Qolz] Vv I[z] isvdid.

Induction Rule : Wemust show that Qo[w/z] V I[w] = Qo[r[w, x]/z]V I[r[w,x]/7]
isvalid. Consider just theformula I[r[w, x]/z] and let ¢ and ¢ be arbitrary assign-
ments to w and x respectively. We know that P[z] = I[z] isvalid. By inspection,
we see that P[z] is true under the assignment z — é(q, o). It must then be the
case that I[z] is aso true under the same assignment. But this is equivalent to
I[r[w,x]/z] since = simply computes 6. Thus I[r[w, x]/z] isvalid and it follows
that Qo[w/z] V I[w] = Qo[r[w,x]/z] V I[T[w,x]/z] isvaid.

]

Notethat we did not use the hypothesisin theinductionstep. Thus, aswas previously
mentioned, these are weak invariants.

! We use the notation I[y/z] to denote the result of substituting y for zin I[Z).

4 Automatic Generation of |nvariants

Intheprevioussection, for the sake of simplicity, weassumed that the state of aprocessor
can berepresented by asingle state variable. In practice, it is much more useful to think
of the state as being divided into many individual state variables. In the following,
we will assume that states are actually n-tuples, so that any state z can be written as
(21, ..., zn) and 7[w, x] can bewritten as (m1[w, x|, ..., T,[w, x]). We will also assume
that w = (w1, ..., w,) and x = (z1, ..., #,). We can then write the predecessor state
predicate as follows:

Plz1, ..., 2n] = 3w, x. /\(zZ = 7i[w,x]).
i=1

We now use this formula to find valid quantifier-free state predicates. This is done
by applying some simple syntactic transformations with the goa of eliminating the
existentially quantified state and input variables (which we refer to as bound variables
in the following discussion). These methods are discussed in the following subsections.

4.1 Method 1

Our first method is to replace subexpressions containing bound variables in P(z) with
state variables wherever possible. We accomplish this by discovering common subex-
pressions which are equivalent to the state transition function for some state variable.
Formally, for each clause z; = r;[w, x] in P[z], whenever 7;[w, x| appears as a subex-
pression of 7; [w, x] wherei # j, wereplace the occurrence of 7;[w, x] in7; [w, x] with
z;. Thisresultsin a new set of state transition formulas which depend not only on the
input and previous state variables, but on the current state variables as well. We will
denote these new formulas by (r{[w,x, z], ..., 7,[w, X, z]). We can then write a new
predecessor state predicate P’[z] whichislogicaly equivaent to P[z]:
P'[z] = 3w, x. /\(zZ = 7/[w,x,7]).
i=1

This new predicate P’[z] has fewer occurrences of bound variables.

Now, if there are any clauses in P’[z] in which al bound variables have been
eliminated as a result of the transformation, they can be moved outside the scope of the
existentia quantifiers. Call the conjunction of al such clauses I;[z] and the remaining
term Py[z] so that P’'[z] = Ii[z] A Pi[z]. For simplicity, we assume that the removed
clauses are those associated with the highest numbered state variables so that:

Pi[z] = 3w, x. /\(zZ = 7/[w,x,7]).
i=1
wheren; < n.
Since I1[z] is a subexpression of P’'[z], it followsthat P'[z] = I1[z] isvalid, and
thus Qo[z] Vv I1[z] isan invariant by Theorem 1. We will now apply this method to the
circuitin Figure 1.

z1 z2

X]— - -

Y

z3

X2

z4

z5

X3 —»@ s e

Fig. 1. A simple circuit.

Example1 The predecessor state predicate of thiscircuit isgiven below (recall that w
represents the previous state and z represents the current state):
AW, X. [z1 =21 A z2= w1 A z3= (ite (x2 = w1) x2 f(x3))
Aza=g(f(23)) N 25 = f(a3)]
where f and ¢ represent functions computed by combinational logic.
We now substitute state variables z, and zs for wy and f(z3):
AW, X. [z1 =21 A z2= w1 A z3= (ite (x2 = 22) x2 z5)
N 24 = g(Z5) A z5 = f(l‘g)] .
Since the clause z4 = ¢(zs5) does not have any bound variables and is the only such
clause, we factor it out:
AW, X. [z1 =21 A z2= w1 A z3= (ite (x2 = 22) x2 z5)
A 25 = f(l‘g)] N z4 = g(Z5).
Let z = qp betheinitial state predicate for thiscircuit. Then

Z=0o V 2z = g(Z5)

isaninvariant for thiscircuit.]

Usudlly, this method generates many invariant clauses. However, there are more
invariants that can be automatically generated from the predecessor state predicate.
These methods are described in the next two subsections.

