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Abstract—We present A-QED (Accelerator-Quick Error 
Detection), a new approach for pre-silicon formal verification of 
stand-alone hardware accelerators. A-QED relies on bounded 
model checking -- however, it does not require extensive design-
specific properties or a full formal design specification. While A-
QED is effective for both RTL and high-level synthesis (HLS) 
design flows, it integrates seamlessly with HLS flows. Our A-
QED results on several hardware accelerator designs 
demonstrate its practicality and effectiveness: 1. A-QED 
detected all bugs detected by conventional verification flow. 2. 
A-QED detected bugs that escaped conventional verification 
flow. 3. A-QED improved verification productivity 
dramatically, by 30X, in one of our case studies (1 person-day 
using A-QED vs. 30 person-days using conventional verification 
flow). 4. A-QED produced short counterexamples for easy 
debug (37X shorter on average vs. conventional verification 
flow). 

 

Keywords— Bounded Model Checking, Formal verification, 
Pre-silicon verification, Accelerators, QED, Quick Error Detection  

I. INTRODUCTION 
Pre-silicon verification is used to detect logic design flaws (logic 

bugs) before integrated circuits (ICs) are manufactured. Several 
industrial reports highlight significant challenges associated with 
existing pre-silicon verification methodologies (e.g., [Foster 15]). 
This paper is about pre-silicon verification of stand-alone hardware 
accelerators. Unlike general-purpose processors, hardware 
accelerators implement a (set of) specific function(s) (e.g., 
encryption, 3D Rendering, or Deep Neural Network inference 
[Cong 17, Zhou 18, Hao 19]) and are widely used for building 
energy-efficient (heterogeneous) System-on-Chips (SoCs) [Cong 
12, Cota 15]. While many publications target processor verification 
(too many to enumerate), very few address accelerator verification. 
Hardware accelerator verification remains highly challenging 
because: 1. Unlike processors with a detailed specification (the ISA 
or the Instruction Set Architecture), hardware accelerators often lack 
precise descriptions of their functionality and interfaces; 2. SoCs 
integrate a wide variety of functions and there can be many design 
variants (employing a rich diversity of design techniques) even for 
the same hardware accelerator function (e.g., various energy and 
execution time targets). Each design variant must be verified 
thoroughly and quickly; and, 3. Accelerator verification lacks 
decades of rich experience unlike processor verification. 

We present A-QED (Accelerator-Quick Error Detection), a new 
formal technique for pre-silicon verification of stand-alone 
hardware accelerators. A-QED is inspired by Symbolic QED [Lin 
15, Singh 18] (which targets designs containing processor cores) and 
other self-consistency techniques for processors (e.g., [Jones 96]).  
A-QED relies on Bounded Model Checking (BMC) [Clarke 01] to 
symbolically analyze input sequences of increasing lengths for self-
consistency, i.e., whether an operation with the same inputs always 
results in the same outputs. A-QED targets stand-alone verification 
of hardware accelerators (i.e., A-QED does not require the 
accelerator to be integrated inside a larger SoC). In addition to 
design reuse, a stand-alone technique has several benefits, including 
better scalability and better bug visibility (i.e., bugs that may be 
difficult or impossible to reach in a specific SoC may be triggered 
by a short trace during stand-alone analysis). 

A-QED is readily applicable for an important and commonly-
used class of accelerators known as Loosely-Coupled Accelerators 
(LCAs) [Cong 12, 17, Zhou 18, Hao 19]. Unlike tightly-coupled 
accelerators (e.g., those directly integrated within a processor 

pipeline), LCAs are generally placed on the SoC’s on-chip 
interconnection network, outside of the processor core(s). This 
separation provides several advantages: 1. LCAs can substantially 
improve energy and execution time by offloading complete tasks 
[Cong 12]; 2. LCAs can directly access memory with high 
bandwidth [Cota 15]; and, 3. LCAs can be reused more easily across 
different SoCs (making independent verification of stand-alone 
LCA designs crucial). Our A-QED approach in this paper targets 
stand-alone LCAs that perform non-interfering operations, i.e., 
operations which always generate the same result for a given input 
(not to be confused with combinational circuits). Many LCAs 
belong to this category (formal model in Sec. III). 

An orthogonal trend in hardware accelerator design is the use of 
High-Level Synthesis (HLS) for design productivity. In HLS, the 
design is described in a high-level language (e.g., C/C++ or domain-
specific language), and translated to RTL (e.g., Verilog). While A-
QED can be used for both HLS and RTL designs, A-QED leverages 
HLS automation to considerably reduce A-QED setup time.  

We applied A-QED to multiple accelerator designs: a memory-
controller unit design for a CGRA (coarse-grained reconfigurable 
architecture) as well as HLS designs. The memory-controller unit 
design study allowed an apples-to-apples comparison of A-QED vs. 
conventional verification flow. Our study shows: 
1. A-QED detected all bugs detected by the conventional 

verification flow. A-QED detected more bugs that escaped the 
conventional flow.  

2. A-QED enabled a 30-fold improvement in verification 
productivity (1 person-day using A-QED vs. 30 person-days 
using the conventional flow), stemming from multiple aspects 
of A-QED: (a) A-QED does not require extensive design-
specific properties or assertions or a full functional 
specification (that are often generated manually and are error-
prone); (b) progress in BMC tools; (c) (optional) A-QED-HLS 
integration. 

3. A-QED generated short counterexamples for easy debug: 37-
fold shorter on average (6 cycles on average using A-QED vs. 
224 using the conventional verification flow). 

In addition, we introduce the formal basis for A-QED that enables 
a crisp understanding of its effectiveness as well as a thorough 
characterization of logic bugs detected by A-QED. 

The rest of this paper is organized as follows. Sec. II provides an 
overview of the accelerator model targeted by A-QED in this paper. 
Sec. III presents a formal model of such accelerators. Sec. IV details 
how A-QED leverages HLS. Results are presented in Sec. V, 
followed by related work in Sec. VI.  Sec. VII concludes this paper.     

