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Abstract—Inspired by recent successes of parallel techniques
for solving Boolean satisfiability, we investigate a set of strategies
and heuristics to leverage parallelism and improve the scalability
of neural network verification. We present a general description
of the Split-and-Conquer partitioning algorithm, implemented
within the Marabou framework, and discuss its parameters and
heuristic choices. In particular, we explore two novel partitioning
strategies, that partition the input space or the phases of
the neuron activations, respectively. We introduce a branching
heuristic and a direction heuristic that are based on the notion of
polarity. We also introduce a highly parallelizable pre-processing
algorithm for simplifying neural network verification problems.
An extensive experimental evaluation shows the benefit of these
techniques on both existing and new benchmarks. A preliminary
experiment ultra-scaling our algorithm using a large distributed
cloud-based platform also shows promising results.

I. INTRODUCTION

Recent breakthroughs in machine learning, specifically the
rise of deep neural networks (DNNs) [1], have expanded the
horizon of real-world problems that can be tackled effectively.
Increasingly, complex systems are created using machine
learning models [2] instead of using conventional engineering
approaches. Machine learning models are trained on a set of
(labeled) examples, using algorithms that allow the model
to capture their properties and generalize them to unseen
inputs. In practice, DNNs can significantly outperform hand-
crafted systems, especially in fields where precise problem
formulation is challenging, such as image classification [3],
speech recognition [4] and game playing [5].

Despite their overall success, the black-box nature of DNNs
calls into question their trustworthiness and hinders their
application in safety-critical domains. These limitations are
exacerbated by the fact that DNNs are known to be vulnerable
to adversarial perturbations, small modifications to the inputs
that lead to wrong responses from the network [6], and real-
world attacks have already been carried out against safety-
critical deployments of DNNs [7, 8]. One promising approach
for addressing these concerns is the use of formal methods to
certify and/or obtain rigorous guarantees about DNN behavior.

Early work in DNN formal verification [9, 10] focused on
translating DNNs and their properties into formats supported
by existing verification tools like general-purpose Satisfiability
Modulo Theories (SMT) solvers (e.g., Z3 [11], CVC4 [12]).
However, this approach was limited to small toy networks
(roughly tens of nodes).

More recently, a number of DNN-specific approaches and
solvers, including Reluplex [13], ReluVal [14], Neurify [15],
Planet [16], and Marabou [17], have been proposed and devel-
oped. These techniques scale to hundreds or a few thousand
nodes. While a significant improvement, this is still several
orders of magnitude fewer than the number of nodes present
in many real-world applications. Scalability thus continues to
be a challenge and the subject of active research.

Inspired by recent successes with parallelizing SAT
solvers [18, 19], we propose a set of strategies and heuristics
for leveraging parallelism to improve the scalability of neural
network verification. The paper makes the following contri-
butions: 1) We present a divide-and-conquer algorithm, called
Split-and-Conquer (S&C), for neural network verification that
is parameterized by different partition strategies and constraint
solvers (Sec. III). 2) We describe two partitioning strategies
for this algorithm (Sec. III-B): one that works by partitioning
the input domain and a second one that performs case splitting
based on the activation functions in the neural network. The
first strategy was briefly mentioned in the Marabou tool
paper [17]; we describe it in detail here. The second strategy
is new. 3) We introduce the notion of polarity and use it to
refine the partitioning (Sec. III-C); 4) We introduce a highly
parallelizable pre-processing algorithm that significantly sim-
plifies verification problems (Sec. III-D); 5) We show how
polarity can additionally be used to speed up satisfiable queries
(Sec. III-E); and 6) We implement the techniques in the
Marabou framework and evaluate on existing and new neural
network verification benchmarks from the aviation domain.
We also perform an ultra-scalability experiment using cloud
computing (Sec. IV). Our experiments show that the new and
improved Marabou can outperform the previous version of
Marabou as well as other state-of-the-art verification tools such
as Neurify, especially on perception networks with a large
number of inputs. We begin with preliminaries, review related
work in Sec. V, and conclude in Sec. VI.

II. PRELIMINARIES

In this section, we briefly review neural networks and
their formalization, as well as the Reluplex algorithm for
verification of neural networks.
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Fig. 1: A small feed-forward DNN N .

