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Question 1: What are major pre-silicon
verification challenges?

Pre-silicon verification checks whether the im-

plemented design meets defined specifications.

Both simulation-based techniques and formal

methods are used at different levels of abstraction,

from the architectural level to gate-level netlists.

Current verification approaches, however, are too

slow and simply unable to handle the growing

size and complexity of Integrated Circuits (ICs).

Simulation is several orders of magnitude slower

than actual silicon. Emulation and Field-

Programmable Gate Array (FPGA) prototyping offer

faster performance, but struggle to scale for large

designs. Formal verification can be applied in cer-

tain situations, e.g., individual arithmetic units or

protocols, but faces similar

scalability challenges for

full chip-level verification.

As a result, “difficult” and

often critical design flaws

(bugs) frequently escape

pre-silicon verification. De-

sign bugs can be broadly

classified as follows:

1) logic bugs that are caused by (logic) design

errors;

2) electrical bugs that are caused by interactions

between a design and its “electrical” state.

Existing pre-silicon verification is insufficient for

“difficult” logic bugs. It also does not adequately

address electrical bugs that appear only after ICs

are manufactured.

Question 2: Why is post-silicon
validation important and what
challenges does it face?

The growing number of design bugs that escape

pre-silicon verification means that there is an in-

creasing dependence on post-silicon validation of

manufactured ICs in actual system environments

to detect and fix them. These challenges get fur-

ther magnified with the slowdown of the silicon

CMOS (Dennard) scaling, as ICs incorporate tre-

mendous design complexity (multiple processor
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cores; accelerators; uncore components1; power,

thermal, and reliability management) to meet per-

formance and energy-efficiency targets.

A variety of tests (random instruction tests,

architecture-specific focused tests, instruction

traces, and end-user applications) are run on man-

ufactured ICs to detect bugs. At-speed tests run on

silicon are orders of magnitude faster than the sim-

ulations used in pre-silicon verification. Thus, a

large number of tests can be run. However, cover-

age metrics for post-silicon validation tests are an

open challenge. For manufacturing tests, various

well-established test coverage metrics (e.g., single-

stuck-at coverage) exist. These metrics have been

experimentally shown to be effective in detecting

manufacturing defects. Metrics such as code cov-

erage and assertion coverage are used during

pre-silicon verification, but are less standardized.

For post-silicon validation, coverage metrics are in

their infancy and are highly challenging (partially

due to very limited controllability and observability

with traditional post-silicon validation tests).

Simply detecting a bug during post-silicon vali-

dation is also not sufficient. Upon bug detection,

post-silicon bug localization aims to identify a bug

trace (a sequence of inputs, e.g., instructions, that

activate and detect the bug) and the hardware de-

sign block containing the bug. Existing post-silicon

validation and debug practices are mostly ad hoc,
resulting in very high costs. The effort to localize

bugs from observed system failures (e.g., dead-

locks, crashes, output errors) often dominates over-

all cost. It might even take months of manual work

to localize and debug a single bug [1], [2].

Question 3: Why are existing
post-silicon validation and debug
techniques insufficient?

Many existing techniques rely on trace buffers,

small memories that record a selected set of sig-

nals, typically for 1000 clock cycles. Simply re-

cording so few cycles of history is not sufficient, as

explained in Question 4.

Failure reproduction (reexecuting the failure-

causing stimuli from an error-free state) is also very

difficult due to nondeterministic behaviors (inter-

rupts, I/O functionalities, interactions between

multiple processor cores, and operating system

functionalities such as context switches).

The sheer size of current designs poses major

challenges as well. System-level simulation is sev-

eral orders of magnitude slower than actual sili-

con. The application of existing formal analysis

and Boolean satisfiability for bug localization is

severely limited by design size.

While assertions can be used for post-silicon

validation and debug, manual assertion creation is

difficult. Creating assertions that can be efficiently

implemented in hardware is even more challeng-

ing. The number of assertions often explodes with

automatic assertion generation, and many of these

assertions are ineffective at catching bugs.

Question 4: What can we do to “really”
advance post-silicon validation and
debug?

We must first understand the “real” problem:

very long error detection latencies, as demon-

strated in [3]–[6]. Error detection latency is the

time elapsed between when a test activates a bug,

and when the generated error causes an observ-

able failure (e.g., system crash, timeout, deadlock,

exception). Error detection latencies for “difficult”

bugs can exceed millions or even billions of clock

cycles [4], [5]. It is extremely difficult to trace that

far back in a system’s operation, especially for

today’s complex SoCs, quickly making existing

techniques ineffective.