II. ACCELERATOR MODEL TARGETED IN THIS PAPER 
Various accelerator models exist, based on various design 

characteristics: e.g., programmable vs. fixed-function architectures, 
asynchronous vs. synchronous communication with the host (e.g., 
processor core(s)), LCA vs. tightly-coupled [Patel 08, Cascaval 10, 
Cota 15]. While our general A-QED approach may be adapted to 
any accelerator, we focus on a specific model in this paper (formally 
defined in Sec. III). First, we informally explain the characteristics 
of accelerators that fit our model: 

a) The accelerator is an LCA. (Sec. I, Fig. 1). Since an LCA is 
connected to the SoC interconnect, it can directly access system 
components such as memories. 

b) A handshake protocol is used to communicate between the 
LCA and the host (e.g., processor core). This protocol must define 
when the inputs to/outputs from the accelerator are valid, and also 
when the accelerator and the host are each ready to receive inputs.  



c) The LCA execution is non-interfering; i.e., the result produced 
by the accelerator for a given input is independent of any other 
inputs received (earlier or later). LCAs should not be confused with 
combinational circuits – they are complex sequential circuits.  

 

 
Fig. 1. Accelerator model in this paper. 

 
A. Motivating example 

We present a bug scenario to motivate A-QED. Fig. 2 shows an 
LCA design where four buffers forward inputs to execution units 
(𝑓(𝑥)), each of which takes several cycles to compute a result. Due 
to a bug, the clock_enable signal is disconnected from Buffer 4, 
which causes the design to produce incorrect outputs. 

 

 
Fig. 2. Bug example: clock_enable disconnected from Buffer 

4. 
The design generates outputs O1, O2, …, for inputs I1, I2, …, 

where 𝑂& = 𝑓(𝐼&). The Accelerator Controller alternates between the 
four buffers (which act as input queues), shifting an input from each 
one in turn to the respective execution unit, if it is ready to execute 
it. For the 16 values loaded in the buffers (Fig. 2), the expected 
outputs are O1, O2, O3, O4, …, O16 for inputs I1, I2, I3, I4, …, I16. 
When clock_enable = 0, the entire design pauses execution, 
maintaining its current values, and waits for clock_enable to go to 
1. Suppose it is Buffer 4’s turn to send inputs to its execution unit 
when clock_enable turns to 0. Since clock_enable is not connected 
to Buffer 4, Buffer 4 will shift I4 to its execution unit despite 
clock_enable = 0. However, since the execution unit is disabled, it 
will not capture I4. In the next cycle, when clock_enable returns to 
1, the Accelerator Controller will erroneously send I8 to the 
execution unit corresponding to Buffer 4. The generated outputs are 
O1, O2, O3, and the incorrect O8. The bug can only be detected if the 
design is disabled on a cycle when it is Buffer 4’s turn to shift out, 
and when Buffer 4 is not empty and not currently waiting for the 
execution unit to finish.  

III. FORMAL MODEL 
In this section, we formalize the class of accelerators described 

informally above. We define a transition system capable of 
modeling a general set of accelerators. Such transition systems 
implicitly include a clock signal to synchronize transitions between 
system states [Keller 76]. We formalize the properties that we expect 
to hold for the accelerators we target in this paper. We also show 
that these properties imply total correctness, i.e., informally, for a 
given input, an accelerator eventually produces a correct output. 

In Fig. 3, we provide an overview of our accelerator model. Let 
𝐵 = {⊥, ⊤} be the set of Boolean values. An accelerator Acc receives 
three inputs, an action, data, and the host ready signal. It generates 

two outputs, the result of an action and data, and the input ready 
signal. We define an accelerator formally as follows. 

 

 
Fig. 3. Accelerator transition system model (Def. 1).  

 
 

Definition 1: An accelerator is a finite state transition system 
𝐴𝑐𝑐:= (𝑆, 𝑠&4&5, 𝑟𝑑𝑖𝑛, 𝐴, 𝑎;, 𝐷, 𝑂, 𝑜;, 𝑇, 𝐹), where   

    • 𝑆 is a finite set of states of the design;  
    • 𝑠&4&5 ∈ 𝑆 is the initial state;  
    • 𝑟𝑑𝑖𝑛: 𝑆 → 𝐵  is the input-ready predicate which indicates 

whether the accelerator is in a state that is ready to accept an input;  
    • 𝐴 is a finite set of actions supported by the accelerator, each 

specifying an operation to perform on the corresponding data input 
to produce an output;  

    • 𝑎; ∈ 𝐴 is a distinguished element of 𝐴 used to indicate that 
no operation is being selected or that the provided input is not valid;  

    • 𝐷 is a finite set of data inputs;  
    • 𝑂 is a finite set of outputs;  
    • 𝑜; ∈ 𝑂 is a distinguished element of 𝑂 used to indicate that 

no output is being produced or that the output produced is not valid;  
    • 𝑇: 𝑆 × 𝐴 × 𝐷 × 𝐵 → 𝑆 is the state transition function; 
    • 𝐹: 𝑆 → 𝑂 is the output function for action and data inputs.  
An accelerator 𝐴𝑐𝑐 starts in the initial state 𝑠&4&5. The execution 

of 𝐴𝑐𝑐  is determined by a sequence of inputs from the set 𝐼 =
𝐴 × 𝐷 × 𝐵. Each input 𝑖𝑛 ∊ 𝐼 includes an action (i.e., a function or 
operation), the input data, and a Boolean value which is the host 
ready signal, representing whether the host is ready to accept any 
output being produced in the current state. We write 𝑎(𝑖𝑛), 𝑑(𝑖𝑛), 
and 𝑟𝑑ℎ(𝑖𝑛) for the first (action), second (data), and third (host 
ready) elements of an input 𝑖𝑛, respectively. Sometimes, it is useful 
to focus on just the action and data, which we denote by 𝑎𝑑(𝑖𝑛) =
(𝑎(𝑖𝑛), 𝑑(𝑖𝑛)). Given a state 𝑠 and an input 𝑖𝑛, the next state is 
given by 𝑠′ = 𝑇(𝑠, 𝑎(𝑖𝑛), 𝑑(𝑖𝑛), 𝑟𝑑ℎ(𝑖𝑛)), which we also write as 
𝑠′ = 𝑇(𝑠, 𝑖𝑛). At each state 𝑠 , 𝐴𝑐𝑐  produces an output 𝑂 = 𝐹(𝑠) 
and the input ready predicate, 𝑟𝑑𝑖𝑛. 

