
Cascade 2.0

Wei Wang, Clark Barrett, and Thomas Wies

New York University

Abstract. Cascade is a program static analysis tool developed at New
York University. Cascade takes as input a program and a control file.
The control file specifies one or more assertions to be checked together
with restrictions on program behaviors. The tool generates verification
conditions for the specified assertions and checks them using an SMT
solver which either produces a proof or gives a concrete trace showing
how an assertion can fail. Version 2.0 supports the majority of standard
C features except for floating point. It can be used to verify both memory
safety as well as user-defined assertions. In this paper, we describe the
Cascade system including some of its distinguishing features such as its
support for different memory models (trading off precision for scalability)
and its ability to reason about linked data structures.

1 Introduction

Automatic verification using SMT solvers is an active area of research, with a
number of tools emerging, such as ESC/Java [16], Caduceus [15], LLBMC [30],
Spec# [1], HAVOC [8], VCC [10], LAV [29], and Frama-C [13]. Increasingly,
SMT solvers are used as back-end checkers because of their speed, automation,
and ability to model programs and assertions using built-in theory constructs.

Cascade1 is an open-source tool developed at New York University for au-
tomatically reasoning about programs. An initial prototype of the system was
described in [24]. This paper describes version 2.0, a from-scratch reimplemen-
tation which provides a number of new features, including support for nearly
all of C (with the exception of floating point), support for loops and recursion
via unrolling, support for loop invariants and deductive reasoning, and a new
back-end interface supporting both CVC4 [2] and Z3 [14].2 It is easy to add
additional back-end plugins as long as they support the SMT-LIB input format.

In addition to describing the overall system, this paper focuses on two dis-
tinguishing features of Cascade: its support for multiple memory models and its
extensibility for specific domains.

The paper is organized as follows. Section 2 gives an overview of the system
and its features. Section 3 describes the three memory models supported by
Cascade, and reports the results of an empirical evaluation of these models on

1 Available at http://cims.nyu.edu/˜wwang1109/cascade/index.html
2 Another important feature of version 2.0 is that it has a very permissive license and

if CVC4 is used, it does not depend on any code with restrictive licenses.



2 Wei Wang, Clark Barrett, and Thomas Wies

the NECLA suite of static analysis benchmarks [23]. Section 4 describes a case
study in extending the system to reason about linked data structures, Section 5
describes related work, and Section 6 concludes.

2 System Design

Cascade is implemented in Java. The overall framework is illustrated in Figure 1.
This version of Cascade focuses on C, but the system is designed to be able to
accommodate multiple front-end languages. The C front-end converts a C pro-
gram into an abstract syntax tree using a parser built using the Rats parser
generator [17]. The core module takes an abstract syntax tree and a control file
as input. The control file specifies one or more paths through the program, as-
sumptions that should be made along the path, and assertions that should be
checked along the path. The core module uses symbolic execution over the ab-
stract syntax tree to build verification conditions corresponding to the assertions
specified in the control file. Currently, it takes the approach of simple forward
execution [3,5,18]. The core module converts paths through the abstract syntax
tree into logical formulas.

Fig. 1. Cascade framework

2.1 The Control File

Unlike some systems (e.g., [10], [8]), Cascade does not rely on annotated C code.
Rather, a separate control file is used to guide the symbolic execution. Control



Cascade 2.0 3

files use XML and support the constructs detailed below. The rationale for the
control file is that we want to be able to use Cascade on large existing code bases
without having to modify the code itself.

Basic structure. Every control file begins with a sourceFile section that gives
the paths to the source files. This is followed by one or more Run sections,
each defining a constrained (symbolic) run of the program. Each run starts
with a single startPosition command and ends with a single endPosition
command that give respectively the start point and end point of the run. If the
source code contains branches, Cascade will consider both branches by default
(merging them when they meet again). If users wish to execute one branch
in particular, they may include one or more wayPoint commands in run, to
indicate the positions that the considered run should pass through. A simple
example is shown in Figure 2.

int abs(int x) {
int result;
if(x>=0)

result = x;
else

result = -x;
return result;

}

<controlFile>
<sourceFile name="abs.c" id="1" />
<run>
<startPosition fileId="1" line="1" />
<wayPoint fileId="1" line="4" />
<endPosition fileId="1" line="8" />

</run>
<run>
<startPosition fileId="1" line="1" />
<wayPoint fileId="1" line="6" />
<endPosition fileId="1" line="8" />

</run>
</controlFile>

Fig. 2. abs.c and abs.ctrl

Function Calls. Cascade supports procedure calls via inlining. Note that Cas-
cade always assigns a unique name for each dynamically encountered variable
declaration, so name clashes between caller and callee functions are not an issue.
By default, Cascade can perform inlining and parameter passing automatically,
as shown in Figure 3 (the body of function pow2 is inlined at the call sites in
main). If users wish to specify a particular path in the function, a wayPoint
command must be used to specify the line on which the function is called. Then,
a function section can be embedded within the wayPoint command which
provides an attribute funcName, as well as the wayPoints of the desired path
inside the function. Even if multiple functions are called at the same line of code,
this can be handled by nesting multiple function sections under the wayPoint
command for that line of code. These function sections will constrain the func-
tion calls on that line in the order that the function calls appear (from left to
right). Figure 4 gives an example.

