®

Check for
updates

fault: A Python Embedded
Domain-Specific Language for

Metaprogramming Portable Hardware

Verification Components

Lenny Truong®), Steven Herbst,
Rajsekhar Setaluri, Makai Mann, Ross Daly,
Keyi Zhang, Caleb Donovick, Daniel Stanley,

Mark Horowitz, Clark Barrett, and Pat Hanrahan

Stanford University, Stanford, CA 94305, USA
lenny@stanford.edu

Abstract. While hardware generators have drastically improved design
productivity, they have introduced new challenges for the task of veri-
fication. To effectively cover the functionality of a sophisticated gener-
ator, verification engineers require tools that provide the flexibility of
metaprogramming. However, flexibility alone is not enough; components
must also be portable in order to encourage the proliferation of verifica-
tion libraries as well as enable new methodologies. This paper introduces
fault, a Python embedded hardware verification language that aims to
empower design teams to realize the full potential of generators.

1 Introduction

The new golden age of computer architecture relies on advances in the design
and implementation of computer-aided design (CAD) tools that enhance produc-
tivity [11,21]. While hardware generators have become much more powerful in
recent years, the capabilities of verification tools have not improved at the same
pace [12]. This paper introduces fault,! a domain-specific language (DSL) that
aims to enable the construction of flexible and portable verification components,
thus helping to realize the full potential of hardware generators.

Using flexible hardware generators [1,16] drastically improves the produc-
tivity of the hardware design process, but simultaneously increases verification
cost. A generator is a program that consumes a set of parameters and produces a
hardware module. The scope of the verification task grows with the capabilities
of the generator, since more sophisticated generators can produce hardware with
varying interfaces and behavior. To reduce the cost of attaining functional cov-
erage of a generator, verification components must be as flexible as their design

! https://github.com /leonardt /fault.

© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 403-414, 2020.
https://doi.org/10.1007/978-3-030-53288-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_19&domain=pdf
https://github.com/leonardt/fault
https://doi.org/10.1007/978-3-030-53288-8_19

404 L. Truong et al.

counterparts. To achieve flexibility, hardware verification languages must provide
the metaprogramming facilities found in hardware construction languages [1].

However, flexibility alone is not enough to match the power of generators;
verification tools must also enable the construction of portable components. Gen-
erators facilitate the development of hardware libraries and promote the inte-
gration of components from external sources. Underlying the utility of these
libraries is the ability for components to be reused in a diverse set of envi-
ronments. The dominance of commercial hardware verification tools with strict
licensing requirements presents a challenge in the development of portable verifi-
cation components. To encourage the proliferation of verification libraries, hard-
ware verification languages must design for portability across verification tools.
Design for portability will also promote innovation in tools by simplifying the
adoption of new technologies, as well as enable new verification methodologies
based on unified interfaces to multiple technologies.

This paper presents fault, a domain-specific language (DSL) embedded in
Python designed to enable the flexible construction of portable verification com-
ponents. As an embedded DSL, fault users can employ all of Python’s rich
metaprogramming capabilities in the description of verification components.
Integration with magma [15], a hardware construction language embedded in
Python, is an essential feature of fault that enables full introspection of the
hardware circuit under test. By using a staged metaprogramming architecture,
fault verification components are portable across a wide variety of open-source
and commercial verification tools. A key benefit of this architecture is the abil-
ity to provide a unified interface to constrained random and formal verification,
enabling engineers to reuse the same component in simulation and model check-
ing environments. fault is actively used by academic and industrial teams to ver-
ify digital, mixed-signal, and analog designs for use in research and production
chips. This paper demonstrates fault’s capabilities by evaluating the runtime
performance of different tools on a variety of applications ranging in complexity
from unit tests of a single module to integration tests of a complex design. These
experiments leverage fault’s portability by reusing the same source input across
separate trials for each target tool.