4.2 Method 2

The second method is to convert existential quantification into disjunction when the
quantified variable has afinitedomain. For example, if 2, hasadomain of vy, vy, ..., vy,
then the function f () can bewrittenas f(v1) V f(v2) V...V f(ur).

Notefirst that since P1[z] may in generd contain a conjunction of many clauses, a
direct application of thismethod to P;[z] would result in an expression size exponential
in the number of bound variables. In order to avoid this, we first move the conjunction
outside the scope of the quantifiers. This still resultsin a size increase which is linear
inthe size of the finite domain. Though efficient for Boolean variables, it can producea
sizable blow-up for other variables. Thus we apply Method 1 first in order to eliminate
as many bound variables as possible.

By moving the conjunction outside the scope of the quantifiers, we get an approxi-
mation whichis not equivalent to, but isimplied by the predecessor state predicate. Call
the result P;[z]:

Pl[z] = /\[EIW,X. z = 7l[w, x, 2]
i=1

We apply the finite-domain transformation described above to each of the clauses
in the conjunction P;[z], replacing each clause with a digjunction (these digunctive
clauses are simplified to eliminate duplicate terms). Note that we can substitute for
functions as well as variables which can be very advantageous: if we have a function
f(z) whose range is small, we can perform the transformation on f(x) evenif » hasa
very large domain. Asin thefirst method, after performing these transformations, some
of the clauses may no longer have bound variables. These clauses are then combined
viaconjunctionto form I,[z]. Since Pj[z] = I,[z] isvdid, by transitivity P[z] = I[z]
isvalid so that Qo[z] V I2[z] isan invariant by Theorem 1.

In contrast to the first method, which generally produces invariants that are strong
congtraints on state variables, this method tends to produce weaker constraints which
enumerate all the possible values of a state variable or al the possible relationships
among several state variables. We illustrate by continuing with the same example.

Example2 At the end of the last example, we were left with the following residual
expression Pi[z]:

AW, X. [z1 =21 A zg=w1 A z3= (ite (x2 = z2) ®2 z5) N z5 = f(x3)].
We then distribute the quantifiersinside the conjunction to get:

[Fw,X. 21 = z1] A [GW,X. 22 = w1] A [3W, X. z3 = (ite 22 w2 z5)]

A [Fw, X 25 = f(l‘g)]
Now, suppose that the bound variable 3 has the domain {1, v2, v3} and that it is the
only variable with a finite domain. We make use of thisfact to get:

VAN [Z5 = f(vl) V z5 = f(vz) V z5 = f(vg)]

Using the same initial state predicate as before, we have the following new invariant:

Z=0o V 25 = f(vl) V z5 = f(vz) V z5 = f(vg). O

4.3 Method 3

Thethird and final method consists of two transformationsthat can be used to e iminate
expressions containing bound variables within ite expressions. The first is much like
Method 2: in particular, the expression z; = (ite o 3) is transformed to (z; =
)V (2 =) when o contains a bound variable, and 5 and y do not (the difference
from Method 2 is that we do not explicitly enumerate the possible values of «). The
transformed expression isimplied by the original, so it can be used in an invariant.

The other transformation applies when « is of theforma = b: a may be substituted
for b in g since 3 can only affect the truth of the expression if a« = b. Thisis useful
when a and v contain no quantified variables, and b contains the only bound variables
in 3. A dual transformation can be performed if « is of theform a # b. Inthiscase, we
can subgtitute « for » iny since v can only affect the truth of the expression if it is not
the casethat a # b (which means a = b).

Example 3 We continuewith the residual expression left from the end of Example 2:
[, X. 21 = z1] A [BW,X. 22 = w1] A [GW,X. z3 = (ite (22 = 22) 22 z5)].
We transformthe last clause to get:
VAN [23222 vV 23225].
Thuswe have thefollowinginvariant: z=qg V z3 =22 V 23 = zs. m]

4.4 Invariant extraction procedure

The three methods we have presented are most effective when used together. As men-
tioned, Method 1 isapplied first, and Methods 2 and 3 are then applied to the remaining
predicate. It isimportant to apply Method 1 first because the bound variables eliminated
by Method 1 may significantly reduce the blow-up caused by Method 2. Similarly, itis
important to apply Method 3 last because Method 3 requires choices to be made based
on which expressions contain bound variables and the other two methods may be able
to eliminate some of those bound variables. In our example we were able to produce
three invariants. The individual invariants can then be combined. For our example, the
strongest invariant we can generate isthus:

z=dqg V [za=g(z5) A (5= f(v1) V 25 = f(v2) V 25 = [(v3))
A (Zg:Zz vV Z3:Z5)].