Loops. By default, loops are eliminated using bounded loop unrolling [3]. A de-
fault number of unrolls can be specified on the command line, and a specific



4 Wei Wang, Clark Barrett, and Thomas Wies

int pow2(int x) {
return x*x;

}

int main() {
int a, b, result;
a = 2;
b = 3;
result = pow2(a) + pow2(b);
return result;

}

<controlFile>
<sourceFile name="pow2.c" id="1" />
<run>
<startPosition fileId="1" line="5" />
<endPosition fileId="1" line="11" />

</run>
</controlFile>

Fig. 3. pow2.c and pow2.ctrl

int abs(int x) {
int result;
if(x>=0)

result = x;
else

result = -x;
return result;

}

int main() {
int a, result;
a = -4;
result = abs(a) - abs(-a);
return result;

}

<controlFile>
<sourceFile name="absext2.c" id="1" />
<run>
<startPosition fileId="1" line="10" />
<wayPoint fileId="1" line="13" >
<function funcName="abs" funcId="1" >
<wayPoint fileId="1" line="6" />

</function>
<function funcName="abs" funcId="2" >
<wayPoint fileId="1" line="4" />

</function>
</wayPoint>
<endPosition fileId="1" line="15" />

</run>
</controlFile>

Fig. 4. absext2.c and absext2.ctrl

int log2(int num) {
int result, i;
result = 0;
for(i=num; i>1; i=i/2) {
result++;

}
return result;

}

int main() {
int num, result;
num = 1024;
result = log2(num);
return result;

}

<controlFile>
<sourceFile name="log2.c" id="1" />
<run>
<startPosition fileId="1" line="10" />
<wayPoint fileId="1" line="13" >
<function funcName="log2" >
<wayPoint fileId="1" line="4" >
<loop iterTimes="10" />

</wayPoint>
</function>

</wayPoint>
<endPosition fileId="1" line="15" />

</run>
</controlFile>

Fig. 5. log2.c and log2.ctrl



Cascade 2.0 5

number of iterations for a particular loop can be specified using a loop com-
mand, as shown in Figure 5. Alternatively, a loop invariant can be specified using
the invariant command as shown in Figure 6. If a loop invariant is provided,
Cascade will simply check that the loop invariant holds when the loop is en-
tered, and that it is preserved by a single iteration of the loop (for this second
check, any variables updated in the loop body are assumed to be unconstrained
so that the check is valid for all iterations of the loop). Then, the loop invariant
is assumed going forward (this is in contrast to the default behavior which is
to symbolically execute the loop a fixed number of times). As with assumptions
and assertions (see below), invariants are specified using C expressions. Note that
quantified loop invariants are acceptable, and Cascade’s ability to solve them is
limited only by the quantifier reasoning capabilities of the back-end solver.

int main() {
int sum = 0;

for (int i = 0; i<=10; i++) {
sum = sum + i;

}
return sum;

}

<controlFile>
<sourceFile name="forLoop_test.c" id="1" />
<run>
<startPosition fileId="1" line="1" />
<wayPoint fileId="1" line="4" >
<loop>
<invariant><![CDATA[
sum == (i-1) * i / 2 && i >= 0 && i <= 11
]]>
</invariant>

</loop>
</wayPoint>
<endPosition fileId="1" line="7" />

</run>
</controlFile>

Fig. 6. sum.c and sum.ctrl

Commands. Two commands cascade assume and cascade check are pro-
vided, each of which takes a C expression as an argument. cascade assume is
used to constrain the set of possible states being considered to those satisfying
the argument provided. cascade check generates a verification condition to
check that the symbolic execution up to this point satisfies the argument pro-
vided. Commands are allowed as part of a startPosition, wayPoint, or
endPosition directive (see Figure 7).

As a new feature of Cascade 2.0, commands can also be included as an-
notations in the source code, as shown in Figure 8. To use this feature, the
“--inline-anno” option must be enabled3. Cascade provides a number of ex-
tensions that can be embedded within C expressions to enable more expressive
reasoning. Some are listed here:

– Logic symbols: implies(P,Q), forall(v, u,E) and exists(v, u,E).

3 The control file style annotation is designed to keep the source code clean, while the
inline style is available for those users who prefer it.



6 Wei Wang, Clark Barrett, and Thomas Wies

int abs(int x) {
int result;
if(x>=0)

result = x;
else

result = -x;
return result;

}

<controlFile>
<sourceFile name="absext.c" id="1" />
<run>
<startPosition fileId="1" line="1" />
<endPosition fileId="1" line="7" >
<command>
<cascadeFunction> cascade_check
</cascadeFunction>
<argument><![CDATA[
result >= 0
]]>
</argument>

</command>
</endPosition>

</run>
</controlFile>

Fig. 7. absext.c and absext.ctrl. The assertion is invalid due to the possibility of signed
overflow.

– Memory checks:
• valid(p): denotes that p is guaranteed to point to a memory address

within a region allocated by the program.
• valid(p, size): denotes that the addresses from p, ..., p+ size− 1 are valid

(in the sense described above).
• valid malloc(p, size): denotes the assumptions that can be made on the

pointer p after a malloc instruction.
• valid free(p): denotes that a free instruction on pointer p is admissible.

int strlen(const char* str){
ASSUME(valid_malloc(str,

4*sizeof(char)));

int i=0;
while(str[i] != ’\0’)

++i;

ASSERT(forall(j,
implies(j >= 0 && j <= i,

valid(&str[i])));
return i;

}

<controlFile>
<sourceFile name="strlen.c"

id="1" />
<run>
<startPosition fileId="1"

line="1" />
<wayPoint fileId="1" line="7" >
<loop iterTimes="3" />

</wayPoint>
<endPosition fileId="1"

line="13" />
</run>

</controlFile>

Fig. 8. strlen.c and strlen.ctrl. Because we specify that the loop should be executed
exactly 3 times, no errors are found.

