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An Industrially Effective Environment for
Formal Hardware Verification

Carl-Johan H. Seger, Robert B. Jones, Member, IEEE, John W. O’Leary, Member, IEEE, Tom Melham,
Mark D. Aagaard, Member, IEEE, Clark Barrett, and Don Syme

Abstract—The Forte formal verification environment for
datapath-dominated hardware is described. Forte has proven to be
effective in large-scale industrial trials and combines an efficient
linear-time logic model-checking algorithm, namely the symbolic
trajectory evaluation (STE), with lightweight theorem proving
in higher-order logic. These are tightly integrated in a general-
purpose functional programming language, which both allows the
system to be easily customized and at the same time serves as
a specification language. The design philosophy behind Forte is
presented and the elements of the verification methodology that
make it effective in practice are also described.

Index Terms—BDDs, formal verification, model checking,
symbolic trajectory evaluation, theorem proving.

I. INTRODUCTION

FUNCTIONAL validation is one of the major challenges in
chip design today, with conventional approaches to design

validation a serious bottleneck in the design flow. Over the past
ten years, formal verification [1] has emerged as a complement
to simulation and has delivered promising results in trials on
industrial-scale designs [2]–[6].

Formal equivalence checking is widely deployed to compare
the behavior of two models of hardware, each represented as
a finite state machine or simply a Boolean expression (often
using binary decision diagrams (BDDs) [7]). It is typically
used in industry to validate the output of a synthesis tool
against a “golden model” expressed in a register-transfer level
hardware description language (HDL), and in general to check
consistency between other adjacent levels in the design flow.

Property checking with a model checker [8]–[11] also in-
volves representing a design as a finite state machine, but it
has wider capabilities than equivalence checking. Not only can
one check that a design behaves the same as another model,
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one can also check that the hardware possesses certain desir-
able properties expressed more abstractly in a temporal logic.
An example is checking that all requests are eventually ac-
knowledged in a protocol. Model checking is currently much
less widely used in practice than equivalence checking.

Theorem proving [12], [13] allows higher level and more
abstract properties to be checked. It provides a much more
expressive language for stating properties—for example, higher
order logic [14]—and it can deal with infinite-state systems.
In particular, it allows one to reason with unknowns and param-
eters, so a general class of designs can be checked—for exam-
ple, parameterized IP blocks [15]. Industrially, theorem proving
is still viewed as a very advanced technology, and its use is not
widespread.

Equivalence checkers and model checkers both suffer from
severe capacity limits. In practice, only small fragments of
systems can be handled directly with these technologies, and
much current research is aimed at extending capacity. Of
course, it is unrealistic to expect a completely automatic model-
checking solution. Instead, one needs to find good ways of
using human intelligence to extract the maximum potential
from model-checking algorithms and to decompose problems
into appropriate pieces for automated analysis. One approach
is to combine model-checking and BDD-based methods with
theorem proving [16]–[18]. The hope is that theorem proving’s
power and flexibility will enable large problems to be broken
down or transformed into tasks a model checker finds tractable.
Another approach is to extend the top level of a model checker
with ad hoc theorem-proving rules and procedures [19].

This paper describes a formal verification system called Forte
that combines an efficient linear-time logic model checking
algorithm, namely symbolic trajectory evaluation (STE) [20],
with lightweight theorem proving in higher-order logic. These
are interfaced to and tightly integrated with FL [21], a strongly
typed, higher order functional programming language. As a
general-purpose programming language, FL allows the Forte
environment to be customized and large proof efforts to be
organized and scripted effectively. FL also serves as an expres-
sive specification language at a level far above the temporal
logic primitives.

The Forte environment has proven to be highly effective
in large-scale industrial trials on datapath-dominated hardware
[3], [22], [23]. The restricted temporal logic of STE does
not, however, limit Forte to pure datapath circuits. Many large
control circuits are “datapath-as-control,” and these can also be
handled effectively. In addition, the tight connection to higher-
order logic and theorem proving provides great flexibility in
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decomposing verifications into subproblems that fall into the
scope of STE.

An account of the design philosophy behind Forte is given
in the next section, and key aspects of the verfication method-
ology that make it effective in practice are described. The rest
of the paper is structured as follows. Section III introduces
notation used in the remainder of the paper. Sections IV and V
describe STE and some techniques used to increase its capacity
to handle large circuits. Section VI then explains how the Forte
environment embeds STE in the context of the FL programming
language. Sections VII and VIII describe how Forte’s higher-
order logic theorem prover is built on FL and how Forte
combines STE model checking and deductive theorem prov-
ing. Finally, Section IX describes some industrial case studies
that illustrate some of the main verification strategies supported
by Forte.

The Forte system [24] has recently been made publicly
available for noncommercial use.1

II. VERIFICATION AND TOOL DESIGN PHILOSOPHY

There is a large literature on formal proof methods and
tools for hardware design verification and debugging. Based on
experience, this technology is practical only when embedded
in a rather sophisticated and finely tuned environment. All
of the components deployed—specification languages, model-
checking algorithms, theorem-proving techniques, debugging
aids, and so on—must work smoothly together. Substantial
engineering effort is needed to move implementations beyond
the academic prototype stage typical of most research tools.
Additionally, it is critical that the technology be supported by a
realistic usage methodology [25], [26].

A. Formal Specification

The backbone of any verification or design debugging ef-
fort is a formal specification of required behavior—or, more
loosely, some group of properties that the design is expected
to satisfy, expressed in a formal specification language. Forte’s
design was based on a “foundational” approach; specifications
are expressed in a formalism with only a few very simple
temporal logic primitives, but which is also embedded in a
full-featured functional programming language. Expressions
in the language have a mathematical (logical) interpretation,
and so they provide a powerful and extensible layer of speci-
fication language on top of the logic primitives.

This approach gives a generic open framework in which to
engineer tailored solutions to individual verification problems.
For each verification effort or project, the user can create in
the FL functional language just the right specification con-
structs for the problem domain. In practice, one can reuse much
of this over a whole class of verifications, e.g., floating point
algorithms. For many verifications, suitable FL libraries may
already exist, so the tailoring effort can be cost effective.

1Available for download at www.intel.com/software/products/opensource/
tools1/verification/download.htm.

By contrast, specialized formal languages are ready for use
“out of the box” but are limited in scope. They can also lead to
biases in specifications; just because a branch predictor can be
written in a notation specialized for some other domain does
not mean that it is the most natural way to describe branch
prediction. The use of FL with temporal logic primitives also
gives a specification language that is, in principle, verification-
algorithm neutral and can support abstraction extensions.

Specifications should ideally be concise, implementation
independent, and at a high level of abstraction. Otherwise, there
is the danger that specifications are too “brittle” to track a
rapidly changing design or to be reused on a similar project later
on. Small-block verification runs the further danger of reverse
engineering meaningless “specifications” from the circuit itself.

A corollary is that the Forte environment is aimed at speci-
fying and verifying the implementation of functions, and not at
describing and proving correct specific blocks of circuitry. For
example, floating-point instructions are verified [3], not execu-
tion units. A rule of thumb is to first decompose by function
computed and only then structurally (e.g., into pipe stages).

Model-checking capacity limits can, of course, compromise
the quality of specifications by preventing verification at the
scale needed to implement coherent functionality. Furthermore,
optimizing a specification for model-checking efficiency can
tangle the specification, making the intention less clear. Hence,
Forte’s model-checking algorithms and BDD data structures are
engineered to scale up to fairly large blocks of hardware.

B. Debugging in Verification

The bulk of any verification effort is debugging, so it is
crucial to optimize the verification environment for proof fail-
ure, not success. An effective verification environment must
inform the user quickly when a verification fails, and it must
provide focused feedback to help pinpoint the cause of failure.
This means a tight and rapid debug loop: simulate (or, later
on, verify) the circuit; analyze and debug any counterexample;
modify the specification or circuit; and resimulate.

In practice, most of the bugs are in the verification process
itself rather than the device being verified. Early on, there
will be many bugs in the specification; later, these will become
more subtle and harder to distinguish from genuine circuit
bugs. An effective environment must supply good machinery
for exploring both kinds of bugs, and it must provide good
feedback in the user’s terms from the tools.

Experience has shown that automation and visualization
play an important role in providing effective debugging support.
It is, of course, essential to be able to both execute specifications
and simulate circuits for specific input values to investigate
disagreements. Executable specifications are naturally express-
ible in FL, and simulation is fundamental to STE. The Forte
environment also provides automatic counterexample genera-
tion for failed model-checking runs, with special care taken to
translate internally generated counterexamples into the user’s
terms. Additionally, counterexample analysis in Forte is tightly
integrated with tools for visualizing circuits and waveforms.

Using a concrete counterexample to isolate the source of a
problem is very helpful, but it requires the user to understand
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the behavior of internal signals and do a mental comparison
between the circuit and the correct behavior to identify where
the circuit fails to meet the specification. It can be much more
effective if the user can explore the entire failure domain, or
at least intellectually recognizable subsets of it. For this pur-
pose, Forte provides “what-if analysis” to help the user un-
derstand the failed proofs. The STE model-checking algorithm
computes a data structure that completely characterizes the
difference between the circuit and specification; the user can
then invoke FL programs, either drawn from a library or tailor-
made for the problem at hand, that probe this data structure in
informative ways.

This facility allows the user to focus on interesting and
easily understood counterexamples, instead of being limited to
ones chosen arbitrarily by the system. For example, it is often
helpful to see a counterexample with as few signals asserted as
possible. This can easily be achieved by calling an FL library
function that generates a concrete counterexample with this
property from the failure domain computed by STE. With a
little bespoke FL programming, more domain-specific anal-
yses are also possible. For example, knowing that an arithmetic
circuit processes odd numbers correctly but not even ones
could focus attention on the least significant bit, rather than
(say) straying into areas of the circuit that compute the sign.
One can obtain this information by writing appropriate FL
functions to probe the failure domain—in this case discovering
that it contains only even numbers.

C. Reuse of Verification Effort

Verification is an expensive and human-intensive activity. It
should therefore support the reuse of proof efforts to amortize
verification cost over the lifetime of a changing design, or
even over multiple design projects. Two particularly good
targets for reuse are specifications and high-level problem
decomposition strategies. These often do not vary greatly from
implementation to implementation, and with the right technical
machinery, they can be insulated from the messy details of
individual circuits.

Reuse of specifications depends on having the capacity to
treat fairly large-grained functionality, so that specifications can
be made as circuit independent as possible. It must also be
possible to structure specifications in a way that separates the
circuit-dependent parts and functional parts. In Forte, program
structuring in FL is the technology that makes this possible.
In practice, of course, achieving a well-structured specification
and interface to the circuit requires thoughtful and skilled de-
sign. Forte’s usage methodology provides some guidance here.

Reuse of problem-decomposition strategies depends on
making the strategies circuit independent. A proof based on
structural decomposition, or some other implementation fea-
ture, is not likely to be reusable for future designs. In partic-
ular, structural decomposition required for model checking
large circuits makes it unlikely that one will ever see two
components whose proofs can be the same.

A better strategy is to base verification methodologies on
patterns or common structures in specifications, rather than
on patterns in implementations. Specifications are cleaner and

generally suffer from fewer idiosyncrasies than circuits. For
example, case-splitting strategies derived from analysis of an
algorithmically formulated specification can often be used
across many different circuit implementations.

D. Usage Methodology

Although continued advances in algorithm and data struc-
ture design have increased the reach of formal verification, a
large gap remains between the capability offered by verifica-
tion point-tools and modern design complexity. Much current
research targets the well-known problem of model-checking
capacity limits, but often overlooks the equally important
problem of managing the complexity of the verification ac-
tivity itself. Forte-related research on technology has therefore
been coupled with work on practical verification methodology
[25], [26].

The aim of Forte is to make formal verification work at an in-
dustrial scale, where any serious verification effort faces many
complexity problems in addition to model-checking capacity.
For example, large verifications are almost always decom-
posed into many model-checking runs—frequently many hun-
dreds. Organizing all the cases to be considered into a coherent
whole or even specifying them clearly (let alone discovering
them) is complex, intellectually demanding, and error prone.
The Forte methodology addresses this particular complexity
problem by generating and organizing model-checking runs
systematically.

More generally, the Forte usage methodology gives guiding
structure and sequence to the many interdependent and complex
activities of a large verification effort. It also helps structure
the associated code and proof-script artifacts. The method-
ology aims, on the one hand, to face the messy realities of de-
sign practice (e.g., rapid changes and incomplete specifications)
and, on the other hand, to produce high-quality results that are
understandable and maintainable—and possibly even reusable.