2 Design

We had three goals in designing fault: enable the construction of flexible
test components through metaprogramming, provide portable abstractions that
allow test component reuse across multiple target environments, and support
direct integration with standard programming language features. The ability
to metaprogram test components is a vital requirement for scaling verification
efforts to cover the space of functionality utilized by hardware generators. Porta-
bility widens the target audience of a reusable component and enhances a design
team’s productivity by enabling simple migration to different technologies. Inte-
gration with a programming language enables design teams to leverage standard
software patterns for reuse as well as feature-rich test automation frameworks.

fault: Python Hardware Verification DSL 405

Python Circuit Tester Actions Test Result
Frontend
S

C++ SystemVerilog Verilog-AMS SPICE Formal

commercial
simulators

commercial commercial

simulators iverilog simulator | CoSA |

Targets verilator ngspice

Fig. 1. Architectural overview of the fault testing system. In a Python program, the
user constructs a Tester object with a magma Circuit and records a sequence
of test Actions. The compiler uses the action sequence as an intermediate represen-
tation (IR). Backend targets lower the actions IR into a format compatible with the
corresponding tool and provide an API to run the test and report the results.

Figure 1 provides an overview of the system architecture. fault is a DSL
embedded in Python, a prolific dynamic language with rich support for metapro-
gramming and a large ecosystem of libraries. fault is designed to work with
magma [15], a Python embedded hardware construction language which rep-
resents circuits as introspectable Python objects containing ports, connections,
and instances of other circuits. While fault and magma separate the concerns of
design and verification into separate DSLs, they are embedded in the same host
language for simple interoperability. This multi-language design avoids the com-
plexity of specifying and implementing a single general purpose language without
sacrificing the benefits of tightly integrating design and verification code.

To construct fault test components, the user first instantiates a Tester
object with a magma circuit as an argument. The user then records a sequence
of test actions using an API provided by the Tester class. Here is an example
of constructing a test for a 16-bit Add circuit:

tester = Tester (Addlé6)
tester.poke (Add16.in0, 3)
tester.poke (Addl6.inl, 2)
tester.eval ()

tester.expect (Addl6.out, 5)

The poke action (method) sets an input value, the eval action triggers evalua-
tion of the circuit (the effects of poke actions are not propagated until an eval
action occurs), and the expect action asserts the value of an output. Attributes
of the Add16 object refer to circuit ports by name.

fault’s design is based on the concept of staged metaprogramming [20]; the
user writes a program that constructs another program to be executed in a
subsequent stage. In fault, the first stage executes Python code to construct a
test specification; the second stage invokes a target runtime that executes this
specification. To run the test for the 16-bit Add, the user simply calls a method
and provides the desired target:

tester.compile_and_run("verilator")
tester.compile_and_run("system-verilog", simulator="iverilog")

406 L. Truong et al.

By applying staged metaprogramming, fault allows the user to leverage the
full capabilities of the Python host language in the programmatic construction
of test components. For example, a test can use a native for loop to construct a
sequence of actions using the built-in random number library and integer type:

for _ in range(32):
N = (1 << 16) - 1
in0, inl = random.randint (0, N), random.randint (0, N)
tester.poke (Add16.in0, in0)
tester.poke(Addl6.inl, inl)
tester.eval()
tester.expect (Addl6.out, (in0 + inl) & N)

Python for loops are executed during the first stage of computation and are
effectively “unrolled” into a flat sequence of actions. Other control structures
such as while loops, if statements, and function calls are handled similarly.

Python’s object introspection capabilities greatly enhance the flexibility of
fault tests. For example, the core logic of the above test can be generalized to
support an arbitrary width Add circuit by inspecting the interface:

compute max value based on port width (length)

N = (1 << len(Add.in0)) - 1

in0, inl = random.randint (0, N), random.randint (0, N)
tester.poke (Add.in0, in0)

tester.poke (Add.inl, inl)

tester.eval()

tester.expect (Add.out, (in0 + inl) & N)

This ability to metaprogram components as a function of the design under test
is an essential aspect of fault’s design. It allows the construction of generic com-
ponents that can be reused across designs with varying interfaces and behavior.