3 Memory Models

One goal of Cascade is to support the analysis of systems software such as device
drivers and operating systems code. These programs make heavy use of pointer



Cascade 2.0 7

manipulation and require a fairly precise memory model. A complementary goal
of Cascade is to scale to large programs that are not as pointer-intensive. To
achieve these complementary goals, Cascade provides three different memory
models, with different trade-offs in terms of precision and scalability: (1) the
flat model, in which all of memory is modeled as a single array; (2) the Burstall
model [6] which uses an array for every different structure field; and (3) the
partition model which divides up memory into several partitions, using a pointer
analysis to ensure that variables that may alias end up in the same partition.
In this section, we discuss these models in detail, including their semantics,
implementation details, advantages and restrictions.

3.1 Flat Memory Model

The flat memory model is essentially the standard conceptual memory model for
C: the entire memory is represented as a single flat array M mapping addresses
to values4 (by default, both addresses and values are represented as fixed-width
bit-vectors). Memory operations are modeled with the array operations store
and select. Each program variable is modeled as the content of some address in
memory. For example, the variable x is associated with a memory address addrx,
and all reads from and writes to x are done by accessing M at address addrx.
This model can soundly support all type-unsafe operations including union types,
pointer arithmetic and pointer casts.

Concretely, we model the memory with two arrays M and Size of types

M : BitVec(n)→ BitVec(m)
Size : BitVec(n)→ BitVec(m)

The constants m and n can be assigned on the command line via the options
“--mem-cell-size” and “--mem-addr-size”. 5

To model dynamic memory allocation operations such as x = malloc(size),
a fresh region variable regionx of type BitVec(n) is created and stored at addrx

of M . To keep track of the size of the allocated region, the auxiliary array
variable Size is used to map regionx to size. Deallocation, free(x), is modeled by
selecting the region variable M [addrx] corresponding to x, and updating Size to
0 at M [addrx]. In the initial state, the array Size is assumed to map all indices
to 0. The following table gives the formal semantics of malloc and free.

Statement Interpretation

x = malloc(size)
M ′ = store(M, addrx, regionx)

Size ′ = store(Size, regionx, size)
free(x) Size ′ = store(Size,M [addrx], 0)

4 Some tools use separate arrays for the stack and the heap. However, this is not
always a sound assumption, so Cascade uses a single mapping to represent both.

5 Integers are represented as fixed-size bit vectors, and thus integer arithmetic is arith-
metic modulo 2k where k is the number of bits. Cascade also allows the user to select
unbounded integers to represent integers in the program. This is activated with the
option “--non-overflow” .



8 Wei Wang, Clark Barrett, and Thomas Wies

Note that the value of store(a, i, v) is a new array equivalent to a except at index
i where its value is now v [27]. The array M is the symbolic value of memory
before the operation and M ′ is the symbolic value of memory afterwards. Having
these definitions, memory checks can be formalized as follows:

valid(p, size) ≡
∃region : BitV ec(n). Size[region] > 0 =⇒

M [addrp] ≥ region ∧M [addrp] + size ≤ region + Size[region]

The predicate valid(p, size) is inserted as an assertion before each memory ac-
cess.

Allocation and deallocation have associated guard predicates, valid malloc,
respectively, valid free. The predicate valid free is used to detect errors related
to deallocation of invalid pointers. It is inserted as an assertion before each free
instruction and is defined as follows:

valid free(x) ≡M [addrx] = 0 ∨ Size[M [addrx]] > 0

The predicate valid malloc is used to ensure that the new region regionx is indeed
fresh and does not overlap with previously allocated regions. It is inserted as an
assumption after each malloc instruction. Cascade provides two modes for the
flat memory model that differ in how they interpret this predicate: an unordered
and an ordered mode.

Unordered mode. The unordered mode can be selected with the command line
option “--sound”. In this mode, valid malloc is interpreted as follows:

valid malloc(p, size) ≡
M [addrp] 6= 0 =⇒ M [addrp] > 0 ∧M [addrp] ≤M [addrp] + size ∧

(∀region : BitVec(n). Size[region] > 0 ∧ region 6= M [addrp] =⇒
M [addrp] + size ≤ region ∨ region + Size[region] ≤M [addrp])

This interpretation accurately reflects the C semantics. However, the size of the
allocation guards grow quadratically with the number of allocations encountered
during symbolic execution (after instantiating the universal quantifiers with the
actual regions). This places a high burden on the back-end SMT solvers.

Ordered mode. To obtain a more efficient SMT encoding, Cascade provides
an additional ordered mode, which sacrifices precision for scalability without
overly constraining the memory model. In this mode, Cascade assumes that ev-
ery freshly allocated memory address is larger than the largest address in the
latest allocated region. In order to track the latest allocated region, a new aux-
iliary variable last region is introduced. This variable is updated appropriately
after each allocation operation. The predicate valid malloc is then interpreted
as follows:

valid malloc(p, size) ≡
M [addrp] 6= 0 =⇒ M [addrp] > 0 ∧M [addrp] ≤M [addrp] + size ∧

(last region = 0 ∨ last region + Size[last region] ≤M [addrp])



Cascade 2.0 9

Hence, in the ordered mode, the memory model does not capture memory man-
agement strategies in which freed addresses will be reallocated. However, this
mode greatly reduces the size of the generated SMT solver queries without sac-
rificing much precision. In particular, many errors due to imprecise reasoning
about pointer arithmetic between fields and objects can still be detected. Note
that during symbolic execution, a data structure “Regions” is maintained to keep
track of all allocated regions along the current path. Using this auxiliary data
structure, we can completely instantiate the quantifiers in the guard predicates
and memory checks.