1Uncore components refer to components in an IC that are neither processor

cores nor coprocessors. Examples include interconnect fabrics and cache/

memory controllers.

Figure 1. EDDI-V transformation with Inst min ¼
Inst max ¼ 3.
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Question 5: How do you overcome
long error detection latencies?

Our previous work, Quick Error Detection (QED),

is highly effective at quickly detecting logic and elec-

trical bugs inside processor cores, uncore compo-

nents, accelerators, and components related to

power-management features [3]–[7]. QED drastically

reduces error detection latencies by several orders

of magnitude. Since bugs are detected much quick-

er, QED simultaneously improves bug coverage.

QED consists of a set of transformations that system-

atically convert a wide variety of existing tests (referred

to as original tests) into new QED family tests [3], [4].

QED transformations can also be implemented en-

tirely in software, and are consequently readily appli-

cable to existing ICs. Augmenting QED with hardware

(e.g., [6] and [7]) can further improve error detection

latency, coverage, and test execution time.

The software-only QED transformations are

Error Detection Using Duplicated Instructions For

Validation (EDDI-V), Control Flow Checking Using

Software Signatures For Validation (CFCSS-V), Con-

trol Flow Tracking Using Software Signatures For

Validation (CFTSS-V), and Proactive Load and

Check (PLC) as detailed in [3] and [4]. We pro-

vide examples of EDDI-V and PLC below.

EDDI-V targets bugs inside processor cores by fre-

quently checking the results of original instructions

against the results of duplicated instructions created

by EDDI-V. First, the register and memory spaces are

divided into two halves,2 one each for the original in-

structions and the duplicated instructions. For every

load, store, arithmetic, logical, shift, or move instruc-

tion in the original test, EDDI-V creates a duplicate

instruction that performs the same operation, using

the duplicate registers and memory. Both instruction

streams execute in the same order, but are inter-

twined. To compare intermediate results from both

instruction streams, the transformation inserts fre-

quent check instructions of the following form:

CMP Ra; Ra0

where Ra and Ra0 are the original and (correspond-

ing) duplicate registers, respectively. A mismatch in

any check instruction indicates an error (i.e., the

QED test fails).

QED implementations can be intrusive; i.e., a

transformation might prevent a bug from being

detected. To address intrusiveness [5], the inser-

tion of the duplicated and check instructions can

be controlled by the parameters Inst min and

Inst max , the minimum (maximum) number of

instructions from the original test that execute be-

fore any duplicated or check instructions execute.

PLC targets bugs inside uncore components by pro-

actively performing frequent loads from memory

(through those uncore components) and checking the

values loaded. Starting with an EDDI-V-transformed

QED test, PLC inserts Proactive Load and Check opera-

tions throughout the test, which runs on all cores and

all threads. Figure 2a shows code transformed with PLC

operations, which are detailed in Figure 2b. Each PLC

operation checks the values in memory for a selected

set of variables (PLC list). For each selected variable, a

PLC operation compares the value from the memory

reserved for original instructions (address A) and dupli-

cated instructions (address A0 ). Any mismatch during

the PLC check (CMP Rt, Rt’) indicates an error. Several

PLC strategies are discussed in [5] and [6].

We demonstrated the effectiveness of QED on

multiple hardware platforms (e.g., Intel Core i7 SoC)

using “difficult” bug scenarios from commercial mul-

ticore SoCs [3]–[7]. QED shortens error detection la-

tencies by up to nine orders of magnitude (e.g.,

from billions of clock cycles to around ten cycles for

a multicore Freescale SoC). Furthermore, QED en-

ables up to a fourfold increase in bug coverage.

Question 6: What is the difference
between QED and symbolic QED?

Symbolic QED [8] is based on QED principles.

It can be used for both pre-silicon verification and

Figure 2. PLC example with Inst min ¼ Inst max ¼ 4.

2For EDDI-V, if it is not possible to divide the registers into two halves (i.e., if the

original test needs to use all of the available registers), we can use memory to

store the register values [5].
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post-silicon validation. It uses Bounded Model

Checking (BMC) [9] for logic bug detection and

localization by analyzing the RTL design. Given a

system model and a property to be checked, BMC

formally analyzes the model to find whether the

property can be violated within a bounded num-

ber of steps. If it can be violated, then BMC reports

a counterexample showing the steps required.