fault’s embedding in Python’s class system provides an opportunity for reuse
through inheritance. For example, a design team could subclass the generic
Tester class and add a new method to perform an asynchronous reset sequence:

class ResetTester (Tester):
def __init__ (self, circuit, clock, reset_port):
super () .__init_ (self, circuit, clock)
self.reset_port = reset_port

def reset(self):
asynchronous reset, negative edge
self.poke(self.reset_port, 1)
self.eval()
self .poke (self.reset_port, 0)
self.eval ()
self.poke (self.reset_port, 1)
()

self.eval

Combining inheritance with introspection, we can augment the the
ResetTester to automatically discover the reset port by inspecting port types:

fault: Python Hardware Verification DSL 407

class AutoResetTester (ResetTester) :
def __init__ (self, circuit, clock):
iterate over interface to find reset (assumes exactly one)
for port in circuit.interface.ports.values():
if isinstance (port, AsyncResetN):
reset_port = port
super () .__init__ (self, circuit, clock, reset_port)

2.1 Frontend: Tester API

fault’s Python embedding is implemented by the Tester class which provides
various interfaces for recording test actions as well as methods for compiling and
running tests using a specific target. By using Python’s class system to perform a
shallow embedding [5], fault avoids the complexity of processing abstract syntax
trees and simply uses Python’s standard execution to construct test components.
As a result, programming in fault is much like programming with a standard
Python library. This design choice reduces the overhead of learning the DSL
and simplifies aspects of implementation such as error messages, but comes at
the cost of limited capabilities for describing control flow. The fault frontend
described in this paper focuses on implementation simplicity, but the system is
designed to be easily extended with new frontends using alternative embeddings.

Action Methods. The Tester class provides a low-level interface for
recording actions using methods. The basic action methods are poke (set
a port to a value), expect (assert a port equals a value), step (invert
the value of the clock), peek (read the value of a port), and eval (eval-
uate the circuit). The peek method returns an object containing a ref-
erence to the wvalue of a circuit port in the current simulation state.
Using logical and arithmetic operators, the user can construct expressions
with this object and pass the result to other actions. For example, to
expect that the value of the port 00 is equal to the inverse of the
value of port 01, the user would write tester.expect(circuit.00,
~tester.peek(circuit.01)). The Tester provides a print action to
display simulation runtime information included the peeked values.

Metaprogramming Control Flow. Notably absent from the basic method
interface described above are control flow abstractions. As noted before, standard
Python control structures such as loops and if statements are executed in the
first stage of computation as part of the metaprogram. However, there are cases
where the user intends to preserve the control structure in the generated code,
such as long-running loops that should not be unrolled at compile time or loops
that are conditioned on dynamic values from the circuit state. For example,
consider a while loop that executes until it receives a ready signal:

Construct while loop conditioned on circuit.ready.
loop = tester._while(tester.peek(circuit.ready))
loop.expect (circuit.ready, 0) # executes inside loop
loop.step(2) # executes inside loop
Check final state after loop has exited
tester.expect (circuit.count, expected_cycle_count)

408 L. Truong et al.

This logic could not be encoded in the metaprogram, because the metapro-
gram is evaluated before the test is run, and thus does not know anything
about the runtime state of the circuit. To capture this dynamic control flow,
the Tester provides methods for inserting if-else statements, for loops,
and while loops. Each of these methods returns a new instance of the current
Tester object which provides the same API, allowing the user to record actions
corresponding to the body of the control construct. The Tester class provides
convenience functions for using these control structures to generate common
patterns, such as wait_on, wait_until_low, and wait_until posedge.

Attribute Interface. While the low-level method interface is useful for writ-
ing complex metaprograms, simple components are rather verbose to construct.
To simplify the handling of basic actions like poke and peek, the Tester
object exposes an interface for referring to circuit ports and internal signals using
Python’s object attribute syntax. For example, to poke the input port I of a
circuit with value 1, one would write tester.circuit.I = 1. This interface
supports referring to internal signals using a hierarchical syntax. For example,
referring to port Q of an instance £f can be done with tester.circuit.ff.Q.