A. Formalizing Neural Networks

Deep Neural Networks. A feed-forward Deep Neural Net-
work (DNN) consists of a sequence of layers, including
an input layer, an output layer, and one or more hidden
layers in between. Each non-input layer comprises multiple
neurons, whose values can be computed from the outputs
of the preceding layer. Given an assignment of values to
inputs, the output of the DNN can be computed by iteratively
computing the values of neurons in each layer. Typically, a
neuron’s value is determined by computing an affine function
of the outputs of the neurons in the previous layer and
then applying a non-linear function, known as an activation
function. A popular activation function is the Rectified Linear
Unit (ReLU), defined as ReLU(x) = max(0, x) (see [3, 20,
21]). In this paper, we focus on DNNs with ReLU activation
functions; thus the output of each neuron is computed as
ReLU(w1 ·v1+ . . . wn ·vn+b), where v1 . . . vn are the values
of the previous layer’s neurons, w1 . . . wn are the weight
parameters, and b is a bias parameter associated with the
neuron. A neuron is active or in the active phase, if its output
is positive; otherwise, it is inactive or in the inactive phase.

Verification of Neural Networks. A neural network verifica-
tion problem has two components: a neural network N , and a
property P . P is often of the form Pin ⇒ Pout, where Pin is
a formula over the inputs of N and Pout is a formula over the
outputs of N . Typically, Pin defines an input region I , and
P states that for each point in I , Pout holds for the output
layer. Given a query like this, a verification tool tries to find a
counter-example: an input point i in I , such that when applied
to N , Pout is false over the resulting outputs. P holds only if
such a counter-example does not exist.

The property to be verified may arise from the specific
domain where the network is deployed. For instance, for
networks that are used as controllers in an unmanned aircraft
collision avoidance system (e.g., the ACAS Xu networks [13]),
we would expect them to produce sensible advisories accord-
ing to the location and the speed of the intruder planes in
the vicinity. On the other hand, there are also properties that
are generally desirable for a neural network. One such prop-
erty is local adversarial robustness [22], which states that a
small norm-bounded input perturbation should not cause major
spikes in the network’s output. More generally, a property may
be an arbitrary formula over input values, output values, and
values of hidden layers—such problems arise for example in
the investigation of the neural networks’ explainability [23],
where one wants to check whether the activation of a certain

ReLU r implies a certain output behavior (e.g., the neural
network always predicts a certain class). The verification of
neural networks with ReLU functions is decidable and NP-
Complete [13]. As with many other verification problems,
scalability is a key challenge.
VNN Formulas. We introduce the notion of VNN (Verifica-
tion of Neural Network) formulas to formalize Neural Network
verification queries. Let X be a set of variables. A linear
constraint is of the form

∑
xi∈X aixi ▷◁ b, where ai, b are

rational constants, and ▷◁ ∈ {≤,≥,=}. A ReLU constraint is
of the form ReLU(xi) = xj , where xi, xj ∈ X .

Definition 1. A VNN formula ϕ is a conjunction of linear
constraints and ReLU constraints.

A feed-forward neural network can be encoded as a VNN
formula as follows. Each ReLU r is represented by introducing
a pair of input/output variables rb, rf and then adding a ReLU
constraint ReLU(rb) = rf . We refer to rb as the backward-
facing variable, and it is used to connect r to the preceding
layer. rf is called the forward-facing variable and is used to
connect r to the next layer. The weighted sums are encoded
as linear constraints.

In general, a property could be any formula P over the
variables used to represent N . To check whether P holds
on N , we simply conjoin the representation of N with
the negation of P and use a constraint solver to check for
satisfiability. P holds iff the constraint is unsatisfiable.

Note that a solver for VNN formulas can solve a property P
only if the negation of P is also a VNN formula. We assume
this is the case in this paper, but more general properties can
be handled by decomposing ¬P into a disjunction of VNN
formulas and checking each separately (or, equivalently, using
a DPLL(T ) approach [24]). This works as long as the atomic
constraints are linear. Non-linear constraints (other than ReLU)
are beyond the scope of this paper.

B. The Reluplex Procedure

The Reluplex procedure [13] is a sound, complete and
terminating algorithm that decides the satisfiability of a VNN
formula. The procedure extends the Simplex algorithm—a
standard efficient decision procedure for conjunctions of linear
constraints—to handle ReLU constraints. At a high level, the
algorithm iteratively searches for an assignment that satisfies
all the linear constraints, but treats the ReLU constraints lazily
in the hope that many of them will be irrelevant for proving the
property. Once a satisfying assignment for linear constraints
is found, the ReLU constraints are evaluated. If all the ReLU
constraints are satisfied, a model is found and the procedure
concludes that the VNN formula is satisfiable. However, some
ReLU constraints may be violated and need to be fixed. There
are two ways to fix a violated ReLU constraint r: 1) repair the
assignment by updating the assignment of forward-facing rf
or backward-facing variable rb to satisfy r, or 2) case split
by considering separate cases for each phase of r (adding
the appropriate constraints in each case). In both cases, the
search continues using the Simplex algorithm, in the first with
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Fig. 2: An execution of the S&C algorithm.

a soft correction via assignment update and in the second by
adding hard constraints to the linear problem. Lazy handling of
ReLUs is achieved by the threshold parameter t — the number
of times a ReLU is repaired before the algorithm performs
a case split. In [13], this parameter was set to 20, but even
more eager splitting is beneficial in some cases. The Reluplex
algorithm also uses bound propagation to fix ReLUs to one
phase whenever possible.