Symbolic QED uses the design RTL for the system

model. For the property, it checks whether a QED test

exists that could fail (detailed in Question 8). The

BMC tool searches the space of all possible QED tests

(within its bound). In [8], symbolic QED is based on

the EDDI-V and PLC transformations; however, it can

also be expanded for CFCSS-V and CFTSS-V.

Symbolic QED localizes bugs in two ways. If

the BMC returns a failing QED test, then it is not

possible to find a shorter failing QED test (with

the corresponding QED transformations) that acti-

vates the same logic bug [9]. Also, symbolic QED

uses partial instantiations to help localize the bug

to various parts of the design (Question 10).

Question 7: What are the key benefits
of symbolic QED?
1) Symbolic QED is applicable to any SoC design

as long as it contains at least one programmable

processor core (a generally valid assumption).

2) It is broadly applicable for logic bugs inside

processor cores, accelerators, and uncore

components.

3) It does not require failure reproduction or

simulation.

4) It is a fully automated approach for logic bug lo-

calization without requiring human intervention.

5) It does not require any additional hardware to

localize logic bugs, a significant advantage

over other techniques that must add area over-

head to the design (e.g., for trace buffers).

6) It does not require design-specific assertions

and provides a very succinct and generic prop-

erty to quickly detect and localize logic bugs.

Question 8: How do you create formal
properties for symbolic QED?

Creating “good” properties to check using for-

mal techniques (such as BMC) is a known difficult

challenge. Symbolic QED fully automates this

process by using a universal property (i.e., a prop-

erty that is effective for finding a large class of

bugs, regardless of the specific hardware blocks

present in the SoC) that is based on QED testing.

The property provided to BMC is derived from the

check that would detect the error during a QED

test. The BMC tool attempts to find a counterexam-

ple to the following property:

^�� 0:: n
2
�1f gRa ¼¼ Ra0

where n is the number of registers defined by the

ISA. Here, (for a 2 f0::n=2� 1g), Ra and Ra0 corre-
spond to registers allocated for original instruc-

tions and duplicated instructions, respectively. This

property identifies bugs detected both by EDDI-V

and PLC QED tests.

Question 9: How do you create
environmental constraints for
symbolic QED?

If a BMC tool does not impose any constraints on

its inputs while searching for a counterexample, it

may find counterexamples that consist of invalid in-

puts. Consequently, environmental constraints (con-

straints that disallow inputs that would not be seen in

actual deployment) must be added, and this provides

another challenge for formal analysis.

In symbolic QED, adding environmental con-

straints is straightforward. Specifically, the BMC tool

must only consider sequences of instructions that

correspond to QED tests. We accomplish this with-

out the extensive manual work required in tradi-

tional formal analysis using two mechanisms.

1) We constrain the inputs to the instruction fetch

unit (of each processor core) to be arbitrary

but valid instructions, directly obtained from

the Instruction Set Architecture (ISA).

2) We add a new QED module to the fetch unit of

each processor core during BMC (details in [8]).

The QED module automatically performs the

EDDI-V transformation on-the-fly for any input se-

quence explored during BMC. The QED module

is only used within the BMC tool and is not

added to the manufactured IC; i.e., there is no

performance/area/power overhead, even in post-

silicon validation. Including load and store in-

structions enables our approach to activate and

detect bugs inside uncore components as well
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as processor cores. The

QED module is quite simple

and needs to be designed

only once for a given ISA.

Figure 3 shows an example

of transformations by the QED

module. Figure 3a shows the se-

quence of input instructions se-

lected by the BMC tool (BMC

can select any sequence of

valid instructions). Figure 3b

shows the actual instructions

executed by the processor

[LOAD(A) is duplicated as

LOAD(A’)]. Thus, comparing

the registers (using the BMC tool) is equivalent to a

PLC check on variables A and A’. There are four

events here: 1) store to A by core 1; 2) load from A

by core 2; 3) store to A’ by core 1; and 4) load from

A’ by core 2. As explained in [8], to avoid false fails

without using locks, the QED module ensures that

the order of 3) and 4) is the same as the order of

1) and 2), even if multiple cores load from A and A’.