We use 𝒗 to denote a sequence with elements denoted 𝑣&  and 
length |𝒗| , so 𝒗 = 〈𝑣J,… , 𝑣|𝒗|〉 . We concatenate sequences (and 
with a slight abuse of notation, single elements with sequences) 
using ’⋅’, e.g., 𝒗 = 𝑣J ⋅ 𝒗′, where 𝒗′ = 〈𝑣N,… , 𝑣|𝒗|〉. 

Let 𝒊𝒏 be a sequence of inputs with |𝒊𝒏| = 𝑘. From a state 𝑠R, the 
sequence 𝒊𝒏 induces a sequence 𝒔 of states of the same length such 
that 𝑠& = 𝑇(𝑠&TJ, 𝑖𝑛&)  for 1 ≤ 𝑖 ≤ 𝑘 . We abbreviate this as 𝒔 =
𝑇(𝑠R, 𝒊𝒏). We lift functions on sequence elements to functions over 
sequences in the natural way: e.g., 𝐹(𝒔) = 𝐹(𝑠J) ⋅ 		⋯		⋅ 𝐹(𝑠Y). 

Because it is relevant to the case studies we present later, we use 
a ready-valid protocol: only inputs 𝑖𝑛 with 𝑎(𝑖𝑛) ≠ 𝑎; , sent in a 
state 𝑠 where 𝑟𝑑𝑖𝑛(𝑠) holds, are considered inputs provided to the 
accelerator; furthermore, only outputs different from 𝑜;  provided 
when 𝑟𝑑ℎ(𝑖𝑛)  holds are considered part of the output sequence 
produced. Formally, suppose that 𝒔 = 𝑇(𝑠R, 𝒊𝒏), with |𝒊𝒏| = 𝑘. The 
sequence of captured inputs, 𝐶&4(𝑠R, 𝒊𝒏) is the subsequence of 𝒊𝒏 
obtained by keeping only elements 𝑖𝑛&  where 𝑎(𝑖𝑛&) ≠ 𝑎;  and 
𝑟𝑑𝑖𝑛(𝑠&)  holds. Similarly, the sequence of captured outputs, 
𝐶\]5(𝑠R, 𝒊𝒏) is the subsequence of 𝐹(𝑠R ⋅ 𝒔) such that 𝐹(𝑠&) ≠ 𝑜; 
and 𝑟𝑑ℎ(𝑖𝑛&) holds (where 0 ≤ 𝑖 < 𝑘). Note that 𝑑(𝑖𝑛)	is ignored 
if 𝑎(𝑖𝑛) = 𝑎;, and the value of 𝑟𝑑ℎ(𝑖𝑛) is independent. We next 
formalize two general properties for the class of accelerators we 
target: functional consistency and responsiveness. 
A. Functional Consistency (FC)  

When applying A-QED in practice, we do not check the outputs 
produced by an accelerator against a formal specification (which 



may or may not be available). Instead, we check whether its output 
function has the property of functional consistency (FC) in a 
mathematical sense: if we provide the accelerator with a sequence 
of valid inputs, then we expect it to produce a sequence of valid 
outputs such that the output values are the same whenever the 
corresponding input values are the same. This property captures the 
notion of non-interfering execution (Sec. II). Note that, unlike 
equivalence checking, we check the design against itself at different 
times, removing the need for a specification or a golden model. 

Definition 2:  An accelerator Acc is functionally consistent if for 
all input sequences 𝒊𝒏, 𝒊𝒏′, if   

    • 𝒊𝒏𝒗 = 𝐶&4(𝑠&4&5, 𝒊𝒏) with |𝒊𝒏𝒗| = 𝑘 and  
    • 𝒐𝒗 = 𝐶\]5(𝑠&4&5, 𝒊𝒏 ⋅ 𝒊𝒏′) with |𝒐𝒗| ≥ 𝑘,  
 then ∀	1 ≤ 𝑖 < 𝑘. 𝑎𝑑(𝑖𝑛&f) = 𝑎𝑑(𝑖𝑛Yf) → 𝑜&f = 𝑜Yf  
Here 𝒊𝒏′ provides the additonal inputs needed to generate at least 

𝑘  outputs. Note that, a functionally consistent accelerator should 
never produce an output before receiving the corresponding input. 
Indeed, for the class of accelerators we target, producing an output 
before receiving an input would be considered a bug (and such an 
accelerator would almost certainly also fail the functional 
consistency property).1 

As detailed in Sec. IV, A-QED leverages BMC to check whether 
an accelerator is functionally consistent. To this end, it 
systematically (but implicitly using a symbolic representation) 
enumerates all possible input sequences of increasing length to find 
a counterexample to functional consistency. By Def. 2, a 
counterexample consists of a captured input sequence 𝒊𝒏𝒗 of length 
𝑘  with corresponding captured output sequence 𝒐𝒗, such that for 
some 𝑖, 𝑎𝑑(𝑖𝑛&f) = 𝑎𝑑(𝑖𝑛Yf) but 𝑜&f ≠ 𝑜Yf. 
B.  Accelerator Response Bound (RB)  

Here, we formalize the notion of an Accelerator Response Bound 
(RB) which requires that if the host wants to provide an input or is 
waiting for an output, the accelerator cannot delay it forever. An 
example of a bug that fails this check would be one where the 
accelerator fails to return the result of an action due to an internal 
resource conflict (e.g., a deadlock) [Bayazit 05].  

For a sequence 𝒃  of Boolean values, let ⊤(𝒃)  denote the 
subsequence consisting of exactly those elements of 𝒃 equal to ⊤. 
We define the following responsiveness property. 