In this paper, we explore heuristic choices behind the two
options to handle violated ReLU constraints. In the case of
assignment repair, the question is which variable assignment,
rf or rb, to modify (often both are possible). We refer to the
strategy used to make this decision as the direction heuristic,
and we discuss direction heuristics, especially in the context of
parallel solving in Sec. III-E. For case splitting, the question is
which ReLU constraint to choose. We refer to the strategy used
for making this decision as the branching heuristic. We explore
branching heuristics and their application to parallelizing the
algorithm in Sec. III-B and Sec. III-C.

III. S&C: PARALLELIZING THE RELUPLEX PROCEDURE

In this section, we present a parallel algorithm called Split-
and-Conquer (or simply S&C) for solving VNN formulas, us-
ing the Reluplex procedure and an iterative-deepening strategy.
We discuss two partitioning strategies: input interval splitting
and ReLU case splitting.

Remark. A divide-and-conquer approach with an input-
splitting strategy was described in the Marabou tool paper [17],
albeit briefly and informally. We provide here a more general
framework, which includes new techniques and heuristics,
described in detail below.

A. The S&C algorithm

The S&C algorithm partitions an input problem into several
sub-problems (that are ideally easier to solve) and tries to
solve each sub-problem within a given time budget. If solving
a problem exceeds the time budget, that problem is further
partitioned and the resulting sub-problems are allocated an
increased time budget. Fig. 2 shows solving of problem ϕ
as a tree, where the root of the tree denotes the original
problem. Sub-problems that exceed their allotted time budget

Algorithm 1 Split-and-Conquer
Input: query ϕ, initial partition size N0, initial timeout T0,
partition size N , timeout factor F
Output: SAT/UNSAT
for ψ ∈ partition(ϕ,N0) do
Q. enqueue(⟨ψ, T0⟩)

while Q.notEmpty() do
⟨ϕ′, t⟩ ← Q.dequeue()
result← solve(ϕ′, t)
if result = SAT then

return SAT
else if result = TIMEOUT then

for ψ ∈ partition(ϕ′, N) do
Q. enqueue(⟨ψ, t · F ⟩)

return UNSAT

are partitioned, becoming inner nodes, and leaves are sub-
problems solved within their time budget. A formula ϕ is
satisfiable if some leaf is satisfiable. If the partitioning is
exhaustive, that is: ϕ :=

⋁
ϕi∈partition(ϕ,n) ϕi, for any n > 1,

then ϕ is unsatisfiable iff all the leaves are unsatisfiable.
The pseudo-code of the S&C algorithm is shown in Algo-

rithm 1, which can be seen as a framework parameterized by
the partitioning heuristic and the underlying solver. Details of
these parameters are abstracted away within the partition
and solve functions respectively and will be discussed in
subsequent sections. The S&C algorithm takes as input the
VNN formula ϕ and the following parameters: initial number
of partitions N0, initial timeout T0, number of partitions N ,
and the timeout factor F . During solving, S&C maintains a
queue Q of ⟨query, timeout⟩ pairs, which is initialized with
the partition N0 := ⟨ϕ, T0⟩. While the queue is not empty,
the next pair ⟨ϕ′, t⟩ is retrieved from it, and the query ϕ′

is solved with time budget t. If ϕ′ is satisfiable, then the
original query ϕ is satisfiable, and SAT is returned. If ϕ′ times
out, partition(ϕ′, N) creates N sub-problems of ϕ′, each of
which is enqueued with an increased time budget t ·F . If the
sub-problem ϕ′ is unsatisfiable, no special action needs to be
taken. If Q becomes empty, the original query is unsatisfiable
and the algorithm returns UNSAT. Note that the main loop of
the algorithm naturally lends itself to parallelization, since the
solve calls are mutually independent and query-timeout pairs
can be asynchronously enqueued and dequeued.

We state without proof the following result, which is a well-
known property of such algorithms.

Theorem 1. The Split-and-Conquer(ϕ,N0, T0, N, F ) algo-
rithm is sound and complete if the following holds: 1) the
solve function is sound and complete; and 2) the partition
function is exhaustive.