5 Experimental Results

Inthissection, we present theresults of applying our three methodsfor finding invariants
to the Stanford Protocol Processor (PP). We first briefly describe the PP architecture.

5.1 Protocol Processor

PP is a pipelined microprocessor with a dua pipeline. The two sides (A and B) of the
pipeline have similar functionality except for control and memory instructions. Control
instructionsare aways executed on the A-side, while memory instructionsare executed

ontheB-side. The processor has one delay sl ot for branch and load instructions, separate
instructionand data caches which are two-way associ ative, and five stagesinitspipeline
which are very similar to the stagesinthe DLX pipeline[5]. PP does not have hardware
interlocks, relying on compiler scheduling to avoid dependency problems. It does allow
aload to bypass astoreif they are accessing different cache lines, but if they access the
same cache line, PP stallsthe whol e pipelinefor two cyclesto resolve the conflict. There
isalso awriteback buffer to speed up cache replacement. All these architecture features
are very difficult to verify all at once. Thus, we decided to divide the verification into
two parts: the pipeline controller and the cache controller.

5.2 PP Pipdine Controller

We first wrote descriptions of the specification and implementation in our behavior
description language. The specification was trand ated from the PP instruction set archi-
tecture specification [16], and the implementation was trand ated from the PP Verilog
description. Our PP implementation has nine instructions: ALU, ALUI, B, BR, J, Jr,
JAL, LD, SD. The ALU and ALUI instructions abstract all of the ALU instructions
(non-immediate and immediate respectively). We believe that these nine instructions
represent the main features of PP

Controller|Manual Method|Automatic Method
Pipeline 7 6
Cache 72 28

Table 1. Number of invariants needed for manual method compared to those generated by the
automatic methodsin the verification of PP controllers.

A manua top-down approach to verifying the controller required the addition of
seven strengthening invariants (see table 1). Our automatic methods found six of these
invariants. Although the automatic method did not find al of the needed invariants, it
only took afew hours, while the manua method took several weeks.

5.3 PP Cache Controller

We next turned our attention to the PP cache controller. The cache controller has three
finite state machines: the conflict FSM, the miss FSM, and the replacement FSM.
Because of complicated interactions among these three state machines, the verification
of the cache controller is much more difficult than the verification of the pipeline
controller. Thus, larger and more complicated invariants are required. Using atop-down
manua approach, we found that 72 invariants were necessary to verify correctness.
Thistook severa months. The automatic method found 28 of these invariants (in fact,
the automatic method produced 61 simpler invariants, which implied 28 out of 72 of
the manually-discovered invariants). Thus, we still needed to provide 44 invariants by
hand. Still, the automatic invariants are generated in just a few hours, so the overal

Manual Method Automatic Method
(& DEXTREAD-S2 (& DEXTREAD-S2
(= EXTSTATE-S1 @EXT_WAITOK?2)) (= EXTSTATE-S1 @EXT_WAITOK?2))
(& DEXTREQ-S2 (& DEXTREQ-S2
(or (= FLUSHSTATE-S2 @F_WAITOK) (or (= FLUSHSTATE-S2 @F_WAITOK)
(= EXTSTATE-S2 @EXT_WAITOK?2))) DEXTREAD-S2)
(and (or
(ite (¢ (or (and (# CONFSTATE-S2
(and (or INSTRISLOAD-S2M @CONF_IDLE)
INSTRISSTORE-S2M DTAG1-RW1-S2)
(# CONFSTATE-S2 @CONF_IDLE)) (= EXTSTATE-S2 @EXT_PROBE)
(= EXTSTATE-S2 @EXT_IDLE) DEXTREAD-S2)
DTAG1-RW1-S2) DTAGREAD-S2M)
DTAGREAD-S2M (& (or DTAG1-RW1-S2
true) (= EXTSTATE-S2 @EXT_PROBE)
DEXTREAD-S2)
) DTAGREAD-S2M))

Table 2. A comparison of manually and automatically generated invariants in the PP cache
controller verification. < denotes“if and only if”, ite denotes “if then else”, and @ indicates a
symbolic constant. Variable names are in all capital letters while logic operations use lower-case
letters. The first pair of invariants show that DEXTREAD-S2 is true if and only if the variable
EXTSTATE-S1 is in the @EXT_WAITOK?2 state. The automatically and manually generated
invariants are identical. The second pair of invariants constrain the variable DEXTREQ-S2.
Thetwo invariants are in different forms, but are equivalent. Thethird pair of invariants are very
different. Each of them constrain the variable DTAGREAD-S2M, but the manual method includes
this as part of alarger and more complicated constraint.

time required for verification is significantly reduced. Some typical invariants in this
verification are listed in table 2.