Assume/Guarantee. The Tester object provides methods for specifying
assumptions and guarantees that are abstracted over constrained random and
formal model checking runtime environments. An assumption is a constraint
on input values, and a guarantee is an assertion on output values. Assump-
tions and guarantees are specified using Python lambda functions that return
symbolic expressions referring to the input and output and ports of a circuit.
For example, the guarantee lambda a, b, c: (¢ >= a) and (c >= b)
states that the output c is always greater than or equal to the inputs a and
b. Here is an example of verifying a simple ALU using the assume/guarantee
interface:

Configuration sequence for opcode register

tester.circuit.opcode_en = 1

tester.circuit.opcode = 0 # opcode for add (+)

tester.step(2)

tester.circuit.opcode_en = 0

tester.step(2)

Verify add does not overflow

tester.circuit.a.assume(lambda a: a < BitVector[16] (32768))

tester.circuit.b.assume(lambda b: b < BitVector[16] (32768))

tester.circuit.c.guarantee (

lambda a, b, c: (c >= a) and (c >= b)

)

Note that this example demonstrates the use of poke and step to initialize

circuits not only for constrained random testing, but also for formal verification.

2.2 Actions IR

In using the Tester API, users construct a sequence of Action objects that are
used as an intermediate representation (IR) for the compiler. Basic port action

fault: Python Hardware Verification DSL 409

objects, such as Poke and Expect, simply store references to ports and values.
Control flow action objects, such as While and If, contain sub-sequences of
actions, resulting in a hierarchical data-structure similar to an abstract syntax
tree. This view of the compiler internals reveals that the metaphor of recording
actions is really an abstraction over the construction of program fragments.

2.3 Backend Targets

fault supports a variety of open-source and commercial backend targets for run-
ning tests. A target is responsible for consuming an action sequence, compiling
it into a format compatible with the target runtime, and providing an API for
invoking the runtime. Targets must also report the result of the test either by
reading the exit code of running the process or processing the test output.

Verilog Simulation Targets. The fault compiler includes support for the
open-source Verilog simulators verilator [17] and iverilog [22], plus three com-
mercial simulators. To compile fault programs to a verilator test bench, the
backend lowers the action sequence into a C++ program that interacts with the
software simulation object produced by the verilator compiler. For iverilog and
the commercial simulators, the backend lowers the action sequence into a Sys-
temVerilog test bench that interacts with the test circuit through an initial
block inside the top-level module. One useful aspect of the System Verilog back-
end is its handling of variations in the feature support of target simulators. For
example, the commercial simulators use different commands for enabling wave-
form tracing and iverilog uses a non-standard API for interacting with files.
Constrained random inputs are generated using rejection or SMT [9] sampling.

CoSA. The CorelR Symbolic Analyzer (CoSA) is a solver-agnostic SMT-based
hardware model checker [13]. fault’s CoSA target relies on magma’s ability
to compile Python circuit descriptions to CorelR [8], a hardware intermediate
representation. CorelR’s formal semantics are based on finite-state machines and
the SMT theory of fixed-size bitvectors [3]. fault action sequences are lowered
into CoSA’s custom explicit transition system format (ETS) and combined with
the CorelR representation of the circuit to produce a model. CoSA allows the
user to specify assumptions and properties, providing a straightforward lowering
of fault assumptions and guarantees.

SPICE. In addition to being able to test designs with Verilog simulators, fault
supports analog and mixed-signal simulators. Compared to the traditional app-
roach of maintaining separate implementations for digital and analog tests, this
is a significantly easier way to write tests for mixed-signal circuits. Basic actions
such as poke and expect are supported in the SPICE simulation mode, but
they are implemented quite differently than they are in Verilog-based tests.
Rather than emitting a sequential list of actions in an initial block, fault

410 L. Truong et al.

compiles poke actions into piecewise-linear (PWL) waveforms. Other actions,
such as expect, are implemented by post-processing the simulation data.

Verilog- AMS. For designs containing a mixture of SPICE and Verilog blocks,
fault supports testing with a Verilog-AMS simulator. This mode is more similar
to running System Verilog-based tests than SPICE-based tests. In particular, the
test bench is implemented using a top-level System Verilog module, meaning that
a wide range of actions are supported including loops and conditionals. This is a
key benefit of using a Verilog-AMS simulator as opposed to a SPICE simulator.