In addition, with modest assumptions on solve and
partition, and with F > 1, the algorithm can be shown to be
terminating. In particular, it is terminating for the instantiations
we consider below. The S&C algorithm can be tailored to the
available computing resources (e.g., number of processors) by
specifying the number of initial splits N0. The other three
search parameters of S&C specify the dynamic behavior of
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the algorithm, e.g. if T0 and F are small, or if N is large,
then new sub-queries are created frequently, which entails a
more aggressive S&C strategy (and vice versa). Notice that we
can completely discard the dynamic aspect of S&C by setting
the initial timeout to be ∞.

A potential downside of the algorithm is that each call to
solve that times out is essentially wasted time, overhead above
and beyond the useful work needed to solve the problem.
Fortunately, as the following theorem shows, the number of
wasted calls is bounded.

Theorem 2. When Algorithm 1 runs on an unsatisfiable
formula with N ≤ N0, the fraction of calls to solve that
time out is less than 1

N .

Proof. Consider first the case when N = N0. We can view
S&C’s UNSAT proof as constructing an N -ary tree, as shown
in Fig. 2. The ℓ leaf nodes are calls to solve that do not time
out. The t non-leaves are calls to solve that do time out. Since
this is a tree, the total number of nodes n is one more than
the number of edges. Since each query that times out has an
edge to each of its N sub-queries, the number of edges is
Nt. Thus we have n = Nt + 1 which can be rearranged to
show the fraction of queries that time out: t

n = 1−1/n
N < 1

N .
If N < N0, then let k = N0 − N . The number of nodes is
then n = Nt+ k + 1, and the result follows as before.

B. Partitioning Strategies

A partitioning strategy specifies how to decompose a VNN
formula to produce (hopefully easier) sub-problems.

A ReLU is fixed when the bounds on the backward-facing
or forward-facing variable either imply that the ReLU is active
or imply that the ReLU is inactive. Fixing as many ReLUs as
possible reduces the complexity of the resulting problem.

With these concepts in mind, we present two strategies:
1) input-based partitioning creates case splits over the ranges
of input variables, relying on bound propagation to fix ReLUs,
whereas 2) ReLU-based partitioning creates case splits that fix
the phase of ReLUs directly. Both strategies are exhaustive,
ensuring soundness and completeness of the S&C algorithm
(by Theorem 1). The branching heuristic which determines the
choice of input variable, respectively ReLU, on which to split,
can have a significant impact on performance. The branching
heuristic should keep the total runtime of the sub-problems low
as well as achieve a good balance between them. To illustrate,
suppose the sub-problems created by splitting ReLU1 take 10
and 300 seconds to solve, whereas those created by splitting
ReLU2 take 150 and 160 seconds to solve. Though the total
solving time is the same, the more balanced split, on ReLU2,
results in shorter wall-clock time (given two parallel workers).

If most splits led to easier and balanced sub-formulas, then
S&C would perform well, even without a carefully-designed
branching heuristic. However, we have observed that this is
not the case for many possible splits: the time taken to solve
one (or both!) of the sub-problems generated by such splits is
comparable to that required by the original formula (or even

worse). Therefore, an effective branching heuristic is crucial.
We describe two such heuristics below.
Input-based Partitioning. This simple partitioning strategy
performs case splits over the range of an input variable. As
an example, consider a VNN formula ϕ := ϕ′ ∧ (−2 ≤ x1 ≤
1) ∧ (−2 ≤ x2 ≤ 2), where x1 and x2 are the two input
variables of a neural network encoded by ϕ′. Suppose we call
partition(ϕ, 2) using the input-splitting strategy. The choice
is between splitting on the range of x1 or the range of x2.
If we choose x1, the result is two sub-formulas, ϕ1 and ϕ2,
where: ϕ1 := ϕ′ ∧ (−2 ≤ x1 < −0.5) ∧ (−2 ≤ x2 ≤ 2)
and ϕ2 := ϕ′ ∧ (−0.5 ≤ x1 ≤ 1) ∧ (−2 ≤ x2 ≤ 2). An
obvious heuristic is to choose the input with largest range.
A more complex heuristic was introduced in [17]. It samples
the network repeatedly, which yields considerable overhead.
In fact, both of these heuristics perform reasonably well on
benchmarks with only a few inputs (the ACAS Xu bench-
marks, for example). Unfortunately, regardless of the heuristic
used, this strategy suffers from the “curse of dimensionality”
— with a large number of inputs it becomes increasingly
difficult to fix ReLUs by splitting the range of only one input
variable. Thus, the input-partitioning strategy does not scale
well on such networks (e.g., perception networks), which often
have hundreds or thousands of inputs.
ReLU-based Partitioning. A complementary strategy is
to partition the search space by fixing ReLUs directly. Con-
sider a VNN formula ϕ := ϕ′ ∧ (ReLU(x) = y). A call to
partition(ϕ, 2) using the ReLU-based strategy results in two
sub-formulas ϕ1 and ϕ2, where ϕ1 := ϕ′ ∧ (x ≤ 0)∧ (y = 0)
and ϕ2 := ϕ′ ∧ (x > 0) ∧ (x = y). Note that here, ϕ1 is
capturing the inactive and ϕ2 the active phase of the ReLU.
Next, we consider a heuristic for choosing a ReLU to split on.