In related work, Krishnamurthy et al. [27] and Bhadra et al.
[28] have developed Versys2, a tool and methodology that
uses STE to verify switch-level models of embedded memo-
ries against register-transfer-level specifications. By specializ-
ing their application to embedded memories, they are able to
automate up to 90% of the task of generating specifications
and verification scripts. The resulting reduction in verification
effort and prerequisite verification expertise enables design
engineers to perform most of the verification of embedded
memories. In other work, Abadir et al. have used the cycle-
based Verilog (CBV) language as the basis for a verification
methodology that evolves from formal verification of small
blocks to conventional simulation for larger blocks and full-
chip verification [29]. In contrast, the aim of this paper is to
enable industrial-scale formal verification on a wide variety of
circuits.

Experience from Forte shows that an effective broad-
spectrum verification methodology must meet several key
requirements.
1) Realism: An effective verification methodology can-

not depend on resources that are not available in the de-
sign environment. For example, complete specifications are
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usually not available, and access to design engineers may be
limited.
2) Transparency and Confidence: The verification engineer

(and design managers) should clearly know what has been
proven and what has not. Of course, the methodology and
tools should also be sound; false positives should not be
possible.
3) Structure: An effective methodology imposes structure

on the overall verification effort. This not only helps new users
learn but also increases the productivity of experienced users.

The Forte methodology moves through a series of specific
phases, each of which has a specific aim and produces well-
defined FL code artifacts [25], [26]. Briefly, the phases are as
follows:

i) wiggling (understanding circuit behavior);
ii) targeted scalar verification;

iii) symbolic model checking;
iv) theorem proving.

Having a clear understanding of this sequence gives guiding
structure to the work of Forte users. Each phase also produces
well-defined code artifacts that help to structure verification
code. For example, each phase produces an FL function called
a “test rig” that drives circuit simulation for the purposes of
that phase. This code evolves from the code of the previous
phase by adding specific new elements. At the completion of a
phase, the code is archived for regression.
4) Early Results: Preliminary results are needed early in a

verification effort. There must be a smooth transition between
simulation of special cases and a full proof, so that the effort
spent can deliver “debugging value” very early on.

The simulation-based technology in Forte is especially help-
ful here. Conventional reachability analysis encounters capacity
problems from the very beginning; its goal is to carve out
a chunk of circuitry small enough for the capacity of the
model checker, but not so small that false counterexamples
are generated. In contrast, with STE and the Forte method-
ology, one encounters capacity problems gradually. Well be-
fore full model checking is attempted, STE allows debugging
with straight simulation or even mixed scalar and symbolic
simulation.
5) Incrementality and Regression: If changing a specifica-

tion, circuit, or library causes a previously passing proof to
fail, it should be possible to use proof artifacts (e.g., test rigs
or simulations) from earlier in the effort to help isolate the
problem. A methodology’s verification artifacts should be easy
to maintain and adapt to changing specifications and designs.
Test cases from initial proof development should continue to be
usable in exploring these changes.

This notion of incrementality—always being able to retreat
onto solid ground—is especially important when moving into a
more advanced phase of work. For example, when a model-
checking run fails inside a Forte theorem-proving proof, it
is helpful to be able to “back off” and execute the model-
checking run by itself without performing any theorem prov-
ing. This makes the debug loop faster, since it is easier to
use the debugging facilities tightly integrated with the STE

model checker than operate them through a layer of theorem
proving. Likewise, when a symbolic model-checking run fails,
a counterexample can be generated and the simulation domain
can then be revisited in order to analyze it.
6) Bottom-Up and Top-Down: An effective methodology

must support a mix of bottom-up and top-down techniques.
The subtle features of designs and the capacity limits of
model checking are discovered through bottom-up exploration.
Partitioning the overall verification problem is achieved by top-
down decomposition, using case splitting, induction, or some
other algorithm-specific technique.

The beginning phases of the Forte methodology are primarily
bottom-up. This gives early delivery of results and grounds
verification in the concrete and transparent world of simulation.
One also discovers the (rather unpredictable) limits of model
checking by bottom-up exploration, which is much easier than
trying somehow to arrive at suitable subproblems by a top-down
decomposition.

The top-down activity of developing case splits, induction
strategies, and other problem reduction strategies—i.e., the
high-level proof strategy—starts a bit later, but then proceeds in
parallel. This aspect requires an understanding of the algorithm,
but the earlier bottom-up explorations help to provide this and
to set a definite target for top-down problem reductions to be
discovered.

E. Approach to Technology

Verification by model checking using STE lies at the core
of the Forte environment.2 STE can be viewed as a hybrid
between a symbolic simulator and a symbolic model checker
[20]. As a traditional simulator, it can compute the result of
executing a circuit with concrete Boolean test vectors as inputs;
as a symbolic simulator, it can also compute symbolic expres-
sions giving outputs as a function of arbitrary inputs. As a
model checker, STE can automatically check the validity of a
simple temporal logic formula for arbitrary inputs—computing
an exact characterization of the region of disagreement in case
the formula is not unconditionally satisfied. STE’s seamless
connection between simulation and verification is crucial to
satisfying this paper’s requirement for early results.

STE is a particularly efficient model-checking algorithm, in
part because it has a very restricted temporal logic. It is well
known, however, that the capacity of any model checker is very
limited. To be practical on even small examples, significant
engineering effort must be combined with special algorithmic
techniques, like partial-order reduction [30] or on-the-fly sim-
plification of transition relations [31]. Forte employs a full
range of such techniques, but also tackles capacity limits by
complementing STE model checking with higher-order logic
theorem proving [12], [13].

Theorem proving bridges the gap between big and practi-
cally important verification tasks and tractable model-checking
problems. From the users’ point of view, the Forte philosophy
is to have as thin a layer of theorem proving as possible, since

2Forte includes other model checkers, but these will not be discussed in this
paper.
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using theorem-proving technology is still quite difficult. Expe-
rience from case studies dictates that a surprising amount of
added value can be gained from even very simple (mathemati-
cally “shallow”) theorem proving.

Architecturally, the Forte approach is to tightly integrate
model checking and theorem proving by implementing them
within a single framework—the FL programming language and
runtime system. A highly engineered and efficient (C-coded)
implementation of STE is built into the core of FL, with
numerous entry points into STE provided as user-visible FL
functions. The Forte theorem prover (called “ThmTac”) is
implemented in FL, with an architecture loosely based on the
well-tested model of LCF-style proof systems [12].

Two key aspects of this architecture are that it is a “white-
box” integration of model checking and theorem proving and
that the FL programming language plays a central role in
scripting verification efforts.
1) White-Box Integration: Early efforts in integrating model

checkers into theorem provers treated the model checker as
a black-box decision procedure that could be invoked in the
course of a proof [16], [17]. Experience, however, has shown
that a much tighter white-box integration is far more practical.
White-box integration means having explicit access to the
inner workings of the integrated model checker, for example,
to analyze or manipulate its internal data structures.

When the model checker is just a decision procedure within
a theorem prover, the user can only invoke it to discharge
proof obligations. This isolates the user from the powerful
debugging and analysis capabilities typically built into model
checkers. In addition, practical model checking is rarely, if ever,
a simple function that comes back with “true” or “false.”

Moreover, if the model checker is a black box with
command-line switches, then users learn to convolute their
specifications to suit the model-checking implementation and
become experts at selecting particular flags for particular
classes of problems. Verification scripts are then fragile with
respect to changes in the specification, circuit, and model-
checking algorithm. This often leads to precipitous, rather
than gradual, degradation when something goes wrong.

Practical model checking involves significant manual inter-
action, dealing with a variety of issues such as computation of
intermediate state sets, installing and analyzing BDD variable
orders, and modeling environments. A much more flexible and
robust solution is a white-box model checker with a general-
purpose programming language as its interface.
2) Proof-Script Programming: A large industrial verifica-

tion will involve decomposition into many model-checking
runs—typically several hundreds, or even thousands. Clearly,
some kind of “verification script” is needed to manage this
complex activity and to form an editable and permanent record
of the verification project.

At the very least, a verification script must generate the
cases to be checked and control the invocation of individ-
ual model-checking runs. Assumptions about the operating
environment must be formally described (preferably in a
user-comprehensible notation) and fed as constraints into the
model-checking algorithms. It is also essential to be able to
check the completeness of coverage. Certainly, it should be

possible to do this by visual inspection, for example, in formal
code reviews. A better solution is to ensure completeness by
generating the cases to be checked, or even by verifying cover-
age with theorem proving.

Few model checkers have native scripting capabilities that
satisfy these requirements. Existing scripting languages such
as Perl or Python are also less than ideal. Perl is best suited for
what might be called as “file scripting,” controlling essentially
stateful actions that must happen in a roughly linear order.
Verification scripting, however, is more like the partially or-
dered composition of functional operations. Each computation
takes some previous results and combines them to produce
the next result, and the final outcome is a single piece of
data saying that the verification was successful. Moreover, Perl
scripts are unsuitable subjects for reasoning about in a theo-
rem prover.

Forte uses the FL functional language to script proof efforts.
FL is a full-featured lazy functional programming language,
and so has the advantages of extensibility, semantic cleanness,
and perspicuity. It also provides an interface to many of the
functions and data structures of STE model checking, so model
checking can be highly controlled and easily observed.

The role of FL in Forte also extends much beyond these
basic control and housekeeping functions. As will be seen in
later sections, FL provides a specification language for hard-
ware, and it includes both the implementation language of the
Forte theorem prover as well as the term language for its higher-
order logic. FL therefore has a central and unifying role in the
Forte architecture.

III. MATHEMATICAL PRELIMINARIES

The symbol
∆= is used to mean equals by definition. Fa-

miliarity with elementary propositional logic and predicate
calculus notation is assumed. The symbol ⊃ is used for
logical implication, reserving the possibly more familiar sym-
bols → and ⇒ for other uses.

Lowercase letters (e.g., a, p1, v, x, y) are used for Boolean
variables, and uppercase letters (e.g., P , Q) are used for
formulas of propositional logic (i.e., “Boolean functions”).
The notation xs is used to mean a vector of distinct vari-
ables x0, x1, . . . , xn for indeterminate n, and Ps stands for a
vector of formulas.

The notation P [Qs/xs] stands for the result of simultane-
ously substituting the formulas Qs for all occurrences of the
Boolean variables xs in P . When the notation P [Qs] is used,
it should be understood to represent a term obtainable as the
result of such a substitution. Hence, P [xs] stands for a logic
formula that may contain the variables xs. Normally, P [xs]
should simply be taken to mean a formula containing exactly
the distinct Boolean variables in xs. In a context in which a
formula has been written P [xs], subsequent use of the notation
P [Qs] should be understood to mean P [Qs/xs].

Familiarity with the basic notation of naive set theory is
also assumed. (See, for example, [32].) If A and B are sets,
A → B is used for the set of all total functions from A to B. It is
assumed that → associates to the right, so A → (B → C) may
be written as A → B → C. Function application associates to
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the left, so if f ∈ A → B → C, a ∈ A, and b ∈ B, f a b can
be used for (f a) b.

The semantics of STE depend on some elementary concepts
of lattice theory [33]. If (S,�) is a partial order and A ⊆ S,
then x ∈ S is an upper bound for A if and only if a � x for
all a ∈ A. A lower bound is defined dually. An upper bound x
of A is the least upper bound of A, written lub(A), if x � y
for every upper bound y of A. The greatest lower bound,
written glb(A), is defined dually. a � b (read “a join b”) is used
for lub{a, b} when it exists and a � b (read “a meet b”) for
glb{a, b} when it exists.

A partial order (S,�) is a complete lattice if and only if
lub(A) and glb(A) exist for all A ⊆ S. If S is finite and a � b
and a � b exist for all a, b ∈ S, then (S,�) is a complete lattice.

IV. STE MODEL CHECKING

STE [20] is an efficient model-checking algorithm especially
suited to verifying properties of large datapath designs. The
most basic form of STE works on a very simple linear-time
temporal logic, limited to implications between formulas built
from only conjunction and the next-time operator.3 In addition,
STE is based on ternary simulation [35], in which the Boolean
data domain {0, 1} is extended with a third value “X” that
stands for “either 0 or 1, but we do not know which.” As will be
seen later, this gives STE very powerful automatic state-space
abstraction.

These characteristics allow STE to perform property check-
ing much more efficiently than conventional model-checking
algorithms that operate over more expressive logics like com-
putation tree logic (CTL) [10]. While the logic of basic STE
seems very weak, its expressive power is greatly extended by
implementing a symbolic ternary simulation algorithm and by
being embedded within the FL programming language.

Symbolic ternary simulation [36] uses symbolic Boolean
variables and expressions over them (i.e., BDDs [7]) to repre-
sent whole classes of data values on circuit nodes. The ternary
value associated with each node is represented by a BDD
data structure whose variables act as parameters to that value.
With this representation, STE can combine many (ternary)
simulation runs—one for each assignment of values to the
BDD variables—into a single symbolic simulation run covering
them all.