3.2 Burstall Memory Model

The main idea of the Burstall memory model [6] is to split the memory according
to the types of allocated objects, making the assumption that pointers with
different types will never alias. Apart from common scalar types, each struct
field is also represented as a unique type. This model guarantees that updates
to different fields of a struct will not interfere with each other. Consequently, it
cannot capture union types or pointer arithmetic on fields inside a struct object.
Cascade has a preprocessor that detects such operations and gives a warning
when using the Burstall model.

To encode the Burstall memory model in Cascade, M is encoded as a record
instead of a flat array. Each record element represents the state of the memory
for one type in the C program. The exact type of M is shown in Fig. 9. The
number of record elements is bounded by the number of structure types defined
in the C program. Note that for each record element, if its type is a pointer, the
element type of the corresponding array is Addr ; otherwise, it is Scalar .

Ptr : uninterpreted type Scalar : BitVec(m)
Offset : BitVec(n) Addr : Ptr × Offset

M : Record


type0 : (Addr → Addr | Scalar),
type1 : (Addr → Addr | Scalar),
...
typek : (Addr → Addr | Scalar)


Size : Record


type0 : (Addr → Scalar),
type1 : (Addr → Scalar),
...
typek : (Addr → Scalar)


Fig. 9. Types of auxiliary variables for the encoding of the Burstall memory model



10 Wei Wang, Clark Barrett, and Thomas Wies

3.3 Partition Memory Model

The partition memory model is a novel experimental model implemented in Cas-
cade. We here provide only an abridged summary of this model since a detailed
description is beyond the scope of this paper.

In the partition model, the memory is divided according to distinct program
pointers. A valid pointer has ownership of the associated memory region. This
model allows arbitrary pointer arithmetic inside a region, as well as dereferencing
pointers to any location inside a region. The model further supports all untyped
operations except pointer aliasing. For example, consider a program that non-
deterministically assigns either &x or &y to a pointer variable s. A subsequent
update of x, respectively, y via pointer s would not be detected if x and y are
assigned to regions that are disjoint from the region of s. To obtain a memory
partition that takes into account pointer aliasing, Cascade incorporates Steens-
gaard’s unification-based pointer analysis [26] as a preprocessing step. Each set
of potentially aliasing pointers is assigned to one region. For the above example,
the preprocessor will assign x and y to the same region. In most cases, the num-
ber of pointer classes is much larger than the number of types in the C code.
Hence, the partition model often provides a more fine-grained partition of the
memory into disjoint regions compared to the Burstall model. This can signifi-
cantly speed up the analysis in some cases, which we confirm in our experimental
evaluation.

Similar to Burstall’s model, the state of the memory is encoded as a record.
The detailed types of the auxiliary variables are shown in Figure 10. Every region
has its own array, and the element type of the array can be determined by the
type of the pointers associated with that region.

M : Record


ptr0 : BitVec(n)→ BitVec(m),
ptr1 : BitVec(n)→ BitVec(m),
...
ptrk : BitVec(n)→ BitVec(m)


Size : Record


ptr0 : BitVec(n)→ BitVec(m),
ptr1 : BitVec(n)→ BitVec(m),
...
ptrk : BitVec(n)→ BitVec(m)


Fig. 10. Types of auxiliary variables for the encoding of the partition memory model

Initially, the record is empty. During symbolic execution, new record elements
are added for new variable definitions. If the execution context changes its scope
we can safely delete those elements associated with pointers not in the current
scope. In this way, the memory state tracks only the active pointers in the current
scope. This significantly simplifies the query formula given to the SMT solver.
Note that both the unordered mode and the ordered mode used in the flat model
can also be applied to each region in the partition memory model.



Cascade 2.0 11

3.4 Evaluation

We report on a set of experiments using the multiple memory models in Cas-
cade to check properties of the NECLA suite of static analysis benchmarks [23].
These benchmarks contain C programs demonstrating common programming
situations that arise in practice such as interprocedural data-flow, aliasing, array
allocation, array size propagation and so on. We excluded benchmarks relying
on string library functions and floating point number calculations. The results
of our experiments are summarized in Table 1 and Table 2.6 Note that these
benchmarks have also been used in other recent tool papers such as the one
introducing LLBMC [30] (which also included evaluations of CBMC 3.8, CBMC
3.9 [9] and ESBMC 1.16 [12]) and another introducing LAV [29] (which also
evaluated CBMC, ESBMC, and KLEE [7]). For comparison purposes, we report
our results in a similar format to that shown in [29] and also show the best result
reported there (in the LAV column).

The benchmark suite includes both faulty and correct programs. There are
two notable discrepancies with the results reported by LAV. For benchmark
ex10.c, LAV reports an error while Cascade does not. The reason is that we made
an additional assumption, namely that a pointer passed into the main function
was properly allocated. Without this assumption, Cascade would find the same
invalid address access as did LAV. The other discrepancy was in benchmark
ex40.c. In this program, a loop iterates over an array of size 100 until the value
0 is found. If the array does not have a 0 entry, an out-of-bounds violation will
occur in the 101st iteration. Cascade finds this bug if enough loop iterations are
examined.