The design of the memory system is qualitatively different from the design of the
CPU, in that the memory system is much more control-intensive. Indeed, it has three
finite-state machines that are explicitly implemented in the description. Many of the
necessary invariants deal with characterizing the different reachable combinations of
states from these machines. The method described above is ill-suited for finding these
combinations.

There exist several extremely efficient ways of finding the reachable state combina-
tions of a collection of machines already (indeed, thisis the central task in finite-state
verification). An obvious approach, which we intend to explore, is to separate out the
finite state machines from a description, analyze the state combinations separately, then
combinetheresultswithinvariantsextracted by the method described above. We believe
this approach could find most of the invariants required for the PP memory system.

6 Conclusonsand Future Work

We have presented some simpl e heuristicsfor automaticinvariant discovery in processor
verification. Surprisingly, these simple methods are effective in discovering many of
the invariants required to verify a real microprocessor. Although we have focused on
the Burch and Dill verification paradigm, these techniques should be useful in any
methodology in which a syntactic description of the state transition function can be
obtai ned. Combining the method with more powerful tool sand other ways of discovering
invariants should produce even better results.

An obvious generalization of our methods is to simulate for more than one cycle
and use the multi-cycle next state function to generate invariants. Our experimentation
to date has shown that the results are too complex to be useful, but the idea may prove
to be useful on future designs.

Acknowledgments

Thisresearchwassponsored by ARPA contract ARMY DABT63-95-C-0049-P00002,
and the third author is supported by a National Defense Science and Engineering Grad-
uate Fellowship. The authors al so wish to thank Robert Jones for hishelp and advicein
preparing the final revision of the paper.

References

1. J.Burchand D. Dill, “ Symbolic Verification of Pipelined Microprocessor Control”, 6th Com-
puter Aided Verification, 1994.

2. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “ Symbolic Model Checking: 10
States and Beyond”, 5th Annual IEEE Symposium on Logic In Computer Science, 1990.

3. A. Cohn, “A Proof of Correctness of the VIPER Microprocessors: The First Level”, In VLSI
Specification, Verification and Synthesis, 1988.

4. D. Cyrluk, “Microprocessor Verification in PVS: A Methodology and Simple Example”,
Technical Report SRI-CSL-93-12, SRI Computer Science Laboratory, Dec. 1993.

5. J. Hennessy and D. Patterson, “Computer Architecture: A Quantitative Approach”, Morgan
Kaufmann, 1990.

6. W. Hunt, Jr., “Microprocessor Design Verification”, Journal of Automated Reasoning 5: p429-
460, 1989.

7. R. Jones, D. Dill and J. Burch, “Efficient Validity Checking for Processor Verification”,
IEEE/ACM International Conference on Computer Aided Design, 1995.

8. J. Joyce, G. Birtwistle, and M. Gordon, “ Proving a Computer Correct in Higher Order Logic”,
Technical Report 100, Computer Lab., University of Cambridge, 1986.

9. M. Langevin and E. Cerny, “Verification of Processor-like Circuits’, In Advanced Research
Workshop on Correct Hardware Design Methodologies, June 1991.

10. Z.Manna, et al., “ STeP: the Stanford Temporal Prover”, TechniqueReport, STAN-CS-TR-94,
Computer Science Department, Stanford, 1994.

11. Z. Manna and R. Waldinger, “The Deductive Foundations of Computer Programming”,
Addison Wesley, 1993.

12. Z. Manna and A. Pnueli, “Temporal Verification of Reactive Systems: Safety”, Springer-
Verlag, 1995.

13. S.Bensalem, Y. Lakhnech,and H. Saidi, “ Powerful Techniquesfor the Automatic Generation
of Invariants”, To appear in CAV 96.

14. A. Roscoe, “ Occam in the Specification and Verification of Microprocessors’, ACM Trans.
Prog. Lang. Syst., 1(2):245-257, Oct. 1979.

15. J. Saxe, S. Garland, J. Guttag, and J. Horning, “Using Transformations and Verification in
Circuit Design”, Technical Report 78, DEC System Research Center, Sept. 1991.

16. R. Simoni, “PP Instruction Set Architecture Specification”, version 1.7, Stanford FLASH
group, 1995

17. M. Srivas and M. Brickford, “Formal Verification of a Pipelined Microprocessor”, |EEE
Software, 7(5):52-64, Sept. 1990.

18. C. Barrett, D. Dill, and J. Levitt, “Validity Checking for Combinations of Theories with
Equality”, To appear in FMCAD, 1996.