C. Polarity-based Branching Heuristics
We want to estimate the difficulty of sub-problems created

by a partitioning strategy. One key related metric is the number
of bounds that can be tightened as the result of a ReLU-split.
As a light-weight proxy for this metric, we propose a metric
called polarity.

Definition 2. Given the ReLU constraint ReLU(x) = y, and
the bounds a ≤ x ≤ b, where a < 0, and b > 0, the polarity
of the ReLU is defined as: p = a+b

b−a .

Polarity ranges from -1 to 1 and measures the symmetry of a
ReLU’s bounds with respect to zero. For example, if we split
on a ReLU constraint with polarity close to 1, the bound on
the forward-facing variable in the active case, [0, b], will be
much wider than in the inactive case, [a, 0]. Intuitively, forward
bound tightening would therefore result in tighter bounds in
the inactive case. This means the inactive case will probably be
much easier than the active case, so the partition is unbalanced
and therefore undesirable. On the other hand, a ReLU with
a polarity close to 0 is more likely to have balanced sub-
problems. We also observe that ReLUs in early hidden layers
are more likely to produce bound tightening by forward bound
propagation (as there are more ReLUs that depend on them).
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Algorithm 2 Iterative Propagation
Input: VNN query ϕ, timeout t
Output: preprocessed query ϕ′.
progress← ⊤; ϕ′ ← ϕ
while progress = ⊤ do
progress← ⊥
for r in getUnfixedReLUs(ϕ′) do
ψ ← choosePhase(r)
result = solve(ϕ′ ∧ ψ, t)
if result = UNSAT then
ψ′ ← flipPhase(ψ)
ϕ′ ← ϕ′ ∧ ψ′

progress← ⊤
return ϕ′

We thus propose a heuristic that picks the ReLU whose
polarity is closest to 0 among the first k% unfixed ReLUs,
where k is a configurable parameter. Note that, in order to
compute polarities, we need all input variables to be bounded,
which is a reasonable assumption.

D. Fixing ReLU Constraints with Iterative Propagation

As discussed earlier, the performance of S&C depends
heavily on ReLU splits that result in balanced sub-formulas.
However, sometimes a considerable portion of ReLUs in a
given neural network cannot be split in this way. To eliminate
such ReLUs we propose a preprocessing technique called
iterative propagation, which aims to discover and fix ReLUs
with unbalanced partitions.

Concretely, for each ReLU in the VNN formula, we tem-
porarily fix the ReLU to one of its phases and then attempt
to solve the problem with a short timeout. The goal is to
detect unbalanced and (hopefully) easy unsatisfiable cases.
Pseudocode is presented in Algorithm 2. The algorithm takes
as input the formula ϕ and the timeout t, and, if successful,
returns an equivalent formula ϕ′ which has fewer unfixed
ReLUs than ϕ. The outer loop computes the fixed point, while
the inner loop iterates through the as-of-yet unfixed ReLUs.
For each unfixed ReLU, the choosePhase function yields
constraints of the easier (i.e. smaller) phase. If the solver
returns UNSAT, then we can safely fix the ReLU to its other
phase using the flipPhase function. We ignore the case where
the solver returns SAT, since in practice this only occurs for
formulas that are very easy in the first place.

Iterative propagation complements S&C, because the like-
lihood of finding balanced partitions is increased by fixing
ReLUs that lead to unbalanced partitions. Moreover, iterative
propagation is highly parallelizable, as each ReLU-fixing
attempt can be solved independently. In Section IV, we report
results using iterative propagation as a preprocessing step,
though it is possible to integrate the two processes more
closely, e.g., by performing iterative propagation after every
partition call.