While collecting the statistics, we have compared the performance of the
different memory models in Cascade7. For the flat memory model, we did not
observe a significant performance improvement of the ordered mode over the
unordered mode in most of the benchmarks. This is because the size of the
benchmarks is limited and so is the size of the queries given to the SMT solver.
However, the results for some benchmarks with a large number of loop unrollings
(ex17-100, ex26-200), or with invariant reasoning (ex1-inv, ex18-inv) are encour-
aging. We also found that the ordered mode is slightly slower than the unordered
mode for benchmark ex23-36, but we have not yet investigated why this is so.

Furthermore, from the results, we can see that both the Burstall model and
partition model scale much better than the flat model – they solved the bench-
marks (ex7-200, ex18-100, ex21-100, and ex22-50) that timed out in either LAV
or Cascade with the flat model (or both). And the overall performance of par-
tition model is much better than Burstall. In particular, benchmark ex27-200
was solved with the partition model, but timed out with the Burstall model.
Partition model is the default memory model in Cascade.

6 More information on the experiments including the benchmarks and control files is
available at http://cims.nyu.edu/˜wwang1109/cascade/vmcai.html.

7 Note that the programs in this benchmark suite are all type-safe – the Burstall model
is accurate enough to detect all bugs.



12 Wei Wang, Clark Barrett, and Thomas Wies

bnc. F/V #iter
Time(s)

LAV
Flat Model

Burstall Model Partition Model
Unordered Ordered

ex1 V
inv - 68.561 50.079 0.645 0.559
513 * * * * *
3 0.35 0.895 0.663 0.512 0.771

ex2 V
inv - 1.916 1.817 0.434 0.368

1024 * * * * *
3 0.47 0.534 0.535 0.332 0.42

ex3 F
inv - 0.365 0.362 0.471 0.496
10 - 0.576 0.552 0.558 0.774
? 0.06 - - - -

ex4 F
inv - 0.39 0.425 0.375 0.452
10 - 1.756 2.489 1.101 1.451
? 0.24 - - - -

ex5 V - 0.02 0.136 0.132 0.114 0.109

ex6 V - 0.11 0.187 0.134 0.159 0.142

ex7 V
inv - 1.62 1.088 0.393 0.375
200 * * * 9.266 6.552
3 0.15 0.709 0.606 0.269 0.247

ex8 F
inv - 0.173 0.128 0.193 0.193
3 0.14 0.156 0.125 0.129 0.154

ex9 V
inv - 0.666 0.768 0.452 0.441

1024 * * * * *
3 0.62 0.757 0.738 0.365 0.473

ex10 V
inv - 2.795 2.605 0.94 1.115
17 10.47 0.119 0.125 0.13 0.153
3 1.14 0.763 1.407 0.471 0.689

ex11 V 3 0.08 0.215 0.222 0.211 0.215

ex12 F
10 - 1.099 0.985 0.724 0.948
inv - 0.363 0.376 0.428 0.381
? 0.16 - - - -

ex13 F - 0.44 0.117 0.123 0.099 0.118

ex14 V
inv - 0.344 0.332 0.338 0.304
10 - 5.13 4.494 2.1 1.703
? 0.13 - - - -

ex15 V - 0.34 1.731 1.522 0.235 0.233

ex16 F
inv - 0.693 0.737 1.004 0.88
4 - 0.927 0.929 0.955 0.931
2 0.09F 0.22 0.232 0.266 1.82

ex17 V
inv - 0.292 0.282 0.369 0.35
100 - 19.274 17.068 29.193 3.34
? 0.68 - - - -

Table 1. Evaluation on NECLA Benchmarks. The experiments were conducted on a
1.7GHz, 4GB machine running Mac OS. A timeout (indicated by *) of 600 seconds was
set for each experiment. V indicates the program verification succeeded, and F indicates
the program contains a bug which was detected by Cascade. In the third column, “inv”
indicates that deductive reasoning with a loop invariant was used; a number indicates
the number of loop unrollings used; “-” indicates either that the program is loop-free
or that a failure occurs before any loops are entered; and “?” indicates the unknown
default iteration times used by LAV. In the fourth and later columns, “-” indicates
that there is no corresponding result for that loop configuration.



Cascade 2.0 13

bnc. F/V #iter
Time(s)

LAV
Flat Model

Burstall Model Partition Model
Unordered Ordered

ex18 V
inv - 424.414 65.531 0.446 0.804
100 * * * 359.59 7.066
10 3.0 8.088 9.412 2.527 1.298

ex19 F
inv - 0.163 0.17 0.183 0.172
3 0.08 0.371 0.424 0.466 0.387

ex20 F
inv - 0.385 0.399 0.451 0.417

1024 * * * * *
1 0.32 0.498 0.389 0.315 0.29

ex21 V
inv - 0.757 0.735 1.26 0.782
100 - * * 12.673 16.2
? 0.36 - - - -

ex22
V 50 - * * 14.919 12.133
V ? 4.1 - - - -

ex23 V
inv - 1.015 1.069 0.571 0.418
36 6.46 27.44 34.0 2.191 2.847

ex25 F
inv - 0.965 0.989 1.163 1.208
3 0.20 1.654 1.046 0.876 1.506

ex26 F
inv - 0.546 0.613 0.748 0.687
200 - 31.122 28.062 20.314 7.877
? 0.62 - - - -