Definition 3:  Accelerator 𝐴𝑐𝑐 is responsive with bound n if 
(1) for every input sequence 𝒊𝒏, if   
    • |⊤(𝑟𝑑𝑖𝑛(𝑇(𝑠&4&5, 𝒊𝒏)))| = 𝑘, then  
    • ∃	𝑛. ∀	𝒊𝒏′.		|𝒊𝒏′| > 𝑛 → |⊤(𝑟𝑑𝑖𝑛(𝑇(𝑠&4&5, 𝒊𝒏 ⋅ 𝒊𝒏′)))| > 𝑘 ; 

and 
(2) for every input sequence 𝒊𝒏, if   
    • |𝐶&4(𝑠&4&5, 𝒊𝒏)| = 𝑘 then  
    • ∃	𝑛. ∀	𝒊𝒏j. k⊤l𝑟𝑑ℎ(𝒊𝒏j)mk > 𝑛 → |𝐶\]5(𝑠&4&5, 𝒊𝒏 ⋅ 𝒊𝒏′)| ≥ 𝑘.  
The first part of the definition states that after some arbitrary input 

sequence, if the number of times input-ready has been true is 𝑘, then 
after some fixed finite number of additional inputs, the number of 
times input-ready has been true must be greater than 𝑘, i.e., it has 
been true at least one more time since the first 𝑘. This ensures the 
accelerator cannot starve the host by never allowing it to send an 
input. The second part states that after some arbitrary input 
sequence, if the number of captured inputs in that sequence is 𝑘, then 
after some fixed finite number of inputs 𝒊𝒏′ where the host ready 
signal is true, all 𝑘 of the outputs corresponding to the original input 
sequence have been produced. This prevents the accelerator from 
delaying indefinitely the production of outputs for any inputs in 𝒊𝒏. 
C. Total Correctness 

Note that, the FC and RB properties we have defined are universal 
in that we expect them to hold for all accelerators in the class we are 

 
1 In practice, we strengthen the functional consistency property to 
also require that no output occurs before its corresponding input. 
2 If an accelerator is not strongly connected, the accelerator model 
can be extended with a reset signal that takes it back to 𝑠&4&5, and the 

targeting. They do not rely on a formal specification of the 
accelerator. The only design parameter required is the accelerator 
response bound. This is intentional, as the main focus of A-QED is 
to target these universal properties, making it applicable to designs 
even without a formal specification. As a consequence, these 
properties do not cover all functional bugs (e.g. an input that 
consistently results in the wrong output). However, given a 
specification, the additional checks required are straightforward, as 
discussed in this section. 

For completeness, we now formalize the notion of correctness 
with respect to a specification and illustrate to what extent this 
notion of correctness is covered by the properties introduced so far. 

Definition 4:  Given an accelerator 𝐴𝑐𝑐, let 𝑆𝑝𝑒𝑐: 𝐴 × 𝐷 → 𝑂 be 
a specification function, which for all action-data pairs (𝑎, 𝑑), 𝑎 ≠
𝑎; , defines the expected output 𝑆𝑝𝑒𝑐(𝑎, 𝑑) ∈ 𝑂  that the output 
function 𝐹 of 𝐴𝑐𝑐 is expected to produce.  

Note that, the specification function 𝑆𝑝𝑒𝑐 is independent of what 
state the accelerator is in. This is consistent with the non-interfering 
class of accelerators we are targeting, as discussed in Sec. II. 

Definition 5: An accelerator 𝐴𝑐𝑐  is functionally correct with 
respect to a specification 𝑆𝑝𝑒𝑐 if for all input sequences 𝒊𝒏, 𝒊𝒏′, if   

    • 𝒊𝒏𝒗 = 𝐶&4(𝑠&4&5, 𝒊𝒏) with |𝒊𝒏𝒗| = 𝑘 and  
    • 𝒐𝒗 = 𝐶\]5(𝑠&4&5, 𝒊𝒏 ⋅ 𝒊𝒏′) with |𝒐𝒗| = 𝑘,  
 then 𝑜Yf = 𝑆𝑝𝑒𝑐(𝑎𝑑(𝑖𝑛Yf)).  
The definition is very similar to FC, except that the output for the 

last input must match its specification instead of being consistent 
with the output from any previous equivalent input. 

Definition 6: An accelerator 𝐴𝑐𝑐 is totally correct with respect to 
a specification 𝑆𝑝𝑒𝑐 if it is functionally correct with respect to 𝑆𝑝𝑒𝑐 
and responsive with a given bound.  

If an accelerator is functionally consistent and responsive with a 
given bound, this does not ensure that it is functionally correct with 
respect to a specification. To close the gap, we introduce the notion 
of single-action correctness (SAC). Let 𝑖𝑛; = (𝑎;, 𝑑;, ⊤), where 
𝑑;  is some arbitrary but fixed data input and let (𝑖𝑛;)Y  be a 
sequence of 𝑘  repetitions of 𝑖𝑛;. 

Definition 7:  An accelerator 𝐴𝑐𝑐 is single-action correct with 
respect to a specification 𝑆𝑝𝑒𝑐 if for every action-data pair (𝑎, 𝑑), 
𝑎 ≠ 𝑎;, and input sequence 𝒊𝒏, if 𝑘 is the smallest value such that   

    • 𝒊𝒏 = (𝑎, 𝑑, ⊥) ⋅ (𝑖𝑛;)Y and  
    • 𝒐𝒗 = 𝐶\]5(𝑠&4&5, 𝒊𝒏) with |𝒐𝒗| = 1,  
 then 𝑜Jf = 𝑆𝑝𝑒𝑐(𝑎, 𝑑). 
If a valid input is provided in the initial state, followed by a fixed 

sequence of invalid inputs until the output comes back, then the 
output for the input matches the specification. Note that we assume 
here (without loss of generality) that 𝑟𝑑𝑖𝑛(𝑠&4&5) holds. We need 
one more definition before stating the main result of this section. 

Definition 8: An accelerator 𝐴𝑐𝑐  is strongly connected if for 
every 𝒊𝒏 , there exists 𝒊𝒏′  such that if 𝒔 = 𝑇(𝑠&4&5, 𝒊𝒏 ⋅ 𝒊𝒏′)  with 
|𝒔| = 𝑘, then 𝑠Y = 𝑠&4&5. 

Intuitively, an accelerator is strongly connected if it is possible to 
get from any reachable state back to the initial state.2 We now state 
the main result of this section. 

Proposition 1: If a strongly connected accelerator 𝐴𝑐𝑐  is 
functionally consistent, responsive with some finite bound, and 
single-action correct with respect to 𝑆𝑝𝑒𝑐, then it is totally correct 
with respect to 𝑆𝑝𝑒𝑐.  