The BDDs representing values at different circuit nodes
can have variables in common, so this representation can also
record complex interdependencies among node values. Sym-
bolic values, therefore, greatly increase the expressive power
of the limited temporal logic of STE. For example, input/output
relations can be extracted from a circuit by using symbolic
simulation to derive BDDs for the values on output nodes as
functions of variables standing for arbitrary values on input
nodes. These can then be checked against a specification in
the form of some reference BDDs.

3Extensions of STE to more expressive logics exist [20], [34], and some have
implementations in Forte. This paper, however, will focus on the simplest form,
which is also the most widely tested on industrial applications.

The expressive power of STE for specifications is also further
extended in Forte by embedding the STE logic, including BDD
variables, within the FL programming environment. For exam-
ple, the “reference BDDs” just mentioned for specifications
are typically computed by FL programs, whose source text
is the user’s view of “the specification.” Specifications can
therefore be expressed clearly and in the user’s own terms by
using the full expressive power of FL, together with FL library
functions especially tuned to describing the problem domain.

The rest of this section explains the background theory of
STE model checking in a bit more detail. A full account of
the theory can be found in [20] and useful alternative perspec-
tives are given in [37] and [69].

A. Circuit Models

STE employs a ternary data model with values drawn from
the set D = {0, 1,X}. A partial order relation ≤ is introduced,
with X ≤ 0 and X ≤ 1:

This orders values by information content: X stands for an un-
known value and so is ordered below 0 and 1.

Suppose there is a set of nodes, N , naming observable
points in circuits. A state is an instantaneous snapshot of circuit
behavior given by assigning a value in D to every circuit node
in N . The ordering ≤ on D is extended pointwise to get an
ordering � on states. For technical reasons the development
of STE theory requires a complete lattice, so a special “top”
state 
 is introduced and the set of states S is defined to be
(N → D) ∪ {
}. The required ordering is then defined for
states s1, s2 ∈ S by

s1 � s2
∆=

{
s2 =
, or
s1, s2 ∈ N →D and s1(n) ≤ s2(n) for all n ∈ N .

The intuition is that if s1 � s2, then s1 may have “less
information” about node values than s2, i.e., it may have Xs
in place of some 0s and 1s. If one considers the three-valued
“states” s1 and s2 as constraints or predicates on the actual,
i.e., Boolean, state of the hardware, then s1 � s2 means that
every Boolean state that satisfies s2 also satisfies s1. Then, s1

is “weaker than” s2. (Strictly speaking, � is reflexive and “no
stronger than” is really meant here, but it is common to be
somewhat inexact and just say “weaker than.”) The top value

 represents the unsatisfiable constraint. The “join” operator
on pairs of states in the lattice is denoted by “�.”

The theory of STE can in fact be developed for any complete
lattice of states [20]. This generality, however, is not exploited
in mainstream implementations of STE, and so the presen-
tation in this paper is restricted to the simple state lattice
introduced above.

To model dynamic behavior, a sequence of the values that
occur on circuit nodes over time is represented by a function
σ ∈ N → S from time (the natural numbers N) to states. Such
a function, called a sequence, assigns a value in D to each
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Fig. 1. Simple example of the next-state function.

node at each point in time. For example, σ 3 reset is the value
present on the reset node at time 3. The ordering on states is
lifted pointwise to sequences in the obvious way

σ1 � σ2
∆= σ1(t) � σ2(t) for all t ∈ N.

One convenient operation, used later in stating the seman-
tics of STE, is taking the ith suffix of a sequence. The ith suffix
of a sequence σ is written σi and defined by

σi t
∆= σ (t + i) for all t ∈ N.

The suffix operation σi simply shifts the sequence σ forward i
points in time, ignoring the states at the first i time units.

In STE, the formal model of a circuit c is given by a next-state
function Yc ∈ S → S that maps states to states. Intuitively, the
next-state function expresses a constraint on the real Boolean
states into which the circuit may go, given a constraint on the
current Boolean state it is in.

A trivial example is the unit-delay AND gate, shown together
with a partial tabulation of its Y function in Fig. 1. The circuit
has three nodes, a, b, and o, and a state s is written as a vector
s(a) s(b) s(o). For example s = 1X0 means s(a) = 1, s(b) =
X, and s(o) = 0. Reading from the left, it is first seen that if the
inputs a and b are both 1, then the next state is XX1, regardless
of whether o is initially 0 or 1. Hence, the output o is 1 in the
next state and the inputs a and b are both X (i.e., they can be
either Boolean value). In fact, the value of o in the next state
does not depend on the value of o in the current state, so a little
further along in the table, Y(11X) = XX1 is also found.

It is also seen that if b is 0 in the current state, then the
output o is going to be 0 in the next state—regardless of
the value of a in the current state. Hence, Y(X0X) = XX0 is
derived; in this case, the next output value is known even when
there is no information about the value on a. Finally, there is
sometimes insufficient information to determine the value of
the output. If the current state is X1X, for example, then it
becomes unpredictable whether a is going to be 0 or 1—it may
be either, and hence, Y(10X) = XXX.

In STE, the next-state function for any circuit must be
monotonic and a requirement for implementations of STE is
that they extract a next-state function that has this property
from the circuit under analysis. This condition can be met
for a wide variety of common circuit design styles, including
synchronous systems with latches as well as flip-flops and
systems with gated clocks.

A sequence σ is said to be a trajectory of a circuit if it
represents a set of behaviors that the circuit could actually
exhibit. That is, the set of behaviors that σ represents (i.e.,
possibly using unknowns) is a subset of the Boolean behaviors

that the real circuit can exhibit (where there are no unknowns).
For a circuit c, the set of all its trajectories T (c) is defined as

T (c) ∆= {σ |Yc(σ t) � σ (t + 1) for all t ∈ N} .

For a sequence σ to be a trajectory, the result of applying
Yc to any state must be no more specified (with respect to the �
ordering) than the state at the next moment of time. This ensures
that σ is consistent with the circuit model Yc.

B. Trajectory Evaluation Logic

One of the keys to the efficiency of STE and its success with
datapath circuits is its restricted temporal logic. A trajectory
formula is a simple linear-time temporal logic formula with
the following syntax:

f, g ::= n is 0 - node n has value 0
| n is 1 - node n has value 1
| f and g - conjunction of formulas
| P � f - f is asserted only when P is true
| Nf - f holds in the next time step

where f and g range over formulas, n ∈ N ranges over the
nodes of the circuit, and P is a propositional formula over
Boolean variables (i.e., a “Boolean function”) called a guard.

The basic trajectory formulas “n is 0” and “n is 1” say that the
circuit node n has value 0 or value 1, respectively. The opera-
tor and forms the conjunction of trajectory formulas. The tra-
jectory formula P � f weakens the subformula f by requiring
it to be satisfied only when the guard P is true. Finally, Nf says
that the trajectory formula f holds in the next point of time.

In essence, a trajectory formula represents a whole set of
assertions about the presence of the Boolean values 0 and 1
on particular circuit nodes. A guard is a propositional formula
that may contain Boolean variables, and a trajectory formula
P � f with a guard P asserts f only for satisfying assignments
of values to the Boolean variables in P . Hence, for any trajec-
tory formula, each assignment of values to the variables in its
guards gives a (possibly different) assertion about 0s and 1s on
certain circuit nodes at particular points in time.

The various guards that occur in a trajectory formula can
have variables in common, so this mechanism gives STE
the expressive power needed to represent interdependencies
among node values. For example, an arbitrary propositional
formula can be associated with a node using the construct
“n is P ” defined by

n is P
∆= P � (n is 1) and ¬P � (n is 0).

Input–output functions can then be specified using this con-
struct. For example, it could be required that if “in is x” then
“out is F [x]” for some input node in and output node out.
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The definition of when a sequence σ satisfies a trajectory
formula f is now given. Satisfaction is defined with respect to
an assignment φ of Boolean truth-values to the variables that
appear in the guards of the formula. Following conventional
terminology from logic semantics, φ is called a valuation. The
notation φ |= P means that the propositional formula P is true
under the valuation φ.

For a given valuation φ, the condition when a sequence σ
satisfies a trajectory formula is recursively defined as

φ, σ |= n is 0 ∆=
{

σ(0) = 
, or
σ(0) ∈ N → D and σ 0n = 0

φ, σ |= n is 1 ∆=
{

σ(0) = 
, or
σ(0) ∈ N → D and σ 0n = 1

φ, σ |= f and g
∆= φ, σ |= f and φ, σ |= g

φ, σ |= P � f
∆= φ |= P implies φ, σ |= f

φ, σ |= Nf
∆= φ, σ1 |= f.

Note that the same valuation φ applies to all the guards that
appear in a trajectory formula—so the scope of any Boolean
variable is the entire formula. The valuation also does not
depend on time.

The key feature of this logic is that for any trajectory formula
f and assignment φ, there exists a unique weakest sequence
that satisfies f . This sequence is called the defining sequence
for f and is written as [f ]φ. It is defined recursively as

[m is 0]φ t
∆= λn. 0 if m = n and t = 0, otherwise X

[m is 1]φ t
∆= λn. 1 if m = n and t = 0, otherwise X

[f and g]φ t
∆=

(
[f ]φ t

)
�

(
[g]φ t

)
[P � f ]φ t

∆= [f ]φ t if φ |= P, otherwise λn. X

[Nf ]φ t
∆= [f ]φ (t − 1) if t �= 0, otherwise λn. X.

The crucial property enjoyed by this definition is that [f ]φ is
the unique weakest sequence that satisfies f for the given φ.
That is, for any φ and σ, φ, σ |= f if and only if [f ]φ � σ.

The algorithm for STE is also concerned with the weak-
est trajectory that satisfies a particular formula. This is the
defining trajectory for a formula, written as [[f ]]φ. It is defined
by the recursive calculation

[[f ]]φ 0 ∆= [f ]φ 0
[[f ]]φ (t + 1) ∆= [f ]φ (t + 1) � Yc

(
[[f ]]φ t

)
.

The defining trajectory of a formula f is its defining sequence
with the added constraints on state transitions imposed by the
circuit, as modeled by the next-state function Yc. It can be
shown that [[f ]]φ is the unique weakest trajectory that satisfies
f . That is, for any φ and σ, σ ∈ T (c) and φ, σ |= f if and only
if [[f ]]φ � σ.

As will be seen in the next section, these properties are jus-
tified using the calculation of defining sequences and defining
trajectories as the basis of the STE model-checking algorithm.

C. Model-Checking Trajectory Assertions

Circuit correctness in STE is stated with trajectory assertions
of the form A ⇒ C, where A and C are trajectory formulas.
The intuition is that the antecedent A provides stimuli to circuit
nodes and the consequent C specifies the values expected on
circuit nodes as a response.

For example, the AND gate shown in Fig. 1 would be verified
with the following trajectory assertion:

|= (a is a) and (b is b) ⇒ (o is a ∧ b).

The Boolean variables a and b are used to represent the values
on the input nodes and to relate these to the expected value,
“a ∧ b,” on the output node.

A trajectory assertion is true for a given assignment φ of
Boolean values to the variables in its guards exactly when every
trajectory of the circuit that satisfies the antecedent also satis-
fies the consequent. For a given circuit c, φ |= A ⇒ C is
defined to mean that for all σ ∈ T (c), if φ, σ |= A, then φ, σ |=
C. The notation |= A ⇒ C means that φ |= A ⇒ C holds for
all φ.

The fundamental theorem of trajectory evaluation [20] fol-
lows immediately from the previously stated properties of [f ]φ

and [[f ]]φ. It states that for any φ, the trajectory assertion φ |=
A ⇒ C holds exactly when [C]φ � [[A]]φ. The intuition is that
the sequence characterizing the consequent must be “included
in” the weakest sequence satisfying the antecedent that is also
consistent with the circuit.

This theorem gives a model-checking algorithm for trajec-
tory assertions: To see if φ |= A ⇒ C holds for a given φ,
just compute [C]φ and [[A]]φ and compare them pointwise for
every circuit node and point in time. This works because both
A and C will have only a finite number of nested next-time
operators N, and so only finite initial segments of the defining
trajectory and defining sequence need to be calculated and
compared.

In practice, the defining trajectory of A and the defining se-
quence of C are computed iteratively, and each state is checked
against the ordering requirement as it is generated. Each state of
the defining trajectory is computed from the previous state by
simulation of a netlist description of the circuit over the value
domain {0, 1,X}.

Symbolic Trajectory Evaluation: The model-checking algo-
rithm just sketched requires φ to be supplied; given a specific
assignment φ of values to Boolean variables in the guards of a
formula, [C]φ and [[A]]φ can be calculated and compared point-
wise. However, much of the power of STE comes from the key
observation that it is not necessary to supply φ in advance;
instead, the comparison can be computed “symbolically” to
give a constraint on φ. Such a constraint is called a residual and
represents precisely the conditions under which the property
A ⇒ C is true of the circuit.