ex27 F
inv - 1.584 1.913 1.219 4.68
200 - * * * 55.585
? 5.28 - - - -

ex30 F
- - 0.134 0.147 0.596 0.395
? 0.24 - - - -

ex31 V
inv - 0.308 0.312 0.348 0.317
7 5.62 0.62 0.976 0.624 0.432

ex32 V
inv - 0.892 0.826 1.067 0.608

1000 - * * * *
? 0.5 - - - -

ex34 V - 0.24 0.416 3.141 0.441 0.508

ex37 F - 0.20 0.107 0.143 0.131 0.132

ex39 F
inv - 0.228 0.238 0.292 0.255
3 0.07 0.306 0.273 0.641 0.307

ex40
F inv - 0.323 0.288 0.336 0.314
V 3 0.10 0.345 0.307 0.271 0.25

ex41 F
inv - 0.24 0.23 0.267 0.25
3 0.44 0.515 0.332 0.214 0.25

ex43 F
- - 1.793 1.318 1.041 1.271

inv - 0.907 0.857 0.731 0.794
? 17.91 - - - -

ex46 F 3 * 0.127 0.124 0.174 0.159

ex47 F
inv - 12.925 9.365 4.563 1.779
2 1.38 0.315 0.449 0.192 0.235

ex49
F inv - 0.33 0.339 0.414 0.378
V 3 0.08 0.24 0.246 0.235 0.204

inf1 F - 0.22 0.261 0.29 0.261 0.282

inf2 F - 1.25 0.223 0.158 0.185 0.195

inf4 F - 0.38 0.403 0.502 0.345 0.662

inf5 F - 0.15 0.221 0.235 0.15 0.209

inf6 V - 0.12 0.247 0.243 0.207 0.216

inf8 V - 0.19 0.333 0.417 0.323 0.439

Table 2. Evaluation on NECLA Benchmarks (continued).



14 Wei Wang, Clark Barrett, and Thomas Wies

4 Reasoning about Linked Data Structures

In this section, we discuss how to extend Cascade to reason about properties
of linked data structures. Analysis of such data structures typically requires a
reachability predicate to capture the unbounded number of dynamically allocated
cells present in a linked list. For a given address u, the reachability predicate
characterizes the set of cells {u, u.f, u.f.f, . . .} reachable from u via continuously
visiting field f .

4.1 Theory of Reachability in Linked Lists

LISBQ. Rakamarić et al. [21] presented a ground logic and an NP decision pro-
cedure for reasoning about reachability in liked list data structures. The logic

provides a ternary predicate x
f−→ z

f−→ y, which we refer to as the between pred-
icate. The predicate states that cell y is reachable from cell x via field f , yet,
not without going through cell z first. In other words, z is between x and y. Bi-

nary reachability reach(f, x, y) via field f can then be expressed as x
f−→ y

f−→ y.
The between predicate enables precise tracking of reachability information dur-
ing symbolic execution of heap updates that modify field f (potentially creating
cycles in the heap). In [19], Lahiri and Qadeer presented the logic of interpreted
sets and bounded quantification (LISBQ), which includes the between predicate
but also admits reasoning about the content of unbounded list data structures.
They showed that LISBQ is still decidable in NP using a decision procedure that
builds on an SMT solver.

LISBQ as a local theory extension. More recently, we explored the connection
between Lahiri and Qadeer’s result to local theory extensions [25]. A theory
extension is a first-order theory that is defined by extending a base theory with
additional symbols and axioms. For example, the theory of arrays over integer
indices can be formalized as a theory extension where the base theory is the
theory of linear integer arithmetic, the extension symbols are the array store
and select functions, and the extension axioms are McCarthy’s select over store
axioms.

A theory T is called local if satisfiability modulo T can be decided by re-
duction to the base theory via local instantiation of the extension axioms. Here,
local instantiation means that only those axiom instances are considered that
do not introduce new terms to the input formula. Local theory extensions are
interesting because they provide completeness guarantees for the quantifier in-
stantiation heuristics implemented in modern SMT solvers, and at the same time
give a simple syntactic restriction on the kinds of axiom instances that need to
be considered.

In [28], we showed that LISBQ can be formalized as a local theory exten-
sion. This yields an interesting generalization of previous results in [19, 21]. For
example, the base theory can now provide an interpretation of memory cells,
e.g., as bitvectors, which results in a theory of reachability that admits address



Cascade 2.0 15

arithmetic. Another generalization obtained this way is to interpret fields as
arrays. The formulas generated during symbolic execution in [19, 21] can grow
exponentially in the number of store operations x.f := y along the executed
path. The encoding of fields as arrays avoids this exponential blowup by defer-
ring case splits on store operations to the SMT solver. Finally, the connection
to local theory extensions also provides new possibilities to further improve the
efficiency of SMT-based decision procedures for LISBQ.

4.2 Linked Lists in Cascade

We have explored some of these possibilities in the context of Cascade. We added
a reachability predicate to the C expression language usable in assumptions and
assertions. The axioms of LISBQ are encoded via a new theory axiom encoding
module. The base theory interprets memory cells as bitvectors of fixed width in
order to model pointer arithmetic; and fields are interpreted as arrays mapping
bitvector indices to bitvector values. Cascade then instantiates the LISBQ theory
axioms for the ground terms appearing in each SMT query and hands the axiom
instances together with the query to the SMT solver.