E. Speeding Up Satisfiable Checks with Polarity-Based Direc-
tion Heuristics

In this section, we discuss how the polarity metric intro-
duced in Sec. III-C can be used to solve satisfiable instances
quickly. When splitting on a ReLU, the Reluplex algorithm
faces the same choice as the S&C algorithm. For unsatisfiable
cases, the order in which ReLU case splits are done make
little difference on average, but for satisfiable instances, it can
be very beneficial if the algorithm is able to hone in on a
satisfiable sub-problem. We refer to the strategy for picking
which ReLU phase to split on first as the direction heuristic.

We propose using the polarity metric to guide the direction
heuristic for S&C. If the polarity of a branching ReLU is
positive, then we process the active phase first; if the polarity
is negative, we do the reverse. Intuitively, formulas with wider
bounds are more likely to be satisfiable, and the polarity
direction heuristic prefers the phase corresponding to wider
bounds for the ReLU’s backward-facing variable.

Repairing an assignment when a ReLU is violated can also
be guided by polarity (recall the description of the Reluplex
procedure from Sec. II), as choosing between forward- or
backward-facing variables amounts to choosing which ReLU
phase to explore first. Therefore, we use this same direction
heuristic to guide the choice of forward- or backward-facing
variables when repairing the assignment. For example, suppose
constraint ReLU(xb) = xf is part of a VNN formula ϕ. Sup-
pose the range of xb is [−2, 1], A(xb) = −1 and A(xf ) = 1,
where A is the current variable assignment computed by the
Simplex algorithm. To repair this violated ReLU constraint,
we can either assign 0 to xf or assign 1 to xb. In this case,
the ReLU has negative polarity, meaning the negative phase is
associated with wider input bounds, so our heuristic chooses
to set A(xf ) = 0.

We will see in our experimental results (Sec. IV) that
these direction heuristics improve performance on satisfiable
instances. Interestingly, they also enhance performance on
unsatisfiable instances.

IV. EXPERIMENTAL EVALUATION

In this section, we discuss our implementation of the
proposed techniques and evaluate its performance on a diverse
set of real-world benchmarks – safety properties of control
systems and robustness properties of perception models.

A. Implementation

We implemented the techniques discussed above in
Marabou [17], which is an open-source neural network ver-
ification tool implementing the Reluplex algorithm. Marabou
is available at https://github.com/NeuralNetworkVerification/
Marabou/1. The tool also integrates the symbolic bound tight-
ening techniques introduced in [14]. We refer to Marabou run-
ning the S&C algorithm as S&C-Marabou. Two partitioning
strategies are supported: the original input-based partitioning

1The version of the tool used in the experiments is available at https://
github.com/NeuralNetworkVerification/Marabou/releases/tag/FMCAD20.
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strategy and our new ReLU-splitting strategy. All S&C config-
urations use the following parameters: the initial partition size
N0 is the number of available processors; the initial timeout
T0 is 10% of the network size in seconds; the number of
online partitions N is 4; and the timeout factor F is 1.5.
The k parameter for the branching heuristic (see Sec. III-C) is
set to 5. The per-ReLU timeout for iterative propagation is 2
seconds. When the input dimension is low (≤ 10), symbolic
bound tightening is turned on, and the threshold parameter t
(see Sec. II) is reduced from 20 to 1. The parameters were
chosen using a grid search on a small subset of benchmarks.

B. Benchmarks

The benchmark set consists of network-property pairs, with
networks from three different application domains: aircraft
collision avoidance (ACAS Xu), aircraft localization (Tiny-
TaxiNet), and digit recognition (MNIST). Properties include
robustness and domain-specific safety properties.
ACAS Xu. The ACAS Xu family of VNN benchmarks
was introduced in [13] and uses prototype neural networks
trained to represent an early version of the ACAS Xu decision
logic [2]. The ACAS Xu benchmarks are composed of 45
fully-connected feed-forward neural networks, each with 6
hidden layers and 50 ReLU nodes per layer. The networks
issue turning advisories to the controller of an unmanned
aircraft to avoid near midair collisions. The network has 5
inputs (encoding the relation of the ownship to an intruder) and
5 outputs (denoting advisories: e.g., weak left, strong right).
Proving that the network does not produce erroneous advi-
sories is paramount for ensuring safe aviation operation. We
consider four realistic properties expected of the 45 networks.
These properties, numbered 1–4, are described in [13].
TinyTaxiNet. The TinyTaxiNet family contains perception
networks used in vision-based autonomous taxiing: the task
of predicting the position and orientation of an aircraft on the
taxiway, so that a controller can accurately adjust the position
of the aircraft [25]. The input to the network is a downsampled
grey-scale image of the taxiway captured from a camera on the
aircraft. The network produces two outputs: the lateral distance
to the runway centerline, and the heading angle error with
respect to the centerline. Proving that the networks accurately
predict the location of the aircraft even when the camera image
suffers from small noise is safety-critical. This property can
be captured as local adversarial robustness. If the kth output
of the network is expected to be bk for inputs near a, we can
check the unsatisfiability of the following VNN formula:

(yk ≥ bk + ϵ) ∧
N⋀
i=1

(ai − δ ≤ xi ≤ ai + δ),

where x denotes the actual network input, N the number of
network inputs, and yk the actual kth output. The network
is (δ, ϵ)-locally robust on a, only if the formula is unsat-
isfiable. The training images are compressed to either 2048
or 128 pixels, with value range [0,1]. We evaluate the local
adversarial robustness of two networks. TaxiNet1 has 2048

inputs, 1 convolutional layer, 2 feedforward layers, and 128
ReLUs. TaxiNet2 has 128 inputs, 5 convolutional layers, and
a total of 176 ReLUs. For each network, we generate 100
local adversarial robustness queries concerning the first output
(distance to the centerline). For each model, we sample 100
uniformly random images from the training data, and sample
(δ, ϵ) pairs uniformly from the set {⟨0.004, 3⟩, ⟨0.004, 9⟩,
⟨0.008, 3⟩, ⟨0.008, 9⟩, ⟨0.016, 9⟩}. Setting δ = 0.004 allows a
1 pixel-value perturbation in pixel brightness along each input
dimension, and the units of ϵ are meters. We chose the values
of the perturbation bounds such that the resulting set contains a
mixture of SAT and UNSAT instances with more emphasis on
the latter – UNSAT problems are considered more interesting
in the verification domain.
MNIST. In addition to the two neural network families
with safety-critical real-world applications, we evaluate our
techniques on three fully-connected feed-forward neural net-
works (MNIST1, MNIST2, MNIST3) trained on the MNIST
dataset [26] to classify hand-written digits. Each network has
784 inputs (representing a grey-scale image) with value range
[0,1], and 10 outputs (each representing a digit). MNIST1
has 10 hidden layers and 10 neurons per layer; MNIST2 has
10 hidden layers and 20 neurons per layer; MNIST3 has 20
hidden layers and 20 neurons per layer. While shallower and
smaller networks may be sufficient for identifying digits and
are also easier to verify, we evaluate on deeper and larger
architectures because we want to 1) stress-test our techniques,
and 2) evaluate the effect of moving towards larger perception
network sizes like those used in more challenging applications.
We consider targeted robustness queries, which asks whether,
for an input x and an incorrect output y′, there exists a point in
the ℓ∞ δ-ball around x that is classified as y′. We sample 100
such queries for each network, by choosing random training
images and random incorrect labels. We choose δ values
evenly from {0.004, 0.008, 0.0016, 0.0032}.

C. Experimental Evaluation

We present the results of the following experiments: 1)
Evaluation of each technique’s effect on run-time performance
of Marabou on the three benchmark sets. We also compare
against Neurify, a state-of-the-art solver on the same bench-
marks. 2) An analysis of trade-offs when running iterative
propagation pre-processing. 3) Exploration of S&C scalability
at a large scale, using cloud computing.

1) Evaluation of the techniques on ACAS Xu, TinyTaxiNet,
MNIST : We denote the ReLU-based partitioning strategy as
R, polarity-based direction heuristics as D, and iterative propa-
gation as P. We denote as S a hybrid strategy that uses input-
based partitioning on ACAS Xu networks, and ReLU-based
partitioning on perception networks. We run four combinations
of our techniques: 1) R; 2) S+D; 3) S+P; 4) S+D+P, and com-
pare them with two baseline configurations: 1) the sequential
mode of Marabou (denoted as M); 2) S&C-Marabou with its
default input-based partitioning strategy (denoted as I).

We compare with Neurify [15], a state-of-the-art solver, on
the same benchmarks. Neurify derives over-approximations of
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TABLE I: Evaluation of the Techniques on ACAS Xu, TinyTaxiNet, MNIST

Bench. M I R S S+D S+P S+D+P Neurify
[# inst.] #S Time #S Time #S Time #S Time #S Time #S Time #S Time #S Time
ACAS 40 17224 45 4884 45 5009 45 4884 45 5480 45 8419 45 7244 39 4167
[180] 101 57398 130 48954 125 45036 130 48954 131 51413 130 50828 131 53717 133 1438
TinyTaxi. 34 4591 34 1815 34 433 34 433 34 419 34 533 35 1172 35 88
[200] 141 33909 110 24088 147 23079 147 23079 147 22345 149 20583 149 21949 146 7158
MNIST 11 2349 19 13032 22 9680 22 9680 26 11727 20 9956 29 19351 27 151
[300] 140 64418 78 27134 181 52776 181 52776 183 59195 184 67625 185 68307 153 10640
All 85 24164 98 19731 101 15122 101 14997 105 17626 99 18908 109 27767 101 4406
[680] 382 155725 318 100176 453 120891 458 124809 461 132953 463 139036 465 143973 432 19236