This symbolic version of the model-checking algorithm is
called Symbolic Trajectory Evaluation (STE) and works as
follows. At the level of basic data values in {0, 1,X}, the
required computation should show that

[C]φ t n ≤ [[A]]φ t n (1)
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for all t ≥ 0 and n ∈ N . For each circuit node at each relevant
point in time, the data values expected by the consequent are
compared to those given by the circuit and antecedent. To make
this comparison “symbolic,” a pair of BDDs is used to encode
functions from φ to data values in D. This is the so-called “dual-
rail” encoding employed by STE implementations [38]. The
simulation algorithm is also extended to a symbolic version,
in which data values are these pairs of BDDs. The model-
checking algorithm then compares symbolic states, resulting
in the residual.

D. STE Deductive System

STE has a sound and complete deductive system for proving
trajectory formulas [39], [40] a subset of which has been im-
plemented as a set of inference rules in the Forte’s theorem
prover. The implemented set of rules is as follows:

1) Reflexivity. |= A ⇒ A holds for any trajectory formula A.
2) Time shift. For any trajectory formulas A and C, if |=

A ⇒ C, then |= NA ⇒ NC.
3) Antecedent strengthening. For any trajectory formulas A

and C, if |= A ⇒ C and if for any trajectory formula A′

the assertion [A]φ � [A′]φ holds for all φ, then |= A′ ⇒
C holds.

4) Consequent weakening. For any trajectory formulas A
and C, if |= A ⇒ C and if for any trajectory formula A′

the assertion [C ′]φ � [C]φ holds for all φ, then |= A ⇒
C ′ holds.

5) Conjunction. For any trajectory formulas A1, A2, C1, and
C2, if |= A1 ⇒ C1 and |= A2 ⇒ C2, then |= A1 and
A2 ⇒ C1 and C2.

6) Transitivity. For any trajectory formulas A, B, and C, if
|= A ⇒ B and |= B ⇒ C, then |= A ⇒ C.

7) Substitution. For any trajectory formulas A and C, if
|= A ⇒ C, then |= A[Ps/xs] ⇒ C[Ps/xs] for any sub-
stitution of formulas Ps for Boolean variables xs.

The main purpose of these rules is to combine individual
STE model-checking results together [41] to derive correct-
ness results that are infeasible to model check directly. The
inference rules can also be used to transform trajectory formu-
las to increase model-checking efficiency [42]. The use of STE
inference rules to support these strategies is illustrated by the
examples in Section IX.

V. STE IN PRACTICE

For a given trajectory assertion A ⇒ C and circuit c, STE
implementations construct the defining trajectory [[A]]φ incre-
mentally by ternary symbolic simulation of an HDL or a net-
list source for the circuit c under the antecedent A. The circuit
model Yc exists only implicitly in the sequence of simulation
states constructed. The number of circuit nodes that can be
handled by the symbolic simulator used in this process is
essentially unlimited; the limit on the capacity of STE comes
from the memory requirements for representing the symbolic
values on each node.

Two important optimizations enable STE to be applied to
a much larger class of circuits and properties than would

Fig. 2. Example circuit for dynamic weakening.

otherwise be feasible. Weakening, the first of these optimiza-
tions, exploits the partially ordered lattice of STE. The second
optimization, the parametric representation, takes advantage of
the fact that STE is implemented with a symbolic simulator.

Both optimizations can make a significant difference to the
time and space needed for verification, and can enable verifica-
tion of circuits that are infeasible to verify directly with STE.

A. Weakening

Weakening is a data abstraction technique that exploits the
partially ordered state space of STE. It is an implementation
optimization, in that it reduces the complexity of the BDDs
needed to verify a circuit property.

Recall from the previous section that the definition of a
trajectory assertion |= A ⇒ C is [C] � [[A]], i.e., the defin-
ing sequence of the consequent C must be weaker than the
defining trajectory of the antecedent A. A node is said to be
weakened when its value is moved down in the lattice (towards
X). Consider the extreme case, when a node’s value is replaced
with X by modifying the next-state function Yc. This means
that the node could be either 1 or 0, resulting in a new defining
trajectory [[A]]w that is “weaker” than the original defining
trajectory [[A]]. If [C] � [[A]]w holds, then from definition of
� and monotonicity, [C] � [[A]] also holds. Note that if the
verification fails with the weakened defining trajectory, no
conclusion can be drawn about the original trajectory assertion.

Forte provides fine-grained access to weakening by user-
level directives that list selected nodes and simulation times at
which to weaken them. Users can manually weaken individual
nodes at arbitrary points of time during simulation, with a
view to reducing the BDD complexity of their values. This
is safe, because the theory just sketched tells us that however a
node’s value is weakened during verification, if the verification
succeeds, then the assertion being checked still holds.

One useful application of weakening is when different parts
of a circuit require different BDD variable orderings. Consider
the circuit shown in Fig. 2, which selects between the two
values computed by cktA and cktB on the basis of a decision
made by cktS . Such circuits are common in high-performance
pipelines, where multiple speculative results are computed in
parallel before knowing which result will be selected.

Suppose that for a particular case of a verification proof,
it is known that the value produced by the select logic in cktS

will be 1. This means that the result of cktB will be “blocked” at
the MUX, while the result of cktA will be passed to the output.
In this case of the proof, the computation done by cktB is
irrelevant to the result, but because the nodes of cktB are in the
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fanin of the output, they will not be removed from simulation
by automatic cone-of-influence reduction.

If the variable ordering needed for computing the output of
cktA is different from that for computing the output of cktB ,
the BDDs in cktB can explode in size. Because it is known
from the case split that the value computed by cktB is irrel-
evant, it would be useful to prevent its calculation in the first
place. This can be accomplished by weakening every input and
state node of cktB . Thus, the output of cktB will be driven X
by the circuit, and the BDD explosion will be avoided.

Of course, the difficulty with this approach is knowing which
nodes to weaken. It is often far from obvious which nodes are
not involved in a particular computation, and discovering this
can involve a very tedious and time-consuming manual effort.
Moreover, in order to support reuse, proof scripts should not
be cluttered with implementation-specific information such as
node names. This makes the proof scripts brittle in the face of
potential design changes and unsuable on future designs.

Forte therefore supports two other approaches that use weak-
ening in a more automatic fashion. 1) Dynamic weakening
applies weakening in a rather coarse way and requires little
or no user intervention. 2) Symbolic indexing uses weakening
systematically for verification of regular structures such as
memory arrays.
1) Dynamic Weakening: In dynamic weakening, nodes in

the circuit are simply weakened when their associated BDDs
exceed some size threshold. This occurs dynamically during
symbolic simulation and without user intervention. As a result,
the weakening takes place without any mention of circuit
nodes in proof scripts; the user provides only the size threshold.
This works surprisingly well in practice, typically because the
nodes with exploding BDDs (e.g., those in cktB above) are
exactly the ones that do not have a substantive part to play in
the property of interest.

A subtle difficulty remains. Consider the case where the
outputs of two subcircuits are both needed but where the
two subcircuits have different variable-ordering requirements
during operation but not for representing their outputs. One of
the subcircuits cannot be weakened with Xs because its outputs
are necessary for the computation. This difficulty is addressed
by running STE more than once, each time with a different
variable order.

Consider again the circuit in Fig. 2. Suppose the BDD
orderings needed for subcircuits cktA and cktS are different.
First, STE is run with an ordering for cktS while weakening
cktA and cktB . During this STE run, the output of cktS is
traced and saved for later use; this process can be repeated
as many times as necessary for each subcircuit that requires a
different ordering. For the final STE run, the variable order-
ing for cktA is used. The results from the earlier run for cktS

(and potentially other subcircuits) are composed with this STE
run by strengthening the antecedent with the values traced from
the output of cktS that were saved earlier.

An interesting example where this situation is encountered
is in the verification of floating-point adders. Modern adders
use a performance-enhancing “leading-zero anticipator” (LZA)
circuit in subtract mode. The BDD variable order required
to reason about LZA circuits is different from the variable

orderings required for a variable-shift operation that is internal
to the adder. Such an adder can be verified by first running
STE with the LZA ordering while tracing the outputs of the
LZA subcircuit. The antecedents for the “main” STE runs can
then be strengthened with the traced LZA values and performed
with the variable orderings required by the core adder circuits.
This is significantly easier than explicitly reasoning about the
LZA circuitry, as required by other approaches [43].
2) Symbolic Indexing: Symbolic indexing is a systematic

way of using weakening to perform data abstraction for regular
circuit structures. Like dynamic weakening, it is an implemen-
tation optimization. However, instead of managing BDD size
by driving ternary values towards X, it reduces the number
of BDD variables needed to verify certain circuit properties.
Intuitively, symbolic indexing is a way to use BDD variables
only “when needed.”

The idea behind symbolic indexing can be illustrated using a
trivial example. Consider the three-input AND gate.

With direct use of STE, the assertion that will be formulated to
verify this device is

|= (a is a) and (b is b) and (c is c) ⇒ (o is a ∧ b ∧ c). (2)

In primitive form, this would be expressed as

|= ¬a � (a is 0) and a � (a is 1) and

¬b � (b is 0) and b � (b is 1) and

¬c � (c is 0) and c � (c is 1)
⇒

¬a ∨ ¬b ∨ ¬c � (o is 0) and a ∧ b ∧ c � (o is 1). (3)

The strategy here is to place unique and unconstrained BDD
variables onto each input node in the device, and symbolically
simulate the circuit to check that the desired function of these
variables will appear on the output node. The total number of
variables needed is the same as the number of input (plus state)
nodes, in this case three.

Symbolic indexing exploits STE’s partially ordered state
spaces to reduce the number of variables needed to verify a
property. In the case of the AND gate, it turns out that only the
four cases enumerated in the following table need to be verified.

Case a b c o
0 0 X X 0
1 X 0 X 0
2 X X 0 0
3 1 1 1 1

If all three inputs are 1, then the output is 1 as well. However, if
at least one of the inputs is 0, the output will be 0 regardless of
the values on the other two inputs. In these cases, therefore,
the lattice value X may be used to represent the unknown
truth-value present on the other two input nodes. As any weak-
ened property implies a stronger property with any substitution
of 0 or 1 for the unknown nodes, the four cases cover all
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possible input patterns of 0s and 1s and are sufficient for a
complete verification of the AND gate.

Symbolic indexing is the technique of introducing Boolean
variables to enumerate or “index” groups of cases like that just
described. In the STE assertions (2) and (3), the cases that
should be enumerated are represented in terms of the three
Boolean variables a, b, and c. Since there are just four cases
to check, they can be indexed with two Boolean variables p and
q, as shown in the following table.

p q a b c

0 0 0 X X
0 1 X 0 X
1 0 X X 0
1 1 1 1 1

To verify these cases with STE, the following trajectory
assertion would be checked:

|= ¬p ∧ ¬q � (a is 0) and p ∧ q � (a is 1) and

¬p∧q � (b is 0) and p ∧ q � (b is 1) and

p ∧ ¬q � (c is 0) and p ∧ q � (c is 1) and

⇒
¬p ∨ ¬q � (o is 0) and p ∧ q � (o is 1). (4)

If this property is true, then the device satisfies the specification
of intended behavior for an AND gate.

Symbolic indexing finds its greatest utility in verification of
regular memory structures, as it significantly reduces the num-
ber of BDD variables required to encode data values [44]–[46].
Consider an n × m-bit memory M with n rows and m bits
per row, i.e., the memory is accessed with a log2 n-bit address
and returns m bits of data. Suppose that whether the memory
correctly stores and returns arbitrary data at every address
should be verified. First, a write operation would be performed
to the symbolic address a1 with the symbolic data vector d1.
Next, a read operation of a symbolic address a2 would be
performed and the resulting data d2 checked to see if it matches
what had previously been written.

To distinguish between each memory location in the direct
verification approach would require n × m unique bits: m bits
for each of n rows. For even a small memory, the number
of variables required is too large for symbolic verification.
Suppose, however, that the ith bit in the jth row is replaced
with the expression Pj [a] � mi, where Pj [a] is the appropriate
address function for the jth row. If the address bits select row
j, then the value of bit i will be mi. If the address bits select a
different row, the value of bit i will be X. If the same expression
is applied in each row of the memory array, only m + log2 n
variables are required: A significant reduction from the m × n
otherwise is needed.

See [47] for further details on symbolic indexing, including
an algorithm for transforming directly stated trajectory asser-
tions, of the kind suitable for higher level reasoning, into a
symbolically indexed form for efficient model checking.

B. Parametric Representation

This section begins with a brief explanation of the parametric
representation and then describes its use in STE verification.
An extended treatment is found in [48].

The goal of the parametric representation is to encode a
Boolean predicate P as a vector of Boolean functions whose
range is exactly the set of truth assignments satisfying P . The
technique is independent of the symbolic simulation algorithm,
does not require any modifications to the circuit, can be used to
constrain both input and internal signals, and is applicable to a
wide variety of circuits.