In order to keep the input formula to the SMT solver relatively small, we
exploit our results on locality: we only partially instantiate the theory axioms.
That is, we only instantiate quantified variables that appear below function
symbols in the axioms, while keeping the remaining variables quantified. The
resulting quantified formulas fall into fragments for which the quantifier instan-
tiation heuristics that are implemented in SMT solvers are guaranteed to be
decision procedures. Partial instantiation provides a good compromise between
an approach where we only rely on the solver’s heuristics and do not instantiate
axioms upfront, and an approach where we fully instantiate the axioms and do
not use the heuristics in the solver at all. The former is typically fast but incom-
plete on satisfiable input formulas, the latter is complete but typically slow. This
is confirmed by our experimental evaluation. In fact, often partial instantiation
yields the best running time.

Example. Figure 11 shows the code and control file of a small list-manipulating
procedure in C that appends two lists together. In this test case, we are interested
in verifying that after the procedure returns, the head of the first list l1 can
reach the head of the second list l2.

Evaluation. In order to evaluate Cascade’s new ability to reason about linked
data structures, we chose two suites of benchmark programs manipulating singly-
linked lists (SL) and doubly-linked lists (DL), respectively. In these benchmarks,
various nontrivial reachability-related assertions are checked. The evaluation was
performed on a 1.7GHz, 4GB machine running Mac OS. For each benchmark,
the time limit was set to 60 seconds. The results appear in Table 3. We used
three different instantiation heuristics for the quantified axioms, and partial
instantiation is much more efficient than the other two options in most cases.



16 Wei Wang, Clark Barrett, and Thomas Wies

#define NULL (int *) 0

typedef struct NodeStruct {
struct NodeStruct *next;
int data;

} Node;

void append(Node *l1, Node *l2) {
ASSUME(create_acyclic_list(l1, 5)

&& create_acyclic_list(l2, 5));

Node *l = l1;
Node *e = l1;
Node *last = NULL;

while (e) {
last = e;
e = e->next;

}

if (!last)
l = l2;

else
last->next = l2;

ASSERT(reach(next, l1, l2));
}

<controlFile>
<sourceFile name="list_append.c"

id="1" />
<run>
<startPosition fileId="1"

line="8" />
<wayPoint fileId="1" line="16" >
<loop iterTimes="5" />

</wayPoint>
<wayPoint fileId="1" line="21" />
<endPosition fileId="1"

line="27" />
</run>

</controlFile>

Fig. 11. list append.c and list append.ctrl. The predicate create acyclic list(l, 5) indi-
cates that l is a singly-linked list of size 5. The predicate reach(next, l1, l2) indicates
that l1 can reach l2 by following the link field next.

This is noteworthy considering that SMT solvers use sophisticated instantiation
heuristics internally.

Note that for the DL benchmarks with invalid assertions, both no instantia-
tion and full instantiation time out most of the time, while partial instantiation
reports “unknown” immediately. For benchmarks with quantifiers that don’t fall
into a know complete fragment, an “unknown” indicates that the SMT solver
was unable to find a proof using its instantiation heuristics. Thus, an unknown
result should be considered the same as an invalid (satisfiable) result with the
understanding that it could be a false positive. In other words, an immediate
“unknown” result is the best we could hope for in this situation.

5 Related Work

In the last decade, a variety of SAT/SMT-based automatic verifiers for C pro-
grams have been developed, such as bounded model checkers (CBMC [9], ES-
BMC [12], LLBMC [30], LAV [29], Corral [20] and Cascade), symbolic execution
tools (KLEE [7]), and modular verifiers (VCC [10], HAVOC [8], and Frama-
C [13]). In most cases, these tools use either flat memory models (e.g., CBMC,
LLBMC, ESBMC, LLBMC, LAV, KLEE and early versions of VCC), or Burstall-
style memory models (e.g., Corral and Caduceus [15]).



Cascade 2.0 17

Benchmark F/V NI PI FI Benchmark F/V NI PI FI

sl append V 0.02 0.02 0.08 dl append V 0.08 0.34 0.14
sl contains V 0.01 0.01 0.05 dl contains V 0.01 0.03 0.02
sl create V 0.13 0.05 3.12 dl create V 12.98 0.18 1.81
sl filter F 0.11 0.08 0.13 dl filter F * 0.31UN *

sl findPrev V 0.02 0.05 0.09 dl findPrev V 0.05 0.07 0.06
sl getLast V 0.01 0.01 0.06 dl getLast V 3.34 0.02 1.27

sl insertBefore V 0.20 0.26 3.03 dl insertBefore V * 2.74 *
sl partition F 0.08 0.08 0.09 dl partition F * 0.23UN *
sl remove F 1.34 0.07 1.76 dl remove F * 0.68UN *

sl removeLast F 0.03 0.02 0.06 dl removeLast F * 0.11UN *
sl reverse V 0.09 0.06 1.57 dl reverse V * 18.65 *

sl split F 0.05 0.03 0.07 dl split F * 0.11UN *
sl traverse V 0.03 0.01 0.52 dl traverse V 8.68 0.02 *

Table 3. Results on singly- and doubly-linked list benchmarks. A timeout (indicated
by *) of 600 seconds was set for each experiment. NI is for no instantiation, PI is for
partial instantiation, and FI is for full instantiation. The superscript UN indicates that
the result from the SMT solver is “unknown”.

As we have discussed, these models force the user to choose between scala-
bility and being able to capture the effects of type-unsafe behaviors. The VCC
developers proposed a typed memory model that attempts to strike a balance
between scalability and precision [11]. This model maintains a set of valid point-
ers with disjoint memory locations, and restricts memory accesses only to them.
Special code annotation commands called split and join are introduced to switch
between a typed mode and a flat mode. However, the additional axioms intro-
duced for the mode switching slow down reasoning [4]. Böhme et al. use a variant
of the VCC model [4] but few details are given. A variant of Burstall’s model is
proposed in [22]. It employs a type unification strategy that simply removes the
uniqueness of relative type constants when detecting type casts. However, this
optimization is too coarse to handle code with even mild use of low-level address
manipulations and type casts, as the memory model will quickly degrade into
the flat model.