Proof Sketch: Given 𝒊𝒏, 𝒊𝒏j, 𝒊𝒏𝒗, and 𝒐𝒗 as in Definition 5, we 
can, by single-input correctness, construct an input sequence starting 
with 𝑎𝑑(𝑖𝑛Yf) whose first output is 𝑆𝑝𝑒𝑐(𝑎𝑑(𝑖𝑛Yf)).  Then, by strong 
connectedness, we can append to this input sequence to get back to 
𝑠&4&5.  Finally, appending 𝒊𝒏 ⋅ 𝒊𝒏′ results in a sequence where we can 

notion of a valid input sequence can be extended to require that the 
reset signal can be applied at any point as long as an equal number 
of valid inputs and valid outputs have been seen.  The remaining 
definitions and results then hold for the modified model. 



conclude that 𝑜Yf = 𝑆𝑝𝑒𝑐(𝑎𝑑(𝑖𝑛Yf)) by functional consistency with 
the first input/output pair. 

Proposition 1 shows that all functional bugs are covered by 
checking functional consistency, responsiveness with a given 
bound, and single-action correctness. Though SAC is not our focus, 
given the 𝑆𝑝𝑒𝑐 function, we can easily extend A-QED to perform 
SAC.  Single-action bugs are typically not as challenging to find and 
are usually caught by standard verification techniques (e.g., [Reid 
16]). A-QED is thus theoretically complete, though in practice it is 
limited by the scalability of the BMC tool.  

IV. A-QED SETUP 
A-QED uses BMC to detect bugs. BMC takes as inputs a model 

(the design) and a set of properties, and symbolically analyzes input 
sequences to search for counterexamples to the properties. For 
BMC, we need to know how to apply legal (symbolic) inputs to the 
accelerator, how to analyze the accelerator outputs, and what to 
check to evaluate a property. We focus on FC and RB here. As noted 
in Sec. III, SAC is not our focus. This section details A-QED setup 
when leveraging HLS. While HLS makes A-QED easy to use, it is 
not required. A-QED can be applied for RTL designs as well, but 
that requires additional time and effort.   
A. Setup with High-Level Synthesis 

A high-level description of an accelerator (e.g., in C++) defines 
its operation within a function prototype. The variables of the 
prototype, provided as values or references (i.e., pointers), define the 
arguments passed to a call of the function. Hence, the result of each 
operation executed by the accelerator function depends only on 
these arguments (assuming no global variables). The arguments not 
only contain inputs but also (references to) variables where the result 
is stored. From the function definition, the inputs and outputs of the 
accelerator can be identified as: a) input variables, which become 
symbolic inputs for BMC; and b) results of the function call (values 
returned, plus updated variables passed as references) which are 
used for property checking. Constraints on the valid range of input 
values for the accelerator can be directly obtained from the valid 
range of each high-level input. 
B. FC Checking 

To apply A-QED to an accelerator, we generate the corresponding 
A-QED module. For the LCA model (Sec. II), the A-QED module 
interfaces with the accelerator during BMC – this enables stand-
alone accelerator verification. For high-level designs, A-QED 
leverages HLS to not only synthesize the A-QED module (for 
BMC), but also to connect various signals between the accelerator 
and the A-QED module.  The A-QED module is used during pre-
silicon verification only – it is not included in the final design. 

The A-QED module (Fig. 4) contains two functions. The first, 
aqed_in, monitors input sequences to the accelerator. It labels a 
certain input as 𝐼\p&q	or the “original.” At some later point in the 
input sequence, BMC issues the same original 𝐼\p&q	 to the 
accelerator again and A-QED labels it as “duplicate” or 𝐼r]s. The 
exact positions 𝐼\p&q	and 𝐼r]s in the input sequence are controlled 
by the BMC tool. The second function, aqed_out, analyzes the 
outputs produced by the accelerator (to check for FC).  

An accelerator (especially an LCA) might receive multiple inputs 
in a batch (that may be processed by the accelerator in parallel). As 
long as the execution is noninterfering (Sec. II), such an accelerator 
is still a valid instance of the model in Sec. III. A-QED can then 
analyze single- (batch size = 1) or multiple-input (batch size > 1) 
batches. 𝐼\p&q and 𝐼r]s can belong to the same or different (single- 
or multiple input-) batches. 

In Fig. 4, bmc_mem is a global memory for accelerator inputs and 
outputs (the BMC places symbolic values in this memory). A 
detailed explanation of the pseudo-code in Fig. 4 is available in 
[RESULTS 20].  

 
 

#PARAMETER MAX_BATCH_SIZE 
#PARAMETER MAX_BATCH_COUNT 
#PARAMETER IN_SIZE 
#PARAMETER OUT_SIZE     
 
\\ Data type definition 
result {dup_done; fc_check; orig_labeled; orig_done}; 
  
\\ Pseudo-code assumes accelerator function with 2 inputs 
\\ and 2 outputs, i.e., IN_SIZE = OUT_SIZE = 2 
 
\\ Initialization of global state variables 
orig_val[IN_SIZE] ¬ 0; orig_out[OUT_SIZE] ¬ 0; ORIG_BATCH 
¬ FF; DUP_BATCH ¬ FF;  
orig_labeled ¬ 0;  dup_labeled ¬ 0;  
batch_ct ¬ 0; out_batch_ct ¬ 0; ORIG_IDX ¬ 0; DUP_IDX ¬ 0; 
orig_done ¬ 0; mem_ptr ¬ 0;   
dup_done ¬ 0; fc_check ¬ 0; 
 