The starting architectural state of the BMC tool

must also be QED consistent, with matching origi-

nal and duplicate registers and memory locations.

This can be a reset state but runtimes improve by

up to 5× [8] if the initial state is obtained from a

fast, high-level simulation of a benchmark stopped

when all QED values are consistent.

Question 10: How can symbolic QED
scale for large designs?

A major challenge with BMC is handling large de-

signs, which can significantly slow down a BMC tool

or even cause it to fail while loading the design. How-

ever, symbolic QED does not require analysis of an

entire design at once. A key property of QED checks

is that they are compositional, i.e., they are pre-

served across partial instances of a design (as long

as the instance has at least one processor core).

Symbolic QED handles large designs through par-

tial instantiation using two design reduction tech-

niques (details in [8]). Technique 1 takes all

components with multiple instances, and repeatedly

reduces their count by half (until there is only one

left). For example, in a multicore SoC, the processor

cores are removed until there is only one processor

core left. Technique 2 removes a module if its

removal does not divide the design into two discon-

nected components. For example, if a design has a

processor core connected to a cache through a

crossbar, the crossbar is not removed (without also

removing the cache). Combinations and repetitions

of the two techniques are considered when produc-

ing partial instances (with at least one processor

core) for BMC. The partial instances can be ana-

lyzed by the BMC tool independently (in parallel).

We successfully demonstrated this technique on

a 500-million-transistor, multicore design in [8].

Question 11: What symbolic QED
results have been published?

In [8], we demonstrated the effectiveness of sym-

bolic QED on the OpenSPARC T2 SoC (http://www.

opensparc.net), an open-source version of the Ultra-

SPARC T2, a 500-million-transistor SoC. For BMC, we

used Mentor Graphics’ Questa Formal tool (version

10.2c_3). We simulated a wide variety of “difficult”

logic bugs (related to processor cores, uncore com-

ponents, and power management features) that

occurred in various commercial multicore SoCs.

They are considered difficult because they took a

long time (days to weeks) to localize. We com-

pared three approaches for obtaining bug activa-

tion traces: an original benchmark test (FFT from

SPLASH-2 [10]), the QED transformed benchmark

test, and symbolic QED with the BMC initialized

to a QED-consistent state from the benchmark.

Table 1 shows clearly that symbolic QED auto-

matically produces bug traces up to six orders of

magnitude shorter than traditional post-silicon

Figure 3. Example of QED transformation by the QED module: (a) the
original instruction sequence on cores 1 and 2; and (b) the actual
transformed instructions executed.
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validation test that rely on end-result checks, and

up to five orders of magnitude shorter than the

QED test. Figure 4 shows the number of compo-

nents the bugs were localized to by symbolic QED.

Each bug can be further localized from the spe-

cific activation trace obtained. Finally, symbolic

QED correctly and automatically produces short

bug traces for all bugs in less than 7 h, without

trace buffers or any other additional hardware. Sev-

eral strategies for further improving BMC runtimes

for partial instances are discussed in [8].

Question 12: How is symbolic QED an
automated approach?

Symbolic QED requires no (or minimal) human

intervention. It does not require manual generation

of formal properties or environmental constraints.

(The QED module is designed once for each ISA,

and automatically invoked.) The partial instances

(Question 10) are also created

automatically. Provided that

the BMC tool is set up to run

through each partial instantia-

tion, no further input is required.

Question 13: Is
symbolic QED limited
to bugs inside
processor cores?

No, as shown in Table 1 and

Question 8 (further detailed in

[8]). We simulated a variety of

bug scenarios, abstracted from

actual “difficult” bugs that oc-

curred in commercial multicore

SoCs. These included logic

bugs inside uncore components

(i.e., cache controllers, memory

controllers, and on-chip inter-

connection networks), power-

management-related bugs, and

processor core bugs. Symbolic

QED successfully localized all of

these bug scenarios, simulated

on the OpenSPARC T2 SoC.

Question 14: How can
symbolic QED be used
for post-silicon
validation and debug?

Some logic bugs can be very difficult to acti-

vate, because they require a very specific state that

can only be reached by executing many specific

instructions. As a result, during pre-silicon verifica-

tion, symbolic QED may fail to detect this type of

bug if it is not started from a close enough initial

state; the trace would be too long for the BMC tool

to discover. During post-silicon validation, however,

QED tests can detect these bugs. The correspond-

ing architectural states (prior to bug detection)

can then be used to initialize the BMC tool for

symbolic QED, making it possible to generate short

bug activation traces and localize bugs.