Frama-C also develops several memory models at various abstraction levels:
Hoare, typed, and flat models. As an optimization strategy, Frama-C mixes the
Hoare model and flat model by categorizing variables into two classes: logical
variables and pointer variables. The Hoare model is used to handle the logical
variables and the flat model manages the pointer variables. This strategy is
similar to our partition model. However, our partition model provides a more
fine-grained partition for the pointer variables.

Our partition model is similar to the memory model of VCC that divides
memory based on various pointers. The main difference is that we map the
pointers to separately updatable memory regions, and thus ease the burden of
SMT axiomatization for distinguishing pointers. Steensgaard’s pointer analysis



18 Wei Wang, Clark Barrett, and Thomas Wies

is incorporated to control the issue of pointer aliasing. Compared to the VCC
model, our modeling seems more natural – we can detect untyped operations be-
fore memory splitting, and thus avoid switching between typed and flat modes.
The direct performance comparison is difficult because of VCC’s contract based
approach to verification. However, results from [4] seem to confirm the folk wis-
dom that splitting the heap into disjoint regions performs best.

6 Conclusion

In this paper, we presented the latest version of Cascade, an automatic veri-
fier for C programs. It supports multiple memory models in order to balance
efficiency and precision in various ways. Our empirical evaluation shows that
Cascade is competitive with other tools. Furthermore, we have shown that with
a modest effort, it can be extended to reason about simple properties of linked
data structures.

In the future, we will integrate an invariant inference engine to relieve the
annotation burden on users. Moreover, we are planning to support procedure
contracts that enable local reasoning via frame rules.

Acknowledgments

We would like to thank Christopher Conway, Morgan Deters, Dejan Jovanović,
and Tim King for their contributions to the design and implementation of the
Cascade tool. This work was supported by NSF grants CCF-0644299 and CCS-
1320583.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
An overview. Construction and Analysis of Safe, Secure and Interoperable Smart
Devices, pages 49–69, 2005.

2. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. 6806:171–177, 2011.

3. A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. Proceedings of Design Automation
Conference (DAC’99), 317:226–320, 1999.

4. S. Böhme and M. Moskal. Heaps and data structures: A challenge for automated
provers. N. Bjørner and V. Sofronie-Stokkermans, editors, Automated Deduction,
6803:177–191, 2011.

5. D. Brand and W. H. Joyner. Verification of protocols using symbolic execution.
Comput. Networks, 2:351, 1978.

6. R. M. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7:23–50, 1972.

7. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. Proc. OSDI 2008,
pages 209–224, 2008.



Cascade 2.0 19

8. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A reachability predicate
for analyzing low-level software. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 19–33, 2007.

9. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
Proc. TACAS 2004, 2988:168–176, 2004.

10. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent
C. 22nd International Conference on Theorem Proving in Higher Order Logics
(TPHOLs ’09), 2009.

11. E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A precise yet efficient memory
model for c. ENTCS, 254:85–103, 2009.

12. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded model checking
for embedded ansi-c software. ASE, 0:137–148, 2009.

13. P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski.
Frama-c a software analysis perspective, 2012.

14. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. TACAS, pages
337–340, 2008.

15. J. Filliâtre and C. Marché. Multi-prover verification of C programs. International
Conference on Formal Engineering Methods (ICFEM ’04), pages 15–29, 2004.

16. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. Programming Language Design and Implemen-
tation (PLDI), pages 234–245, 2002.

17. R. Grimm. Rats!, a parser generator supporting extensible syntax. 2009.
18. J. C. King. Symbolic execution and program testing. Communications of the ACM,

385:226–394, 1976.
19. S. K. Lahiri and S. Qadeer. Back to the future. revisting precise program verifica-

tion using SMT solvers. POPL, pages 171–182, 2008.
20. A. Lal, S. Qadeer, and S. K. Lahiri. Corral: A solver for reachability modulo

theories. CAV, 2012.
21. Z. Rakamarić, J. Bingham, and A. J. Hu. An inference-rule-based decision proce-

dure for verification of heap-manipulating programs with mutable data and cyclic
data structures. VMCAI, pages 106–121, 2007.

22. Z. Rakamarić and A. J. Hu. A scalable memory model for low-level code. VMCAI,
pages 290–304, 2009.

23. S. Sankaranarayanan. Necla static analysis benchmarks. 2009.
24. N. Sethi and C. Barrett. CASCADE: C assertion checker and deductive engine.

CAV 2006, 4144:166–169, 2006.
25. V. Sofronie-Stokkermans. Interpolation in local theory extensions. Logical Methods

in Computer Science, 4:4, 2008.
26. B. Steensgaard. Points-to analysis in almost linear time. ACM Symposium on

Principles of Programming Languages, pages 32–41, 1996.
27. A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A decision procedure for an

extensional theory of arrays. Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science, page 29, 2001.

28. N. Totla and T. Wies. Complete instantiation-based interpolation. POPL, 2013.
29. M. Vujosevic-Janicic and V. Kuncak. Development and evaluation of LAV: an

SMT-based error finding platform. Proc. VSTTE, 2012.
30. M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools using exploitable

buffer overflows from open source code. SIGSOFT Softw. Eng, page 29, 2004.