\\ Global Memory 
bmc_mem[MAX_BATCH_SIZE*IN_SIZE*MAX_BATCH_COUNT]  
\\ Pseudo-code assumes accelerator writes output result 
\\ at the corresponding input location (in bmc_mem) 
 
aqed_in (mem2acc, size, is_orig, is_dup, orig_idx, dup_idx) { 
  label_orig ¬ (is_orig) && (orig_idx < size) && !orig_labeled; 
  label_dup ¬ (is_dup) && (dup_idx < size) && !dup_labeled && 
((orig_labeled && (*(mem2acc + dup_idx*IN_SIZE) == orig_val[0]) && 
(*(mem2acc + 1 + dup_idx*IN_SIZE) == orig_val[1])) || (label_orig && 
(*(mem2acc + orig_idx*IN_SIZE) == *(mem2acc + dup_idx*IN_SIZE) 
&& *(mem2acc + 1 + orig_idx*IN_SIZE) == *(mem2acc + 1 + 
dup_idx*IN_SIZE)))); 
  if (label_orig) {           
     orig_labeled ¬ 1; orig_val[0] ¬ *(mem2acc + 
orig_idx*IN_SIZE); orig_val[1] ¬ *(mem2acc + 1 + 
orig_idx*IN_SIZE);   
     ORIG_BATCH ¬ batch_ct; ORIG_IDX ¬ orig_idx;} 
  if (label_dup) {          
     dup_labeled ¬1; DUP_BATCH ¬ batch_ct; DUP_IDX 
¬ dup_idx;} 
  batch_ct ¬ batch_ct + 1; } 
 
aqed_out (acc2mem) {       
     orig_done ¬ orig_labeled && (out_batch_ct >= ORIG_BATCH); 
     if (orig_done && (out_batch_ct == ORIG_BATCH) && 
!dup_done) { 
      orig_out[0] ¬ *( acc2mem  + ORIG_IDX*OUT_SIZE); 
      orig_out[1] ¬ *( acc2mem  + 1 + ORIG_IDX*OUT_SIZE);} 
     if (orig_labeled && dup_labeled && (out_batch_ct == 
DUP_BATCH) &&  !dup_done) { 
       dup_done ¬ 1; 
       dup_0 ¬ *(acc2mem   + DUP_IDX*OUT_SIZE); 
       dup_1 ¬ *(acc2mem  + 1 + DUP_IDX*OUT_SIZE); 
       fc_check ¬ ((orig_out[0] == dup_0) && (orig_out[1] == 
dup_1)); } 
     if (out_batch_ct > DUP_BATCH) { 
       dup_done ¬ 1; } 
     out_batch_ct ¬ out_batch_ct + 1;  
return (dup_done, fc_check, orig_labeled, orig_done); } 
 
aqed_top(batch_size, is_orig, orig_index, is_dup, dup_index) { 
  result output; 
  current_batch ¬ 
&bmc_mem[MAX_BATCH_SIZE*IN_SIZE*mem_ptr]; 
  aqed_in(current_batch, batch_size, is_orig, is_dup, orig_index, 
dup_index); 
  acc(current_batch, batch_size);        
  output ¬ aqed_out(current_batch); 
  mem_ptr ¬ mem_ptr + 1;     
return output; } 

 

Fig. 4. Pseudo code for A-QED functions targeting FC. 
Actual implementations will vary depending on the 

accelerator and the HLS tool used, see [RESULTS 20]. 
 



To check for FC, the BMC tool searches for a counterexample to 
the following property: 

𝑑𝑢𝑝_𝑑𝑜𝑛𝑒 → 𝑓𝑐_𝑐ℎ𝑒𝑐𝑘 
In Fig. 4, dup_done is true if outputs for both  𝐼\p&q and 𝐼r]s have 
been generated, and fc_check is true if both these outputs match.  

Some accelerator designs may require further A-QED module 
customization. For instance, an AES implementation (in Sec. V.B) 
uses a common key across an input batch. Details of such 
customization can be found in [RESULTS 20]. 

 

C. RB Checking  
Checking for RB involves monitoring signals related to the ready-

valid protocol, which can be synthesized together with the A-QED 
module using HLS: input-ready (𝑟𝑑𝑖𝑛) and host-ready (𝑟𝑑ℎ), and the 
related sequences of captured inputs ( 𝐶&4(𝑠R, 𝒊𝒏) ) and outputs 
(𝐶\]5(𝑠R, 𝒊𝒏)) for an input sequence 𝒊𝒏 received in some state 𝑠R.  

A counterexample to RB is a counterexample to either part (1) or 
(2) of Def. 3 (Sec. III). Checking for part (1) is simple: check that 
signal 𝑟𝑑𝑖𝑛 does not stay low indefinitely. A counterexample to part 
(2) states that, after the accelerator has received 𝑘  valid inputs 
starting from the initial state (|𝐶&4(𝑠&4&5, 𝒊𝒏)| = 𝑘), it fails to produce 
the expected 𝑘 valid outputs regardless of how many times the host 
is ready (𝑟𝑑ℎ is high) to accept outputs. To check for part (2), the 
BMC tool searches for counterexamples to the following property: 

(𝑐𝑛𝑡_𝑟𝑑ℎ ≥ 𝜏)	⋀	(𝑐𝑛𝑡_𝑖𝑛 ≥ 𝑖𝑛_𝑚𝑖𝑛) → 	𝑟𝑑𝑦_𝑜𝑢𝑡 
Parameters 𝜏  and 𝑖𝑛_𝑚𝑖𝑛  are design-specific constants and 

𝑐𝑛𝑡_𝑟𝑑ℎ and 𝑐𝑛𝑡_𝑖𝑛 are auxiliary signals to monitor the host-ready 
signal and captured inputs. The value of cnt_rdh is the number of 
cycles the host has been ready (𝑟𝑑ℎ is high) to accept an output since 
it sent a certain input 𝐼. The value of 𝑐𝑛𝑡_𝑖𝑛 is the number of inputs 
captured by the accelerator since it captured input 𝐼. Parameter 𝜏 is 
the expected maximum number of cycles the accelerator takes to 
produce the output for a given input. It is a concrete implementation 
of parameter 𝑛 in our formal model. In practice, some accelerators 
require more than one input to be provided before producing any 
outputs.  This is handled by setting parameter 𝑖𝑛_𝑚𝑖𝑛 (this low-level 
detail was omitted from the formal model for simplicity, but it can 
easily be added). Finally, property rdy_out holds if the output for 
input 𝐼 has been generated (and if further design-specific conditions 
hold, if any). We check whether rdy_out holds in the cycle where the 
preconditions hold, i.e., the host allowed the accelerator a sufficient 
number of cycles to produce the output for input 𝐼 (𝑐𝑛𝑡_𝑟𝑑ℎ ≥ 𝜏) and 
it provided the accelerator with a sufficient number of captured inputs 
( 𝑐𝑛𝑡_𝑖𝑛 ≥ 𝑖𝑛_𝑚𝑖𝑛 ). If rdy_out does not hold given these 
preconditions, then the accelerator is unresponsive with bound 𝜏. 
 