In a parametric representation, a vector of functions over
fresh parametric variables encodes a set of Boolean vectors
whose elements are defined by a characteristic function. The
range of the functional vector is exactly the original set. To
illustrate, consider the set

S
∆= {(1, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 1)} .

If the input variables for the circuit are expressed as a vector
as = a0, a1, a2, a3, then a non-minimized characteristic func-
tion (predicate) for S is

P = (a0 ∧ ¬a1 ∧ ¬a2 ∧ a3)

∨ (a0 ∧ ¬a1 ∧ ¬a2 ∧ ¬a3)

∨ (¬a0 ∧ a1 ∧ ¬a2 ∧ a3).

The same set can be represented using a parametric functional
vector with new parametric variables p0 and p1 as

Qs = (p0,¬p0, 0,¬p0 ∨ p1).

Any assignment to the parametric variables yields a truth
assignment that satisfies P , as shown in the following table.
Note that although (0,1,0,1) appears twice in the table, the range
of the parametric function vector is exactly the set S.

p0 p1 Value of Qs

0 0 (0, 1, 0, 1)
0 1 (0, 1, 0, 1)
1 0 (1, 0, 0, 0)
1 1 (1, 0, 0, 1)

The parametric representation is used with a symbolic sim-
ulator by applying the vector Qs to the inputs in place of
the original vector as. Each circuit input is replaced with the
corresponding function from the vector of parametric functions

a0 �→ p0
a1 �→ ¬p0
a2 �→ 0
a3 �→ ¬p0 ∨ p3.

A symbolic simulator can use these functions as inputs with-
out any modification. An algorithm for computing a parametric
representation, correctness requirements for the algorithm, and
correctness proofs are found in [48]. Similar approaches to
the use of parametric encoding are described in [49], where
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parametrically encoded functional dependencies are used to
reduce the complexity of symbolic simulation; and in [50],
where parametric representations are used in bounded model
checking.
Application: Many hardware circuits are designed to func-

tion on a defined set of legal inputs and circuit behavior on
inputs not in this set does not matter. Additionally, reduction
of formal verification complexity is often accomplished by
case splitting—dividing the verification into multiple cases
that when considered together imply the full verification.

Consider a Boolean predicate P [xs] defined over a vector
of variables xs, each of which represents a circuit input or an
internal signal at a fixed (but possibly different) point of time.
If P [xs] describes an environment constraint or one case of a
case split, then only the behavior of the circuit under valuations
that satisfy P [xs] needs to be considered. The desired behavior
of the circuit will be expressed as an assertion |= A[xs] ⇒
C[xs] over the same variables xs. Because this assertion needs
to hold only when P [xs] is true, it should be established
that P [xs] implies |= A[xs] ⇒ C[xs]. This implication will be
expressed by writing P [xs] |= A[xs] ⇒ C[xs].

A naive approach would perform this verification in three
steps.

1) Represent the desired restriction as a predicate P [xs].
2) Express the specification as a consequent C and compute

|= A[xs] ⇒ C[xs] by symbolic circuit simulation.
3) Evaluate P [xs] |= A[xs] ⇒ C[xs] by checking that φ |=

P [xs] implies φ |= A[xs] ⇒ C[xs] for all φ.

This approach has the disadvantage that it evaluates (symbol-
ically simulates) |= A[xs] ⇒ C[xs] for all valuations of the
variables xs, not just the ones that satisfy P [xs]. However,
in many cases, |= A[xs] ⇒ C[xs] cannot be computed directly
with a symbolic simulator because the complexity is too great.

A better approach is to evaluate |= A[xs] ⇒ C[xs] only for
valuations that satisfy P [xs]. This is done with a parametric
representation that encodes P [xs] as a vector of functions
over fresh parametric variables. Suppose the function param
computes a parameterized functional vector representation

Qs = param (xs, P [xs]) .

Then the implication P |= A ⇒ C that needs to be proven
becomes a simple trajectory assertion |= A[Qs/xs] ⇒
C[Qs/xs], in which the original input variables are replaced
by the parametric functions.

It is often feasible to compute this encoded trajectory asser-
tion with a symbolic simulator when a direct computation of
the trajectory assertion is not possible. The parametric repre-
sentation is also used in case splitting: Each case is character-
ized by a Boolean predicate that is similarly encoded into the
trajectory assertion.

Computing the assertion |= A[Qs/xs] ⇒ C[Qs/xs] is equi-
valent to checking that P [xs] implies |= A[xs] ⇒ C[xs] for
every assignment of values to the variables xs. A proof is
provided in [48]. A side condition requires that P [xs] be satis-
fiable because no functional vector can encode false.

It is often the case that symbolic simulation is infeasible even
within the restricted domain of P [xs]. Verification complexity

can be further reduced by decomposing P [xs] into multiple
partitions to represent case splits. In fact, decomposing P [xs] is
the primary use of the parametric representation. This is illus-
trated by the examples in Section IX. Often, different variable
orderings are used for different case splits. These orderings
can be supplied by the user or, in some cases, determined
automatically by the BDD engine.

The strategy of input case splitting is also the basis of the
“quasi-symbolic simulation” method of Wilson and Dill [51],
in which simulation complexity is controlled by representing
input cases in an approximate way using constants (called
“symbolic variables”) as input values. More generally, simple
case splitting on the two binary values of an input is of course
a widespread verification technique.

VI. FL PROGRAMMING LANGUAGE AND STE

FL is a strongly typed, lazy, functional programming lan-
guage. Syntactically, it borrows heavily from Edinburgh-ML
[12]. Semantically, its core is similar to lazy-ML [52]. A
distinguishing feature of FL is that a BDD package is inte-
grated with the language’s runtime system, with every object
of the Boolean type bool being represented as a BDD.4

The FL language lies at the heart of Forte. Through its
embedded BDD package and primitive or defined functional
entry points, it provides a flexible interface for invoking and
orchestrating model-checking runs. It is also used as an ex-
tensible “macro language” for expressing specifications, which
are therefore human readable but when executed compute
efficiently checkable properties in a low-level temporal logic.
Finally, it provides the control language for Forte’s theorem
prover and—through the concept of lifted FL [21]—the primi-
tive syntax of its higher-order logic.

Trajectory formulas are implemented in FL as lists of five-
tuples. Each five-tuple specifies an assertion about a single
signal and contains the following elements:

• a Boolean guard specifying when the assertion is active;
• the name of the signal (a string);
• a Boolean value to assert on the signal;
• a start time (integer);
• an end time (integer).

A list of five-tuples represents the conjunction of the individ-
ual assertions. The representation of temporal information by
intervals (start and end times) is more convenient in practice
than the use of a “next-time” operator.

The five-tuple representation adds no logical expressiveness.
Its major advantage is that it represents formulas using stan-
dard data types in FL. It is particularly important that the guard
and value fields in each five-tuple use FL’s BDD representation
of Boolean propositions. Users therefore have the complete
freedom of a general-purpose functional programming lan-
guage in which to write both temporal and value properties,
facilitating concise and readable specifications.

4Strictly speaking, the type of these objects should be something like
env → bool, where env is an interpretation of the variables used in the BDD.
However, for convenience, the global environment is kept implicit and the type
abbreviated to bool.
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The orthogonality of the temporal aspect (the two time fields)
of the five-tuples from the data computation (the guard and
value fields) has a number of positive ramifications. Although
trajectory formulas are not generally executable, the individual
fields are executable. For example, users can evaluate the data
aspect of their specifications simply by evaluating the FL
function that computes the intended result. Standard rewrite
rules and decision procedures over Booleans can be applied to
the guard and data fields. Rewrite rules and decision procedures
for integers can be applied to the temporal fields.

Circuits are represented in FL as objects of a special built-in
type fsm. An fsm is a directed graph where nodes correspond
to components, e.g., gates and latches, and edges to connec-
tions between components. Nodes in the graph are annotated
with their stimulus functions, delays, and other attributes. A
number of built-in functions support structural queries, breadth-
first or depth-first traversal, and finding out dynamic informa-
tion about circuit nodes (e.g., waveforms). This functionality
is available through a graphical user interface and as primitive
functions in FL, enabling users to program their own custom
queries. This has proven to be extremely valuable for circuit
analysis and debugging. Objects of type fsm can arise from
a number of sources. Translators have been written from Intel’s
gate-level and schematic-level netlist formats to a special data
representation that can then be loaded by FL. Furthermore,
primitives available in FL allow the interactive programmable
construction of fsms.

Like the circuit manipulation functions, STE is available as a
primitive function in FL:

STE :: fsm → tf → tf → bool.

STE takes three arguments. The first is an fsm. The second and
third are an antecedent A and a consequent C, both temporal
formulas represented as lists of five-tuples. The result returned
is a Boolean formula that is the weakest condition under which
A ⇒ C (Section IV).

In the Forte methodology, STE is usually invoked in a sty-
lized way

STE ckt (A vs) (C S vs).

Here, ckt is the circuit under consideration. The antecedent A
captures the protocols and timing required at the circuit inputs,
and is an FL function parameterized by vs, a list of symbolic
values to use as input data to the circuit. The consequent C
formalizes the protocols and timing required at the circuit
outputs, and is parameterized by a functional specification S
as well as the list of symbolic values vs. The functions A and
C, taken together, are called a circuit application programmer
interface (API).5 S serves as a specification of the intended
function of the circuit, independent of timing: For a list of sym-
bolic input variables vs, S vs computes the symbolic values
expected at the circuit’s outputs.

A wide range of FL functions have been developed to ease
the task of writing circuit APIs and functional specifications.
For example, in capturing input/output protocols, it is often

5The term API is borrowed from software engineering.

convenient to specify event timing relative to a given clock sig-
nal, rather than in absolute time ticks. Such a specification style
is supported by a library of temporal abstraction and clocking
functions. As another example, functional specifications must
often model arithmetic and logical computations on bit vectors.
Common bit-vector operations are supported by another library
of FL functions.

In addition to FL’s role as a specification language, FL also
serves as a scripting language for invoking the STE algorithm
and orchestrating large verifications. FL is used to control
BDD variable orderings, manage case splits, and conduct multi-
run verifications. Thus, the outcome of a verification project
includes, in addition to a set of specifications, a suite of FL
scripts to effect the verification. The existence and maintain-
ability of the script is crucially important for maintaining pro-
ductivity and repeatability in a live design environment, where
RTL code changes from day to day.

VII. THEOREM PROVING

Forte’s higher-order-logic theorem prover, ThmTac, provides
a simple but principled way to justify the composition of
model-checking results and manage the proof of higher level
properties. Composing model-checking results allows us to
prove properties that are beyond the verification capacity of
model checkers. ThmTac’s logic and inference rules allow us to
state (and prove) specifications that are beyond the expressive
power of the model checker’s specification language.

ThmTac is implemented in the LCF style [53], with the
representation of theorems protected by abstract datatypes so
that only prescribed operations can yield theorems. In LCF
and its successors (including the widely used HOL system
[12]), theorems can be constructed only through the application
of a core set of axioms and primitive rules of inference.

However, a major goal in designing ThmTac was to provide
a seamless transition between model checking, in which FL
functions are executed, and theorem proving, in which FL
functions are reasoned about syntactically. The lifted FL mech-
anism enables us to use FL as both the object and meta-
languages of the proof tool; consequently, certain goals in the
theorem prover can be proven simply by evaluating them. Such
“proof by evaluation” extends the notion of proof beyond that
of LCF.

A second design goal for ThmTac was a level of automation
sufficient to allow routine use of ThmTac by users who are
not expert logicians. To that end, the authors followed the
leads of PVS [54] and Nuprl [55] and theorems are allowed
to be generated by trusted decision procedures (for example,
a decision procedure for linear arithmetic) as well as the core
set of axioms and rules.

The following subsections provide an introduction to lifted
FL and an overview of theorem proving in higher-order logic,
describe the architecture of the ThmTac theorem prover, and
comment upon the soundness of the implementation.

A. Lifted FL

Ordinary programming languages operate on the values of
expressions and not their structure. For example, the value of
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3 + 4 is 7, and 3 + 4 cannot be distinguished from 8− 1 by
examining their values. An equality test in a programming
language is therefore a test of semantic equality. In logic,
the equality symbol also forms an assertion about semantic
equality (e.g., a + b = b + a), but the primitive inference rule
for equality of two terms is a test of syntactic equality (e.g.,
a = a). The power of theorem proving comes from the ability
to use syntactic manipulation to prove the semantic equality
of expressions that cannot easily be evaluated.

FL expressions have the following syntax:

e ::= v -variable
| c -constant
| e1 e2 -function application
| λv. e -abstraction
| �e� -lifting.