3 Evaluation

To demonstrate fault’s capabilities, we evaluate the runtime performance of four
different testing tasks from the domain of hardware verification. Each task high-
lights the utility of fault’s portability by reusing the same source input across
separate trials of different targets. Due to licensing restrictions, we omit the
name of the commercial simulators and replace them with a generic name. The
code to reproduce these experiments is available in the artifact.? Each experi-
ment involves at least one open-source simulator, but reproducing all the results
requires access to commercial simulators.

CGRA Processing Element Unit Tests. To demonstrate the capability of
fault as a tool for writing portable tests for digital verification, Fig.2 reports
the runtime performance of a subset of the lassen test suite. lassen [19] is
an open-source implementation of a CGRA processing element that contains a
large suite of unit tests using fault. Interestingly, we see comparable perfor-
mance between verilator and commercial simulator 1, while commercial
simulator 2 is consistently ~5x slower than the others. One important property
of the lassen test suite is that it generates a new test bench for each operation
and input/output pair. This stresses a simulator’s ability to efficiently handle
incremental changes, since each invocation involves a new top-level test bench
file, but an unchanged design under test.

Test verilator commercial sim 1 commercial sim 2
test_unsigned_binary 94.483 88.700 519.079
test_smult 31.439 28.668 170.115
test_fp_binary_op 104.117 91.878 571.759
test_stall 10.424 9.629 56.458

Fig. 2. Runtime (s) for unit tests of a CGRA processing element collected with a VM
running on an Intel(R) Xeon(R) Silver 4214 CPU @ 2.20 GHz with 256 GB of RAM.

2 https://github.com/leonardt /fault_artifact /blob/master/README.md.

https://github.com/leonardt/fault_artifact/blob/master/README.md

fault: Python Hardware Verification DSL 411

SRAM Array. To demonstrate the capability of fault as a tool for writing
portable tests for analog and mixed-signal verification, we used OpenRAM to
generate a 16x16 SRAM and then ran a randomized readback test of the design
with SPICE, Verilog-AMS, and SystemVerilog simulators. OpenRAM [10] is an
open-source memory compiler that produces a SPICE netlist and Verilog model.

The results shown in Fig. 3a reveal two interesting trends. First, as expected,
SPICE simulations of the array were significantly slower than Verilog simulations
(100-1000x). Since fault allows the user to prototype tests with fast Verilog
simulations, and then seamlessly switch to SPICE for signoff verification, our tool
may reduce the latency in developing mixed-signal tests by orders of magnitude.
Second, even for simulations of the same type, there was significant variation
in the runtime of different simulators. SPICE simulation time varied by about
2x, while Verilog simulation time varied by about 10x. One of the advantages of
using fault is that it is easy to switch between simulators to find the one that
works best for a particular scenario.

Target Simulator ~ Runtime (s) Lines of Code (LoC)
spice ngspice 117.660 fault 136
Sp?ce comm s%m 1 199.868 Handwritten
spice comm sim 2 98.043 SPICE 223
system-verilog iverilog 0.238
system-verilog comm sim 1 1.081 Handwritten
system-verilog comm sim 2 2.807 SystemVerilog 189
verilog-ams comm sim 1 228.405 and Verilog-AMS
(a) Runtime using a VM on an Intel(R) (b) LoC for fault and
Xeon(R) CPU E5-2680 v4 @ 2.40GHz with language-specific imple-
64GB of RAM. mentations of the test.

Fig. 3. Results for OpenRAM 16x16 SRAM randomized readback test.

We also looked at the amount of human effort required to use fault to imple-
ment this test as compared to the traditional approach of writing separate test-
benches for each simulation language. Since “human effort” is subjective, we
used lines of code as a rough metric, as measured from handwritten implemen-
tations of the same test in SystemVerilog, Verilog-AMS, and SPICE. Figure 3b
shows the results of this experiment: the fault-based approach used 136 LoC as
compared to 412 LoC for the traditional approach, a reduction of 3.02x.

CGRA Integration Test Bench. To observe how fault scales to more com-
plex testing tasks, we report numbers for an integration test of the Stanford
Garnet CGRA [18]. This test generates an instance of the CGRA chip, runs a
simulation that programs the chip for an image processing application, streams
the input image data onto the chip, and streams the output image data to a
file. The output is compared to a reference software model. Running the test

412 L. Truong et al.

took 232 min with the verilator target, 185 min with commercial simulator
1, and 221 min with commercial simulator 2. Leveraging the portability of
fault-based tests could save up to 47min in testing time. These results were
collected using the same machine as the SRAM experiment (see Fig. 3a).