V. RESULTS 
We demonstrate the effectiveness of A-QED for various designs 

(details in [RESULTS 20]). We did not artificially inject bugs. All 
A-QED results were generated using Cadence JasperGold version 
2016.09p002 on an Intel Xeon E5-2640 v3 with 128GB of DRAM.  
A. Memory-Controller Unit Case Study 

We present a case study for a memory-controller unit (~17,000 
flip-flops, ~97,600 gates) targeting CGRA-based accelerators. We 
had unique access to a tracked repository of various versions 
(SystemVerilog RTL) of this design (and bugs detected for each 
version using conventional verification). This allows an apples-to-
apples comparison of A-QED vs. conventional verification flow.  

The memory-controller unit supports several configurations (e.g., 
double buffer, line buffer, FIFO). The conventional simulation-
based flow verified each configuration separately using well-crafted 
test patterns and full-fledged applications (e.g., point-wise 
multiplication, dilated convolution).  

We applied A-QED for each configuration (except three, which 
involved interfering operations not supported by our accelerator 
model, as explained earlier). We created working C++ models for 
each configuration in consultation with the designers. For each such 

C++ model, we created A-QED module C++ functions (Fig. 4) and 
used HLS (Catapult) to generate the A-QED module RTL. For each 
configuration, we instantiated an RTL wrapper containing its A-
QED module and the memory-controller (with its configuration bits 
hard-coded). For A-QED setup customization for this design, e.g., 
when a configuration does not provide a ready signal for the ready-
valid protocol (Sec. III) or when in_min needs to be incorporated for 
RB checking (Sec. IV.C), please refer to [RESULTS 20]. 

The results of this study are presented in Table 1 and Fig. 5. 
Observation 1: A-QED significantly improved bug coverage vs. 

conventional verification flow. With BMC as its backbone, A-QED 
finds the shortest sequence to trigger and detect bugs (within the 
BMC bound). This is in sharp contrast to conventional verification 
flows, where testbenches are highly dependent on the expertise of 
verification engineers. For the memory-controller unit, A-QED 
detected all logic bugs (Fig. 5) detected by the conventional 
verification flow for the studied configurations. A-QED uniquely 
detected additional (13%) bugs that were not detected by the 
conventional flow. These additional bugs represent difficult corner-
case scenarios. For example, one such bug (triggered by a complex 
condition) caused a crash (after 70 cycles) during an application run 
(after the design was verified using conventional flow). In contrast, 
A-QED detected it in 1 second with a 6-cycle counterexample. A-
QED detected one bug using RB and the remaining using FC.  

Observation 2: A-QED (with HLS support) dramatically 
improves verification productivity. As Table 1 shows, the setup 
effort improves (i.e., reduces) 30-fold: 1 person-day using A-QED 
vs. 1 person-month using conventional verification flow.  

Observation 3: A-QED detects bugs quickly (≤ 2 sec. runtime) 
with short counterexamples (nearly 40-fold shorter on average vs. 
conventional verification flow) enabling quick debug. 
 

Table 1: A-QED results for the memory-controller unit. 
Verification 

Flow 
Setup 
Effort* 

(person
-days) 

Runtime 
(seconds) 
[min, avg, 

max] 

Trace (clock 
cycles) 

[min, avg, 
max] 

A-QED 1 0.8, 1.2, 1.5 4, 6, 8 
Conventional 30 378, 615, 734 51, 224, 321 

*For conventional verification flow, setup includes the time to 
create the software functional model as well as testbenches. 
 

 
Fig. 5. Memory-controller unit bugs detected.  

B. HLS designs 
Table 2 presents A-QED results for some HLS LCA designs.  

 

Table 2: A-QED results for HLS designs. (CEX = 
Counterexample) 

Source (Buggy) 
designs* 

Bug  Runtime 
(min: 
sec) 

CEX 
length 

(cycles) 
AES 

encryption 
[Cong 17] 

AES v1  
FC 

1:12 136 
AES v2 4:11 290 
AES v3 0:57 132 
AES v4 0:06 94 

Custom 
design 
[Chi 19] 

Dataflow  
RB 

0:28 98 

Rosetta 
[Zhou 18] 

Optical Flow 0:27 197 

CHStone 
[Hara 09] 

GSM FC 4:05 65 
 

* Abstracted versions in [RESULTS 20]. 
 



The Vivado HLS tool was used for these designs. Examples of 
bugs detected include various array indexing errors and incorrect 
FIFO sizing. Details on abstracted versions of the designs used in 
Table 2 (for BMC scalability) as well as A-QED module 
customization (e.g., to support a common key across a batch for 
AES) can be obtained from [RESULTS 20]).  

Observation 4: A-QED successfully detected bugs in various 
HLS accelerators. FC bugs (across different designs) were detected 
using the same FC universal property (Sec. III).  

 
VI. RELATED WORK 

There are numerous publications on pre-silicon verification: 
simulation-based approaches, formal approaches, and combinations 
thereof. Many of these publications focus on processor cores. The 
difficulties with verification of stand-alone hardware accelerators 
vs. processor verification are highlighted in Sec. I and are also well-
explained in [Huang 18]. In contrast, A-QED enables verification of 
stand-alone hardware accelerators in an effective and practical way 
(especially in the context of HLS designs). As discussed in Sec. I, 
A-QED is inspired by Symbolic QED [Lin 15, Singh 18], which 
targets designs containing processor cores. However, there are 
important differences between A-QED vs. Symbolic QED: (a) A-
QED targets stand-alone accelerators without any processor core; 
(b) A-QED leverages HLS to simplify the setup process; and (c) A-
QED does not require a partitionable register file or memory for 
accelerators supporting the formal model in Sec. III.  

A-QED is applicable to both RTL and HLS designs. For RTL, A-
QED can leverage the Instruction-Level Abstraction (ILA) approach 
[Huang 18] to further improve verification productivity.  