The first four syntactic forms—variables, constants, applica-
tion, and abstraction—are those of the applied lambda cal-
culus, the term language for higher-order logic theorem provers
like HOL [12]. In addition, the capability to “lift” an FL
expression by enclosing it in backquotes is provided (e.g.,
�3 + 4�). Lifting an FL expression makes its abstract syntax
tree available for other functions to examine, manipulate, and
evaluate. The expression will have been typechecked, and its
type is also made available for manipulation.

The objective of lifted FL is to enable syntactic reasoning
about FL programs to be conducted within FL itself. Lifted
FL is similar in spirit to Lisp’s quotation mechanism, with
the important difference that FL is statically typed, while Lisp
is dynamically typed. Parsing a lifted FL expression gives
two representations of the expression: a combinator graph6 for
evaluation purposes, and an abstract syntax tree representing
the text of the expression. This link between the abstract
syntax and combinator graphs allows lifted FL expressions to
be evaluated as efficiently as normal FL code. An evaluation
function eval takes a lifted FL expression, evaluates it, and
returns the result as an FL value.

To support theorem proving, lifted FL includes some fea-
tures that are not a part of regular FL. Lifted FL expressions
can contain free variables, but evaluating such a lifted term
raises an exception. Existential and universal quantifiers are
implemented as functions that raise exceptions when evaluated,
with special axioms provided for reasoning about them in
ThmTac.

B. Theorem Proving in Higher-Order Logic

The version of higher-order logic supported by ThmTac is
based on Church’s formulation of simple type theory [57]. The
formulas of the logic are terms lifted from FL expressions
of type bool. For the purposes of this paper, the logic can
be viewed as a typed extension of the conventional syntax of

6Combinator graphs are a particular representation of compiled functional
programs in which variable names have been “compiled away.” Running a
compiled program in this form consists in applying certain graph-transforming
reductions to the combinator graph. See [56] for an introduction to this topic.

predicate calculus in which functions may be “curried” and one
may quantify over functions.

The notation is illustrated by the theorem shown below

� ∃f. ∀x. f(g x) = x

This says that there exists a left inverse of the function g. The
quantified variable f in this formula ranges over functions.
The constants T and F denote Boolean true and false, respec-
tively. The turnstile symbol “�” indicates that the formula that
follows is a formal theorem of the logic.

The most primitive notion of formal proof is one in which
rules of inference are simply applied in sequence to axioms
and previously proven theorems until the desired theorem is
obtained. This is often not a feasible way of finding a proof,
since the exact sequence of inferences required—or even the
first inference required—is rarely known in advance.

A more promising and natural approach is to set about
discovering a proof by working backward from the statement
to be proven (called a goal) to previously proven theorems
that imply it. This is the backward proof style, in which the
search for a proof is the activity of exploring possible strate-
gies for achieving a goal. For example, one possible approach
to proving a conjunctive formula P ∧ Q is to break this goal
down into the two separate subgoals of proving P and proving
Q. Likewise, one may seek to prove an implication ∀x. P [x] ⊃
Q[x] by reducing this to the subgoal of proving Q[x] under the
assumption P [x] for arbitrary x.

ThmTac, like LCF and HOL, supports the backward style
of proof by means of FL functions called tactics. In theorem
provers adhering to the LCF philosophy, tactics are used to
break goals down into increasingly simple subgoals, until the
subgoals obtained are axioms or theorems already proven.
Conventional proofs in higher order logic proof systems are
operational, in that tactics describe how to move from one proof
step to the next, but do not describe what the next proof step
is. ThmTac also provides declarative proof tactics, which des-
cribe what the next proof step should be and give only minimal
information on how to prove that the next step follows from
the current step. Until recently, declarative proofs were rare in
mechanized higher-order logic [58]–[60].

In addition to tactics, FL allows one to implement func-
tions (called tacticals) that combine elementary tactics together
into more complex ones. This allows the user to build composite
tactics that fully decompose a conjecture into immediately
provable subgoals, and hence, can be executed to generate a
complete proof. In practice, these monolithic, composite tac-
tics are the main products of the theorem-proving activity.

C. Theorem-Proving Tools

One of the main tools for higher-order logic proof in
Forte is proof by evaluation. This is integrated into the tactic
mechanism through a primitive tactic, Eval_tac, defined using
the FL eval function. This tactic evaluates the conclusion of a
sequent and solves the goal if the result of evaluation is true.
For example, a goal stating that an STE model-checking run
succeeds can be solved by running the STE algorithm.
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This mechanism makes use of the fact that ThmTac’s
term language is lifted FL, hence, certain proof goals in the
logic can be solved simply by evaluating them in FL. Since
Booleans are built into FL as BDDs, Eval_tac also provides an
efficient decision procedure for quantified Boolean formulas.

Proof goals in ThmTac can also be solved using a number
of built-in decision procedures and heuristics:

• Trivial, a heuristic that checks for a number of obvious
conditions, such as an assumption that is also the goal, or
two assumptions that contradict one another;

• IntSimplex, a decision procedure that combines linear
programming and BDDs to solve goals that combine
Boolean and integer reasoning;

• OneTab, a first-order Prolog-style decision procedure
that uses backward chaining to find instantiations for
monomorphic first-order quantified variables;

• Rewrite, a higher order conditional rewriter;
• Qed, which combines a large set of standard rewrite rules

with the other tactics for solving goals.

Some of these procedures also integrate FL evaluation into
proof, notably the rewriter. Although the primary intention with
lifted FL was to provide for proof by evaluation of STE runs,
FL evaluation can also be applied to general expressions. This is
easier and more efficient than applying libraries of rewrite rules
for each of the different functions to be evaluated. Eval_rw is
a rewrite that evaluates a term or subterm of a formula under
consideration, and substitutes the result in for the original term.

D. Implementation of ThmTac

The implementation of ThmTac is based loosely on that
of LCF [53] and HOL [12], with a trusted core set of ax-
ioms and inference rules protected by abstract datatypes. Proof
goals are recorded as sequents; each sequent is, in turn, a pair
(Γ, t) where Γ is a finite set of formulas called the assumptions
and t is a formula called the conclusion.

Inside the trusted core, a sequent is represented by a list of
“clauses” labeled by strings. The FL type definition is

Sequent
type≡ SEQUENT (string#term) list;

where # is FL’s pair (cross product) type constructor and
term is the type of lifted FL expressions. Each clause is just
a lifted FL term (expected to be of type bool) and there is
one clause for each assumption of the sequent and one for the
negation of its conclusion. Labeling each clause with a string
gives users a robust method for identifying particular assump-
tions or conclusions in a proof script. Tactics are implemented
as functions that map a sequent to a list of sequents, with each
element of the result list representing a subgoal. When a tac-
tic returns an empty sequent list, it means that the tactic solved
the goal.

Finally, as in LCF, an abstract datatype is used to distinguish
theorems from arbitrary terms

Theorem
type≡ THEOREM term;

Prove :: term → Tactic → Theorem.

Fig. 3. Road map for combining STE and ThmTac.

The principal interface to ThmTac is the function Prove,
which takes a Boolean term �b� stating a proposition to be
proven and a tactic, attempts to use the tactic to construct
a proof that b = T and, if the construction succeeds, returns
THEOREM �b� (also written �� b�).

E. Soundness

Proof systems often put a high priority on mathematical
purity, in the sense that every theorem is derived solely from
the primitive inference rules and axioms of the logic. The
motivation is to ensure the system is sound—i.e., it cannot be
used to prove a false statement. In reality, no formal verifica-
tion system can provide an absolute guarantee of soundness.
Furthermore, in the world of industrial microprocessor design,
formal verification must compete for resources against other
validation techniques amidst many other demanding design
goals, such as timeliness to market, performance, area, and
power requirements.

In designing ThmTac, the goal was to strike a balance
between soundness and productivity—both in system build-
ing and verification. With respect to soundness, efforts were
focused on preventing users from inadvertantly proving false
statements, rather than protecting against adversarial users
(users who intend to prove false statements).

The FL feature most likely to lead to unsoundness is recur-
sion. For example, the definition letrec x = NOT x; can be
used to introduce a contradiction, from which anything at all
can be proved. The authors rely on the user to ensure that recur-
sive definitions used in hardware specifications are terminating.
In practice, experience dictates that this is sufficient. However,
if higher assurance is needed, then there do exist automated
tools, such as Slind’s TFL [61], that could also be used to prove
termination of FL functions with reasonable effort.

VIII. COMBINING THEOREM PROVING AND STE

Fig. 3 illustrates the process in which STE and ThmTac
reasoning are combined to verify a typical property. The Forte
system’s philosophy is not the top-down idea of model check-
ing as a decision procedure, but of knitting together model-
checking runs bottom-up or transforming model-checking
goals sideways into forms that are easier to solve.

The process begins with a verification script that invokes
various functions written in FL. Suppose this script is just
“Verify ord,” where Verify is some FL function that has
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been written. Invocation of this script will install the BDD
variable ordering given by the ord argument and then invoke
STE on the circuit of interest with some chosen trajectory as-
sertion. The details of the script are not important here, and the
script need not have been written with theorem proving in mind.

The first step, discussed in Section VIII-A, uses ThmTac’s
capacity for proof by evaluation to assert the truth of the
proof script. The second step, discussed in Section VIII-B, uses
ThmTac’s ability to reason about FL programs to unfold the
proof script, revealing the underlying call to STE. In this case,
the call to STE makes use of the parametric representation
(Section V) to make model checking tractable. Section VIII-C
describes how special-purpose axioms are used to distill the
logical content from such optimized model-checking calls.

In the last step (Section VIII-D), BDD variables and quan-
tifiers in the property are replaced with their counterparts in
higher-order logic. This brings the entire property within the
scope of ThmTac’s deductive apparatus, which, in turn, enables
the large-scale verification strategies used in the case studies
in Section IX. Sections VIII-E and VIII-F discuss the support
for logical and algorithmic reasoning provided by ThmTac.

A. Proof by Evaluation

In Forte, the entry point to theorem proving is through evalu-
ation of model-checking runs. As discussed above, suppose that
the FL function

Verify :: (string list) → bool

has been designed to execute some STE model-checking run
of interest. Its argument is a list of strings, specifying a BDD
variable ordering to be used in the verification. If running
Verify ord evaluates to T, then proof by evaluation justifies
introduction of the theorem below

� �Verify ord�.

In this way, proof by evaluation provides a smooth transition
from STE model checking to theorem proving. The theorem
is obtained simply by lifting the model-checking code that
has already been developed. This imposes no extra tax on the
model-checking user.

The ease of importing model-checking results into the the-
orem prover has a dramatic impact on the user’s view of the
system. For example, when proof by evaluation is invoked as
a tactic and fails, it generates a counterexample in the form
of a residual. Since theorem proving, model checking, and
debugging are conducted in the same environment, the user can
debug the counterexample using the debugging aids for STE
available in Forte.

B. Reasoning About Scripting Code

ThmTac supports reasoning about FL programs through ax-
ioms about FL constants, tactics for step-by-step evaluation,
unfolding of user definitions, and facilities for rewriting and
partial evaluation. This support is essential for manipulating
proof scripts in order to expose the underlying calls to the model
checker.

Suppose the definition of Verify were

Verify n
∆=

var_order n
fseq

STE ckt (A (param P bvs))
(C S (param P bvs)) .

When executed, the FL function var_order installs the spec-
ified order in Forte’s underlying BDD manager. The infix
sequencing operator fseq fully evaluates its left argument,
ignores the result, and returns its right argument. The function
param was explained in Section V-B; its use in ThmTac will
be explained in the next section.

Unfolding the definition of Verify and performing one step
of evaluation (in technical terms, β reduction) transforms the
theorem

� �Verify ord�

to

� �var_order ord
fseq

STE ckt (A (param P bvs))
(C S (param P bvs))� .

Both these transformations are supported by ThmTac’s rewrit-
ing engine. Next, by employing axioms about the FL function
fseq, the following theorem can be proven:

� �STE ckt (A (param P bvs))

(C S (param P bvs))� .

C. Model-Checking Optimizations and Transformations

Section V introduced techniques (the parametric representa-
tion and various kinds of weakening) for extending the reach of
STE model checking. These are transformations that allow us
to transform the proof goal without altering its logical content.
In particular, they are targeted to transform infeasible model-
checking computations to feasible ones. The fact that these
transformations are used is recorded in the formal proof.

The axiom that justifies the use of the parametric representa-
tion is Param_ax

� �∀ ckt A C F P xs.

(∃ys. P ys) ⊃
((STE ckt (A (param P xs))

(C S (param P xs)))
≡
((P xs) ⊃ (STE ckt (A xs) (C S xs))))� .

The function call param P xs computes a parametric substi-
tution of the BDD vector xs with respect to P (in the sense
of Section V). In other words, using parameterization, the
predicate P can be encoded inside the STE assertion.
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Assuming that the side condition ∃ys. P ys can be proven,
application of Param_ax transforms

� �STE ckt (A (param P bvs))

(C S (param P bvs))�

to

� �(P bvs) ⊃ (STE ckt (A bvs) (C S bvs))� .