Symbolic QED can be further enhanced during

post-silicon validation through a bit of additional

hardware (1%–2%) to reduce the size of the design

analyzed by the BMC tool. This hardware does re-

quire QED post-silicon validation tests to be run first.

In [8], we introduced small hardware structures,

Table 1 Results comparing original tests (no QED), QED tests, and symbolic QED with the

(minimum, average, maximum) bug trace length in instructions and clock cycles and

(minimum, average, maximum) BMC runtimes.
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change detectors, to monitor signals between hard-

ware blocks and record if changes occur within a

sliding window of immediately preceding execution

cycles (e.g. the last 1000 cycles). When a QED test

detects an error, if no signal changes are observed at

the boundary of an uncore component (during the

execution window being analyzed), then we ex-

clude that component as a candidate contributing to

the bug. This reduces the number of components for

the BMC tool to analyze. The short error detection la-

tencies with QED (typically less than 1000 cycles) al-

low for a small monitored sliding window, reducing

the area impact.

In bug localization experiments using the

OpenSPARC T2 SoC, highly utilized components

(caches, memory controllers, crossbar) usually

could not be excluded by change detectors.

However, peripheral components with sporadic

activities during post-silicon validation (e.g., I/O

modules) could frequently be removed. Monitor-

ing the latter required an area overhead of just

0.98% (versus 1.86% for the full design).

Question 15: What are the limitations of
symbolic QED?

Ensuring that the design size is small enough to

be analyzed by the BMC tool will remain a key

challenge of implementing symbolic QED. We have

demonstrated on the OpenSPARC T2 how partial

instantiation and change detectors (during post-

silicon validation) can address this problem. We

are actively seeking larger designs to further test

these approaches. Choosing a good initial state is

another challenge, especially when symbolic QED

is used during pre-silicon verification (as discussed

in Question 14, QED tests can help with this prob-

lem during post-silicon validation).

Question 16: What are some of the
future directions for symbolic QED?
1) Electrical bugs: Extending symbolic QED to lo-

calize electrical bugs requires two additional

features: a model of the digital impact of elec-

trical bugs, and an efficient technique to re-

cord the state of the IC during post-silicon

validation using QED. Formal analysis of the

captured error trace could then be used to lo-

calize electrical bugs. The use of symbolic

QED for performance bugs (design errors that

might affect an IC’s performance while

preserving correct logic functionality) is an

open research question.

2) Software verification and debug: As demon-

strated in [7], hybrid QED (H-QED) quickly de-

tects bugs in C/C++ programs corresponding to

high-level design descriptions of hardware ac-

celerators (in addition to electrical bugs in

hardware implementations). H-QED improves

error detection latencies by up to two orders

of magnitude and bug detection coverage by

3×. Since C/C++-level bugs were successfully

detected by H-QED, symbolic QED approaches

can be potentially explored for general soft-

ware verification.

3) Analog/mixed-signal blocks: Partial instantia-

tion in symbolic QED (Question 10) can omit

analog/mixed-signal blocks as needed. If a bug

is not localized within the digital blocks, this is

strong evidence that it originates from the ana-

log/mixed-signal blocks. If digital models for

analog/mixed-signal blocks exist (e.g., in [11]),

symbolic QED can be used for those blocks

as well.

4) Full system-level fault localization: Symbolic

QED, together with QED, can potentially enable

full system-level fault localization of large-scale

systems consisting of several ICs. This is a

highly challenging problem, as explained in

[12]. Once QED tests identify incorrect ICs in

the system, symbolic QED may be used to lo-

calize and root-cause faults inside those ICs.

5) Diagnosis of manufacturing defects during

functional testing and system-level testing:

Functional tests and system-level tests routinely

supplement scan tests to detect manufacturing

defects in ICs. However, diagnosing manufactur-

ing defects from functional test/system-level test

failures is extremely difficult. Fault diagnosis is

Figure 4. Percentage breakdown (by candidate mod-
ules) of bugs localized by symbolic QED.
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important for several reasons including yield

learning, test quality improvement, and improv-

ing IC reliability. A combination of QED and

symbolic QED, together with fault models used

for manufacturing testing, could enable effective

fault diagnosis during functional and system-

level testing.
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