Unified Constrained Random and Formal. To demonstrate the utility of
the assume/guarantee interface as a unified abstraction for constrained random
and formal verification, we compared the runtime performance of using a con-
strained random target versus a formal model checker to verify the simple ALU
property shown in Sect. 2.1. The first test evaluated the runtime performance of
verifying correctness of the property on 100 constrained random inputs versus
using a formal model checker. The formal model checker provided a complete
proof of correctness using interpolation-based model checking [14] in 1.613 s,
while constrained random verified 100 samples in 2.269 s (rejection sampling)
and 2.799 s (SMT sampling). The second test injected a bug into the ALU by
swapping the opcodes for addition and subtraction. The model checker found a
counterexample in 1.154 s with bounded model checking [4], while constrained
random failed in 2.947 s (rejection sampling) and 1.230 s (SMT sampling). In
both cases the model checker was at least as fast as the constrained random
equivalent while providing better coverage in the case of no bug. These results
were collected using a MacBook Pro (13-in 2017, 4 Thunderbolt, macOS 10.15.2),
with a 3.5 GHz Dual-Core Intel i7 CPU, and 16 GB RAM.

4 Related Work

Prior work has leveraged using a generic API to Verilog simulators to build porta-
bility into testing infrastructures. The ChiselTest library [2] and cocotb [7]
provide this capability for Scala and Python respectively. Using a generic API
offers many of the same advantages with regards to test portability, simplic-
ity, and automation, but the lack of multi-stage execution limits the applica-
tion to more diverse backend targets such as SPICE simulations and formal
model checkers. However, because these libraries interact with the simulator
directly, they do allow user code to immediately respond to the simulator state,
enabling interactive debugging through the host language. cocotb also presents
a coroutine abstraction that naturally models the concurrency found in hard-
ware simulation. Future work could investigate using cocotb as a runtime target
for fault’s frontend, enabling a similar concurrent, interactive style of testing.
Another interesting avenue of work would be to extend fault’s backend targets
to support lowering cocotb’s coroutine abstraction.

5 Conclusion

The ethos of fault is to enable the construction of flexible, portable test com-
ponents that are simple to integrate and scale for testing complex applications.

fault: Python Hardware Verification DSL 413

The ability to metaprogram test components is essential for enabling verification
teams to match the productivity of design teams using generators. fault’s porta-
bility enables teams to easily transition to different tools for different use cases,
and enables the proliferation of reusable verification libraries that are applicable
in a diverse set of tooling environments.

While fault has already demonstrated utility to design teams in academia
and industry, there remains a bright future filled with opportunity to improve
the system. Extending the assume/guarantee interface to support temporal prop-
erties/constraints and leverage compositional reasoning [6] is essential for scal-
ing the approach to more complex systems. Adding concurrent programming
abstractions such as coroutines are essential for capturing the common patterns
used in the testing of parallel hardware. Using a deep embedding architecture
could significantly improve the performance of generating fault test benches.

Funding. The authors would like to thank the DARPA DSSoC (FA8650-18-2-
7861) and POSH (FA8650-18-2-7854) programs, the Stanford AHA and SystemX
affiliates, Intel’s Agile ISTC, the Hertz Foundation Fellowship, and the Stanford
Graduate Fellowship for supporting this work.