D. Transforming BDD Variables to Logical Variables

The final step in bridging the semantic gap between theorem
proving and model checking is the transformation from for-
mulas containing BDD variables and quantifiers (the language
of model checking) to formulas containing logical variables
and quantifiers (the ordinary domain of discourse in higher-
order logic). Replacing BDD variables and quantifiers with
logical ones makes available the full range of rules for quan-
tifier reasoning in higher-order logic. This replacement allows
the two theorems shown below to be regarded as equivalent.

�� (P bvs) ⊃ (STE ckt (A bvs) (C S bvs))�

�� ∀vs. (P vs) ⊃ (STE ckt (A vs) (C S vs))� .

The former property is stated in terms of BDD variables that are
implicitly universally quantified. The latter property is stated
purely in the higher-order logic supported by ThmTac (with the
BDD variables bvs replaced by the logical variables vs), and
universal quantification is explicit.

It is also useful to cross this gap in the opposite direction; for
example, � �∀x. P x� can be transformed to

� �QuantForall “x” (P(variable “x”))�

where variable is a built-in FL function that creates a
BDD variable (in this case, named by the string “x”) and
QuantForall is a BDD operation that universally quantifies
the BDD variable “x” in the BDD resulting from evaluating
P(variable “x”). If P contains only Boolean operations, then
the latter goal can be solved by evaluation.

Replacing higher-order logic variables and quantifiers with
their BDD counterparts is not as simple as it seems at first
glance, as there are performance and soundness issues. If
ThmTac were to provide a new and unique name for the BDD
variable, it would not be placed in an optimal location in the all-
important BDD variable order defined by the user. Additionally,
increasing the number of BDD variables globally active in the
system slows down some BDD operations. Thus, for perfor-
mance reasons, the user needs to provide the variable name.
However, if the user inadvertently provides a variable name that
is already used elsewhere in the term, a free BDD variable can
become bound unintentionally and the proof rendered unsound.
Thus, ThmTac has the burden of making sure that the name
provided by the user is truly a fresh variable.

The process of replacing term quantifiers and variables with
BDD quantifiers and variables and then evaluating the goal

Fig. 4. STE conjunction inference rule.

is implemented by the tactic BddInstEval_tac. The user
provides the name of a fresh BDD variable (say “y”). The
tactic first checks that this variable has not yet been used in
the proof. If the variable is fresh, BddInstEval_tac re-
places the term quantifier ∀x with the BDD quantifier
QuantForall “y”, instantiates x in P (x) with variable “y”,
and then applies Eval_tac.

E. Reasoning About Trajectory Assertions in ThmTac

Section IX presents some case studies that illustrate some
strategies for large-scale verifications. The various elements
of these strategies are supported by reasoning in ThmTac; in-
deed, it is at this level that the overall verifications are logically
orchestrated.

Complexity reduction strategies like input case-splitting, in-
duction, and others can be justified using the ordinary rules of
higher-order logic. For example, a case splitting strategy can
collapse a family of assertions indexed by i:

� �∀vs. (Qi vs) ⊃ (STE ckt (A vs) (C S vs))�

into the single assertion:

� �∀vs. (Q vs) ⊃ (STE ckt (A vs) (C S vs))� .

The reasoning required, including proof of the side condition

∀vs. (Q vs) ⊃
N∨

i=1

(Qi vs)

is carried out using ThmTac’s deduction system.
A number of inference rules that support compositional

reasoning were presented in Section IV. From the logical view-
point, these provide an axiomatic characterization of STE’s
behavior as a functional program. Use of the STE inference
rules can substantially reduce the complexity of underlying
STE runs.

Fig. 4 shows the STE inference rule for conjunction.
Additional trajectory evaluation rules include precondition
strengthening, postcondition weakening, transitivity, and case
splitting [39], [42]. After using the inference rules to de-
compose a proof obligation into a set of smaller STE goals,
Eval_tac is used to carry out the individual STE runs. For
example, the inference rule for conjunction could be used, along
with standard deduction rules of higher-order logic, to combine
the two trajectory assertions

� �∀vs. (P vs) ⊃ (STE ckt (A vs) (C1 S vs))
�

� �∀vs. (P vs) ⊃ (STE ckt (A vs) (C2 S vs))
�



1398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2005

to yield the composite assertion

� �∀vs. (P vs) ⊃ (STE ckt (A vs) (C1 S vs and C2 S vs))
� .

F. Reasoning About Functional Specifications

So far, little attention has been paid to the functional specifi-
cation S in the consequent of

� �∀vs. (P vs) ⊃ (STE ckt (A vs) (C S vs))� .

Since S is itself merely an FL program, ThmTac can be used to
reason about S in isolation, proving a theorem of the form

� �∀vs. Spec vs (S vs)�.

Here, Spec is some higher level property relating the arguments
and results of S. For example, if S describes the bit-level
computation performed by a floating-point adder, Spec might
state that the result of the computation conforms to the IEEE
standard for floating-point arithmetic. A top-level correctness
property can now be proven in higher-order logic that combines
temporal and high-level correctness

� �∀vs. (STE ckt (A vs) (C S vs)) ∧ (Spec vs (S vs))� .

This combination of trajectory evaluation and theorem
proving has been used in several large verification efforts.
Published accounts include a variety of floating-point circuits
and an IA-32 instruction-length decoder [3], [23], [42].

IX. VERIFICATION CASE STUDIES

The greatest challenge in formal verification is computational
complexity. This is addressed primarily by decomposing a
given problem into multiple smaller problems. For a decompo-
sition to be effective, however, the decomposition itself must
be manageable, as well as result in subproblems that have
manageable complexity. One of the requirements of an effective
verification system is to provide good support for this kind of
activity.

Three of the verification studies that have been completed
with the Forte system are described in this section. Emphasis
is given to the synergy between the typical problems encoun-
tered in industrial verification and the capabilities in Forte.
A branch-target buffer (BTB), a floating-point adder, and an
instruction-length decoder will be discussed. Space does not
permit a complete exposition of any example, but this paper
provides a good sense of why the verification of these circuits
is difficult and how the different aspects of Forte combine to
make verification feasible in these instances.

The adder and length-decoder represent two of the most
complex hardware-verification results to date. Both have com-
plex functional specifications and require extensive tool and
system support to manage verification complexity.

A. Branch-Target Buffer

The first verification example is a branch-target buffer, a
functional block that contains an embedded memory array.

Fig. 5. BTB interfaces.

This example illustrates the use of symbolic indexing in the
verification of a memory array and the application of STE
inference rules to support a structural decomposition strategy.
Structural decomposition, in which individual pieces of the
circuit are verified independently, is perhaps the most common
approach to making verification tractable. Structural decom-
position is a powerful technique, because it can be applied
repeatedly until each subcomponent of the circuit is small
enough to handle automatically with STE. The results of the
subproblems are then combined using STE inference rules,
as enumerated in Section IV, which are implemented as core
tactics in ThmTac.

The BTB, as shown in Fig. 5, interfaces primarily to an
instruction-fetch unit (IFU) and a branch-address calculator
(BAC). The IFU sends the BTB a series of instruction ad-
dresses (i.e., program counters) that index the BTB’s inter-
nal memory, which maintains information on the history of
branches. Based on the branch history found in its memory, the
BTB makes a prediction of whether the cache line containing
each instruction also contains a branch instruction and, if so,
whether the branch is taken or not taken. In the case of a taken
branch, the predicted target address is sent back to the IFU,
which begins fetching instructions from the new address. The
BTB’s interface with the BAC is used to update the BTB’s
stored branch history with information on the true sense of
the branches. This is used to adaptively predict the direction
of future branches.

The property to be verified is that the branch predictions
are made and the branch history updated correctly according
to some given prediction algorithm. The verified BTB uses
Yeh and Patt’s two-level adaptive branch-prediction algorithm
[62]. Yeh and Patts’s algorithm is a heuristic technique that
has proved statistically effective for branch prediction, and
there is no more abstract specification for the BTB. This exam-
ple focuses on verifying the behavior of the branch translation
pipeline rather than the branch update pipeline.

Five properties of the prediction pipeline were verified.
• For a given incoming program counter, the correct line

from the BTB memory array is written into a temporary
register.

• The taken branches in the selected line are correctly
marked.

• The target address of the taken branch with the least
offset relative to the incoming program counter (that is,
the “next” taken branch) is correctly extracted.

• The updated (speculative) branch history is computed
correctly.

• The updated branch history is written back into the BTB
memory array.

Two of these properties will be briefly described. Property 1
checks that for a given instruction address, the correct line
is retrieved from the BTB. The number of bits (128 × 200 >



SEGER et al.: AN INDUSTRIALLY EFFECTIVE ENVIRONMENT FOR FORMAL HARDWARE VERIFICATION 1399

25 000) in the BTB memory array is far too large to ver-
ify directly. Instead, the property is encoded using sym-
bolic indexing. This requires only log2 128 + 200 = 208 BDD
variables.

Property 4 states that the BTB logic correctly updates the
(speculative) branch prediction. To do this, the BTB must read
the appropriate branch information out of the array (Property 1)
and update it in a very straightforward way. In fact, the an-
tecedent of Property 4 is largely implied by Property 1.

The transitivity inference rule is used to compose Properties
1–4 in ThmTac. The other properties were also composed
using STE inference rules. The final high-level property states
that the BTB always produces the correct prediction (according
to the algorithm) for an arbitrary BTB initial state and arbitrary
instruction address.

While the verified BTB memory is small by memory stan-
dards (128 lines by approximately 200 bits per line), it is very
large by formal-verification standards. In addition to its large
embedded memory, the BTB also poses a verification chal-
lenge because it implements a large, sequential computation
over several pipe stages. These obstacles were overcome by
exploiting two key aspects of Forte.

1) ThmTac was used to mechanically verify the decompo-
sition of the overall correctness statement for the BTB
into properties that were within the capacity of STE.
The proof required both general-purpose reasoning at
the algorithmic level and STE-specific reasoning to com-
bine the low-level results. Using a model checker alone,
one faces the choice of abstracting the algorithm (dif-
ficult, and it is possible to inadvertently abstract away
behavior that is significant) or chipping away at the
corners of the hardware, not verifying the really important
properties at all.

2) Symbolic indexing was used to reduce the complexity
of verifying the embedded memory array. Pandey et al.
[45] have also applied symbolic indexing in the
verification of a variety of memory arrays, including
content-addressable memories (CAMs). If the array was
considered in isolation, the complexity of verifying it
could be mitigated by model reduction via a symmetry
argument [63], [64]. However, the efficacy of the branch-
prediction algorithm relied upon the array being of a
certain size. Furthermore, as pointed out by Bhadra et al.,
high-speed memories in isolation often do not exhibit
the clean symmetries that might be expected [28]. For this
reason, both Bhadra et al. and the authors relied on STE
and symbolic indexing.

It took approximately two engineer months to understand
the BTB algorithm and implementation, develop a high-level
specification, and verify Properties 1 through 5 of the prediction
pipeline. Mechanical verification that Properties 1 through 5
together imply the high-level specification took another
month, using an early prototype of the ThmTac tool. A subtle
mismatch between the properties—manifested by the failure of
the STE reasoning tactics—was detected by ThmTac, under-
scoring the importance of verifying the decomposition.

Fig. 6. FADD verification.

B. Floating-Point Adder

The next example is the verification of a floating-point adder.
There were two primary challenges in verifying the adder.
First, there is a large gap in abstraction between the high-
level specification (which specifies the relationship between
the real-valued operands and result of their addition) and the
circuit design (which describes a computation on bit vectors).
To address this challenge, specifications were developed at
two levels of abstration: a top-level specification that captures
the essence of IEEE Standard 754-1985 [65] and a bit-level
reference model that is close to the algorithm performed by the
hardware. It is essential that these specifications be written in
FL so that they can be linked by a formal proof in the ThmTac
theorem prover. Fig. 6 shows the structure of the verification.

The second challenge—dealing with the sheer complexity of
the algorithm and its hardware implementation—arises in the
proof of equivalence between the FL reference model and the
RTL implementation. This complexity is made evident by an
explosion in the size of the BDDs used in the verification. To
address the complexity challenge, a decomposition approach
based on data-space partitioning is used, where the input data
space is broken into a number of sets. Each set in the data
space is treated as a separate case for verification. Each case
is represented as a Boolean predicate and then encoded on
circuit nodes with the parametric representation, as discussed
in Section V. A side condition requires that the case splits com-
pletely cover the input state space. This can often be verified
directly with BDDs; more complex cases require justification
within ThmTac.