Unlike conventional BMC, A-QED does not require design-
specific properties or a full specification (that are often created 
manually). While some tools try to automate formal property 
generation, it is often difficult to identify the “right” set. Attempts 
to generate design-specific properties from a specification can be 
problematic, since a complete specification may not be available (or 
the specification itself may be buggy [Singh 19]). As part of A-QED, 
checking for SAC may be necessary – however, it doesn’t require a 
complete specification and can be largely automated (e.g., 
techniques in [Reid 16]). Finally, A-QED can be used in conjunction 
with many (commercial and academic) BMC engines. 

A-QED is also distinct from simulation-based pre-silicon 
verification approaches including those that leverage HLS (e.g., 
[Campbell 19, Chi 19]: A-QED uses BMC, and therefore (a) is 
significantly more thorough, and (b) finds short counterexamples. 
As is well-known, BMC-based techniques can face scalability 
challenges (e.g., design size, BMC bound). This aspect of A-QED is 
discussed in Sec. VII. 

VII. CONCLUSION 
A-QED is a highly effective and practical approach for pre-

silicon verification of stand-alone hardware accelerators. It 
leverages BMC but bypasses major BMC challenges (e.g., creation 
of design-specific properties). A-QED is especially attractive for 
HLS-based accelerator designs because it largely automates the 
verification setup process while avoiding extensive (manual) efforts 
in understanding RTL designs.  

A-QED creates several promising research directions: 1) 
Extension of A-QED beyond the LCA model (including the 
handshake protocol); 2) Verifying designs that execute interfering 
operations (and not just non-interfering ones); 3) Improving the 
scalability of A-QED through techniques such as abstraction (e.g., 
[Andraus 04]), concolic execution (e.g., [Sen 05]), and symbolic 
starting states (e.g., [Fadiheh 18] for processor cores); 4) More 
detailed case studies to demonstrate the effectiveness of A-QED; 
and, 5) A-QED for post-silicon validation and debug. The use of A-
QED-inspired techniques for accelerator hardware security (similar 

to Symbolic QED-inspired techniques for detecting security 
vulnerabilities in processors [Fadiheh 19]) is another interesting 
direction for future work.  

ACKNOWLEDGEMENT 
This work was supported in part by the DARPA POSH program. 

REFERENCES 
[Andraus 04] Andraus, A. A., and  K. Sakallah, “Automatic 

abstraction and verification of verilog models,” Proc. DAC, 2004.  
[Bayazit 05] Bayazit, A. A., and S. Malik, “Complementary use of 

runtime validation and model checking,” Proc. ICCAD, 2005.  
[Campbell 19] Campbell, K., et al., “Hybrid Quick Error Detection: 

Validation and Debug of SoCs Through High-Level Synthesis,” 
IEEE Trans. CAD, 2019. 

[Cascaval 10] Cascaval, C., et al., “A taxonomy of accelerator 
architectures and their programming models,” IBM Journal of 
Research and Development, 2010. 

[Chi 19] Chi, Y., et al., “Rapid Cycle-Accurate Simulator for High-
Level Synthesis,” Proc. Intl. Symp. FPGAs, 2019. 

[Clarke 01] Clarke, E., et al., “Bounded Model Checking using 
Satisfiability Solving,” Formal Methods in System Design, 2001. 

[Cong 12] Cong, J., et al., “Architecture support for accelerator-rich 
CMPs,” Proc. DAC, 2012. 

[Cong 17] Cong, J., et al., “Bandwidth Optimization Through On-
Chip Memory Restructuring for HLS,” Proc. DAC, 2017. 

[Cota 15] Cota, E. G., et al., “An Analysis of Accelerator Coupling 
in Heterogeneous Architectures,” Proc. DAC, 2015. 

[Fadiheh 18] Fadiheh, M. R., et al., “Symbolic quick error detection 
using symbolic initial state for pre-silicon verification,” Proc. 
DATE, 2018. 

[Fadiheh 19] Fadiheh, M. R., et al., “Processor Hardware Security 
Vulnerabilities and their Detection by Unique Program Execution 
Checking,” Proc. DATE, 2019.  

[Foster 15] Foster, H. D., “Trends in Functional Verification: A 
2014 Industry Study,” Proc. DAC, 2015.  

[Hara 09] Hara, Y., et al., “Proposal and Quantitative Analysis of 
the CHStone Benchmark Program Suite for Practical C-based 
High-level Synthesis,” Journal of Information Processing, 2009. 

[Huang 18] Huang, B-Y., et al., “Instruction-Level Abstraction 
(ILA): A Uniform Specification for System-on-Chip (SoC) 
Verification,” ACM Trans. Design Automation of Electronic 
Systems,  2019. 

[Jones 96] Jones, R., C-J. H. Seger and D. L. Dill, “Self-
Consistency Checking,” Proc. FMCAD,  1996. 

[Keller 76] Keller, R.M., “Formal Verification of Parallel 
Programs,” Communs. of ACM, 1976. 

[Lin 15] Lin, D., et al., “A Structured Approach to Post-Silicon 
Validation and Debug Using Symbolic Quick Error Detection,”  
Proc. IEEE Intl. Test Conf., 2015. 

[Patel 08] Patel, S., and W. Hwu, “Accelerator Architectures,” IEEE 
Micro, 2008.  

[Reid 16] Reid, A., et al., “End-to-end verification of processors 
with ISA-Formal,” Proc. Computer-Aided Verification, 2016.  

[RESULTS 20] https://github.com/upscale-project/aqed-dac2020-
results 

[Sen 05] Sen, K., et al., “CUTE: a concolic unit testing engine for 
C,” ACM SIGSOFT Software Engineering Notes, 2005. 

[Singh 18] Singh, E., et al., “Logic Bug Detection and Localization 
Using Symbolic Quick Error Detection,” IEEE Trans. CAD, 2018. 

[Singh 19] Singh, E., et al., “Symbolic QED Pre-silicon Verification 
for Automotive Microcontroller Cores: Industrial Case Study,” 
Proc. DATE, 2019. 

[Zhou 18] Zhou, Y., et al., “Rosetta: A Realistic High-Level 
Synthesis Benchmark Suite for Software Programmable FPGAs,” 
Proc. Intl. Symp. FPGAs, 2018.

 