References

1. Bachrach, J., et al.: Chisel: constructing hardware in a scala embedded language.
In: 2012 DAC Design Automation Conference, pp. 1212-1221, June 2012. https://
doi.org/10.1145/2228360.2228584

2. ucb bar: chisel-testers2 (2019). https://github.com/ucb-bar/chisel-testers2

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org(2016)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193-207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_-14

5. Boulton, R.J., Gordon, A., Gordon, M.J.C., Harrison, J., Herbert, J., Tassel, J.V.:
Experience with embedding hardware description languages in HOL. In: Proceed-
ings of the IFIP TC10/WG 10.2 International Conference on Theorem Provers
in Circuit Design: Theory, Practice and Experience, pp. 129-156. North-Holland
Publishing Co., NLD (1992)

6. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In:

LICS, pp. 353-362. IEEE Computer Society (1989)

cocotb: cocotb (2019). https://github.com/cocotb/cocotb

8. Daly, R.: CorelR: A simple LLVM-style hardware compiler (2017). https://github.
com/rdaly525 /coreir

9. Dutra, R., Bachrach, J., Sen, K.: SMTsampler: efficient stimulus generation from
complex SMT constraints. In: 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1-8. IEEE (2018)

10. Guthaus, M.R., Stine, J.E., Ataei, S., Chen, B., Wu, B., Sarwar, M.: OpenRAM:
an open-source memory compiler. In: 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1-6, November 2016. https://doi.org/
10.1145/2966986.2980098

~

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://github.com/ucb-bar/chisel-testers2
http://www.SMT-LIB.org
https://doi.org/10.1007/3-540-49059-0_14
https://github.com/cocotb/cocotb
https://github.com/rdaly525/coreir
https://github.com/rdaly525/coreir
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1145/2966986.2980098

414 L. Truong et al.

11. Hennessy, J.L., Patterson, D.A.: A new golden age for computer architecture. Com-
mun. ACM 62(2), 48-60 (2019). https://doi.org/10.1145/3282307

12. Lockhart, D., et al.: Experiences building edge TPU with chisel. In: 2018 Chisel
Community Conference (CCC) (2018)

13. Mattarei, C., Mann, M., Barrett, C., Daly, R.G., Huff, D., Hanrahan, P.: CoSA:
integrated verification for agile hardware design. In: 2018 Formal Methods in Com-
puter Aided Design (FMCAD), pp. 1-5, October 2018. https://doi.org/10.23919/
FMCAD.2018.8603014

14. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1-13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6_1

15. phanrahan: magma (2019). https://github.com/phanrahan/magma (2019)

16. Shacham, O., Azizi, O., Wachs, M., Richardson, S., Horowitz, M.: Rethinking dig-
ital design: why design must change. IEEE Micro 30(6), 9-24 (2010). https://doi.
org/10.1109/MM.2010.81

17. Snyder, W.: Verilator and systemperl. In: North American SystemC Users’ Group,
Design Automation Conference (2004)

18. Stanford AHA: Garnetflow (2019). https://github.com/Stanford AHA /GarnetFlow

19. Stanford AHA: lassen (2019). https://github.com/Stanford AHA /lassen

20. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theor. Comput. Sci. 248(1-2), 211-242 (2000)

21. Truong, L., Hanrahan, P.: A golden age of hardware description languages: applying
programming language techniques to improve design productivity. In: Lerner, B.S.,
Bodik, R., Krishnamurthi, S. (eds.) 3rd Summit on Advances in Programming
Languages, SNAPL 2019, 16-17 May 2019, Providence, RI, USA. LIPIcs, vol. 136,
pp. 7:1-7:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://
doi.org/10.4230/LIPIcs.SNAPL.2019.7

22. Williams, S.: Icarus verilog (2006). http://iverilog.icarus.com

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3282307
https://doi.org/10.23919/FMCAD.2018.8603014
https://doi.org/10.23919/FMCAD.2018.8603014
https://doi.org/10.1007/978-3-540-45069-6_1
https://github.com/phanrahan/magma
https://doi.org/10.1109/MM.2010.81
https://doi.org/10.1109/MM.2010.81
https://github.com/StanfordAHA/GarnetFlow
https://github.com/StanfordAHA/lassen
https://doi.org/10.4230/LIPIcs.SNAPL.2019.7
https://doi.org/10.4230/LIPIcs.SNAPL.2019.7
http://iverilog.icarus.com
http://creativecommons.org/licenses/by/4.0/

	fault: A Python Embedded Domain-Specific Language for Metaprogramming Portable Hardware Verification Components
	1 Introduction
	2 Design
	2.1 Frontend: Tester API
	2.2 Actions IR
	2.3 Backend Targets

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