Data-space partitioning makes it easy to compose verification
results (only simple propositional reasoning is required) and is
fairly robust to changes in the circuit’s internal implementa-
tion. Finding a set of cases that significantly reduces the size
of the BDDs requires some understanding of the algorithm
that the circuit implements, but usually requires only minimal
knowledge of the internal structure, e.g., signal names and
timing. In contrast, structural decomposition as used in the
BTB verification can run into significant problems in practice.
Structural decomposition requires detailed knowledge of the
internal signals, timing, and functionality of the circuit. In
large and complex circuits, it is often difficult to identify clean
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partitions, and the functionality of subcircuits can become hard
to specify cleanly.
1) Functional Specification: The verified FADD is compli-

ant with the IEEE Standard 754-1985 [65]. A floating-point
number is represented with three fields: a sign, a significand,
and an exponent. The significand is usually represented in
hardware as a fractional-part field with an implicit 1 added, i.e.,

sig = 1. fpfrac. (5)

In the IEEE standard, the exponent is biased. A fixed bias
is selected such that the sum of the bias and the number
being represented will always be nonnegative. An exponent is
represented by first adding it to the bias and then encoding the
sum as an ordinary unsigned number. The number represented
in the floating-point format is derived from the machine repre-
sentation as

number = (−1)sign ∗ sig ∗ 2fpexp−bias. (6)

More detail on floating-point arithmetic is found in [66,
Appendix A].

In floating-point addition and subtraction, there is a differ-
ence between true and general operators. True addition occurs
when adding operands with the same sign and when subtract-
ing operands with opposite signs. Similarly, true subtraction
occurs when adding operands with opposite signs and when
subtracting operands with the same sign.

The bit-level reference model of the adder was based upon a
textbook algorithm by Feldmann and Retter [67]. Specifications
for flags and special cases were based on IEEE Standard 754
and internal Intel microarchitecture-specific documentation.

The functional specification was coded in FL, and served as
a bridge for the abstraction gap between the IEEE specifica-
tion and the FADD circuit. A large ThmTac proof established
that the FL specification is faithful to the IEEE specification.
2) Data-Space Decomposition: The hardware that imple-

ments the floating-point add algorithm is quite complex. The
paper limits the discussion to only certain aspects. The first
step in the algorithm is to compare the exponent values of the
two operands. If the exponents differ by more than the width of
the significand, then the significands do not overlap. The result
is (modulo rounding) the larger of the two operands. How-
ever, if the exponent difference is less than the width of the
significand, the smaller operand must be normalized (shifted)
for adding with the larger operand. The amount of this shift
is variable and depends on the difference between the two
exponents. This is illustrated in Fig. 7, where exponent A is
larger than exponent B by 9. As a result, the smaller significand
(sigB) is shifted to the right by 9 bits to be normalized with
respect to the significand of A.

The variable shift of the smaller significand causes BDD
explosion during the addition operation. Even the functionality
of a single-precision FADD is not representable with BDDs.
The explosion is not a result of a non-optimal logic design, but
of the algorithm for floating-point addition. So, in addition to
the circuit result not being representable, the specification of
correct behavior is also not representable.

Fig. 7. Normalization of smaller significand for floating-point add.

The BDD complexity issue for the FADD algorithm is ad-
dressed by case splitting on the difference between the expo-
nents of the two operands. This scheme results in a constant
input to the shifter that, in turn, results in manageable BDD
sizes in the adder itself. Many different combinations of expo-
nents will result in the same difference, e.g., 13 − 1 = 12, 14 −
2 = 12, 60 016 − 60 004 = 12. Each constant shift amount is
represented by a symbolic predicate encoded parametrically on
the adder inputs. Fig. 8 shows the outline of the case splits
used. The first case split is on which of the two exponents is
greater. At the extremes, the exponents differ by more than the
width of the significand. All of these possibilities can be han-
dled by a single case split. The regions in the middle are where
the aligned significands overlap. One case is used for each
amount that the smaller operand must be shifted to the right.

The power of this approach is that each case split uses a dif-
ferent BDD variable ordering that is optimized for the specific
case. The cases in Fig. 8 are illustrated with a tree diagram.
Of course, a data-space decomposition approach based on the
parametric representation allows arbitrary collections of cases.
This is advantageous because it allows great flexibility in struc-
turing the verification, which, in turn, allows more readable
and robust verification scripts.

It is estimated that it took three engineer months for the
STE part of the FADD verification, with the caveat that some
of this time was spent developing the methodology and invent-
ing new techniques (e.g., dynamic weakening). This does not
include the time taken to do the theorem proving part that links
the reference model to IEEE specification. This part took an
additional three engineer months, including time to develop
the necessary results about bit-vector arithmetic, but of course
needs to be done only once. Having been “certified” by formal
proof as conforming to the IEEE standard, the FL reference
model can be reused across many implementations. Moreover,
the case-splitting proof strategy can also be reused. It therefore
now takes a matter of days to formally verify the IEEE com-
pliance of a new adder implementation, with most of the effort
confined to updating the circuit API.

Chen and Bryant [31] have applied a similar decomposi-
tion strategy to the verification of floating-point adders. Their
case splits are also based on the difference between the operand
exponents and they use a variation on the parametric rep-
resentation when symbolically simulating their circuit. Their
approach requires that they remove pipe-stage latches from
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Fig. 8. Case splits for true addition.

Fig. 9. IA-32 length-decoder high-level inputs and outputs.

the circuit before verification. In an era of high-speed circuits
and complex clocking schemes, this “unlatching” becomes
increasingly difficult and risky. To mitigate the risk, Chen and
Bryant rely on structural patterns in the circuit to preserve
some aspects of the clocking behavior in their unlatched circuit.
With STE, unlatching is unnecessary. Furthermore, in contrast
to this paper, Chen and Bryant verified only one data format
(double precision), one rounding mode (round to nearest), and
considered only normalized input data.

C. Instruction-Length Decoder

The final example is an instruction-length decoder for the
Intel IA-32 instruction set. This verification illustrates the use
of induction to reason about infinite streams in ThmTac, the
parametric representation for data-space decomposition, and
using FL as a specification language.

Instructions in the IA-32 instruction set can vary in length
from 1 to 11 bytes. Modern Intel processor implementations
have divided the decoding process into three parts: 1) a pre-
decode pipeline that marks instruction boundaries; 2) a pipeline
for aligning marked instructions; and 3) a final pipeline that
decodes aligned instructions using standard table-lookup tech-
niques. This example concerns the predecode pipeline, namely
the ILD. In this pipeline, instruction lengths are marked by
annotating a stream of instruction bytes with markers that
delineate the beginning and end of instructions.

The ILD has two primary inputs: 1) a fixed-length parcel of
instruction bytes; and 2) a wrap-around pointer (wrap pointer
for short) that indicates where to start decoding. The wrap

pointer is necessary because variable-length IA-32 instructions
are not word aligned in memory—a preceeding instruction can
end at any byte. Thus, some number of bytes in the current input
parcel may be part of an instruction from a previous parcel. The
two primary outputs to verify are the associated length marks
for the inputs and the new value of the wrap pointer for the
next parcel. The ILD is implemented as a pipelined datapath
with internal state. For the last instruction in each parcel, the
ILD computes the number of bytes that overflow into the next
parcel. This number, along with some additional information,
is stored as internal state. This is illustrated in Fig. 9.

Two attributes of the ILD make it difficult to verify. First,
its functional specification reflects the significant complexity
of the IA-32 instruction set. The instruction set has different
semantics depending on machine mode. Single “prefix” bytes
can change the semantics and even the length of the ensu-
ing instruction. The combination of 2500 different opcodes,
multiple addressing modes, and multiple machine modes con-
spire to create a very large space of possible behavior.

As with the FADD circuit, the specification difficulty is
addressed by crafting the specification directly in FL. The
functional specification includes textual tables similar in spirit
to those found in the programmer reference manual [68]. The
textual tables are translated into Boolean relations represented
as BDDs. The IA-32 relations are used to characterize legal
instruction sequences and the corresponding marking infor-
mation. The functionality of the specification is too complex
to specify directly. The advantage of using FL to specify the
functionality is that it can be organized using the same tech-
niques as a large piece of software.
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The second verification difficulty arises because the ILD
must correctly mark instruction streams of arbitrary length.
Obviously, STE cannot reason about arbitrary-length streams
directly. Instead, the correctness statement must be framed in
a richer logic (ThmTac in this instance) and induction must
be performed on the length of the stream. The induction step
is accomplished with STE, and the STE inference rules in
ThmTac are used to establish the overall correctness statement.

For this example, the base case consists of the beginning
of instruction sequences. While intuition might suggest that
this is a rare occurence, in fact, every taken branch instruction
marks the begining of an instruction sequence. The base case
is decomposed into cases, one for each possible alignment of
branch targets within an instruction parcel.

The inductive step consists of the situation where the
ILD continues to process instructions linearly. The inductive
hypothesis is that the ILD has marked all instructions correctly
up to the current cycle. The proof obligation establishes that the
ILD will correctly mark the instructions in the current cycle.
As with the base case, case splitting is required to reason about
every possible instruction alignment in the parcel.

A top-level case split is used to choose which architectural
mode (16- or 32-bit) the ILD is operating in. In total, there are
56 cases. Both the induction argument and case splitting are
managed with ThmTac. The induction reasoning is performed
directly in ThmTac’s logic; the case splitting is managed with
STE inference rules encoded as ThmTac tactics. The same
BDD variable order is used for all cases. An initial order is
created manually, after studying the specification, and then re-
fined by automatic reordering.

Two aspects of this verification would make it very difficult
in a platform without Forte’s features.

1) The specification is encoded by an FL function that
generates arbitrary-length streams. By breaking these
streams into fixed-length parcels that are the same length
processed by the pipeline, outputs and next-state values
can be computed without ever explicitly coding the
next-state function. The only way to explicitly code the
next-state function of the instruction pre-decoder would
be to create a separate hardware implementation—a
significantly more difficult process than writing it as a
recursive functional program.

2) Verifying such a specification in a traditional model
checker would require creating the product machine be-
tween specification and implementation and verifying
equivalence in the next cycle. This would require that the
specification and implementation machines have equiv-
alent “don’t care” sets—an infeasible requirement. Al-
ternatively, a specification of the “don’t care” sets would
have to be created, which is also a difficult proposition.

In summary, verification of the instruction pre-decoder
would have been difficult, if not impossible, without features
that are unique to the Forte system: A general-purpose program-
ming language for creating the specification and an interface in
the same system to STE.

The initial ThmTac proof required 2–3 weeks of effort.
Creating the initial specification of the IA-32 specification
was a tedious task and required 5–6 weeks, including the
initial debugging. Applying the proof to the ILD took another
3–4 weeks.

To preserve independence from internal design documents
for the hardware implementation, the specification was written
from a publicly available architecture reference manual. Once
created and debugged, the specification has been surprisingly
robust. The authors and other verification engineers have used
it to discover errata in several subsequent IA-32 processor
designs.

As new features have been added to the IA-32 instruction
set, it has been straightforward to add them to the formal
specification. When the first additions occurred, they were
added to the specification by the original proof author. Later
additions and ports to new microprocessor designs have been
performed by verification engineers that were not involved in
the original proof. These efforts have required 2–3 months.
Once the proof is ported to a new design, maintaining it is
relatively straightforward because of the input/output nature
of the specification, e.g., signal mappings are usually the only
changes required when the underlying RTL changes.

The verification times of the proof have continually de-
creased. When first performed about six years ago, the model-
checking part of the verification used 347 MB of memory and
273 minutes of computation time on a proprietary workstation.
On a modern microprocessor running Linux, the complete
verification uses 198 MB of RAM and only 9 min of CPU
time—a 30× improvement. Ongoing optimizations in Forte
are responsible for the improvement in memory utilization and
a factor of 3 improvement in the CPU time.

X. CONCLUSION

This paper has described the Forte formal-verification en-
vironment, which combines symbolic trajectory evaluation
(STE) and lightweight theorem proving in higher-order logic.
A guiding principle in the design of Forte is the view of formal
verification as an interactive activity, with the major result
being a set of proof scripts that can be used for debugging
and regression, and reused in future verification efforts target-
ing similar functionality. Proof-script development is viewed
as program development, and therefore, STE and lightweight
theorem proving have been interfaced and tightly integrated
with FL, a general-purpose functional programming language.
FL allows the environment to be customized and large proof
efforts organized and scripted effectively, and it also serves
as an expressive specification language at a level much above
the temporal logic primitives.

While developing Forte, the authors have been conscious
of the competing goals of capability and usability for the tools.
They are also keenly aware that a routine verification for the
technology developer may be virtually impossible for others
to duplicate. A methodology has been developed for using
Forte that aims to address these issues by making the Forte
environment usable in practice in industrial-scale problems by
verification engineers. The Forte environment coupled with
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the proposed methodology has proved to be highly effective
in large-scale industrial trials on datapath-dominated hardware
[3], [22], [23].
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