Number of solved instances (#S) and run-time in seconds of different configurations. For each benchmark set, top and bottom rows show data for
satisfiable (SAT) and unsatisfiable (UNSAT) instances respectively. The results for configuration S are computed virtually from R and I.

the output bounds using techniques such as symbolic interval
analysis and linear relaxation. On ACAS Xu benchmarks, it
operates by iteratively partitioning the input region to reduce
error in the over-approximated bounds (to prove UNSAT)
and by randomly sampling points in the input region (to
prove SAT). On other networks, Neurify uses off-the-shelf
solvers to handle ReLU-nodes whose bounds are potentially
overestimated. Neurify also leverages parallelism, as different
input regions or linear programs can be checked in parallel.

We run all Marabou configurations and Neurify on a cluster
equipped with Intel Xeon E5-2699 v4 CPUs running CentOS
7.7. 8 cores and 64GB RAM are allocated for each job, except
for the M configuration, which uses 1 processor and 8GB
RAM per job. Each job is given a 1-hour wall-clock timeout.

Results. Table I shows a breakdown of the number of solved
instances and the run-time for all Marabou configurations
and for Neurify. We group the results by SAT and UNSAT
instances. For each row, we highlight the entries corresponding
to the configuration that solves the most instances (ties broken
by run-time). Here are some key observations:

– On ACAS Xu benchmarks, both input-based partitioning
(I) and ReLU-based partitioning (R) yield performance gain
compared with the sequential solver (M), with I being more
effective. On perception networks, I solves significantly fewer
instances than M while R continues to be effective.
– Comparing the performance of S, S+D, and S+P sug-
gests that the polarity-based direction heuristics and iterative
propagation each improve the overall performance of S&C-
Marabou. Interestingly, the polarity-based heuristic improves
the performance on not only SAT but also UNSAT instances,
suggesting that by affecting how ReLU constraints are re-
paired, direction heuristics also favorably impact the order of
ReLU-splitting. On the other hand, iterative propagation alone
only improves performance on UNSAT instances. S+D+P
solves the most instances among all the Marabou configu-
rations, indicating that the direction heuristics and iterative
propagation are complementary to each other.
– S+D+P solves significantly more instances than Neurify
overall. While Neurify’s strategy on Acas Xu benchmarks
allows it to dedicate more time on proving UNSAT by rapidly
partitioning the input region (thus yielding much shorter run-
times than S+D+P on that benchmark set), its performance

on SAT instances is subject to (un)lucky guesses. When it
comes to perception neural networks that are deeper and
have higher input dimensions, symbolic bound propagation,
on which Neurify heavily relies, becomes more expensive and
less effective. In contrast, Marabou does not rely solely on
symbolic interval analysis, but in addition uses interval bound-
tightening techniques (see [17] for details).
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Fig. 3 shows a cactus plot of the 6 Marabou configurations
and Neurify on all benchmarks. In this plot, we also include
two virtual portfolio configurations: Virt.-Marabou takes the
best run-time among all Marabou configurations for each
benchmark, and Virt.-All includes Neurify in the portfolio.
Interestingly, S+D+P is outperformed by S+D in the beginning
but surpasses S+D after 500 seconds. This suggests that
iterative propagation creates overhead for easy instances, but
benefits the search in the long run. We also observe that
Neurify can solve a subset of the benchmarks very rapidly,

134



but solves very few benchmarks after 1500 seconds. One
possible explanation is that Neurify splits the input region and
makes solver calls eagerly. While this allows it to resolve some
queries quickly, it also results in rapid (exponential) growth
of the number of sub-regions and solver calls. By contrast,
Marabou splits lazily. While it creates overhead sometimes, it
results in more solved instances overall. The Virt.-All configu-
ration solves significantly more instances than Virt.-Marabou,
suggesting that the two procedures are complementary to each
other. We note that the bound tightening techniques presented
in Neurify can be potentially integrated into Marabou, and the
polarity-based heuristics and iterative propagation could also
be used to improve Neurify and other VNN tools.

2) Costs of Iterative Propagation: As mentioned in Sec. 2,
intuitively, the longer the time budget during iterative prop-
agation, the more ReLUs should get fixed. To investigate
this trade-off between the number of fixed ReLUs and the
overhead, we choose a smaller set of benchmarks (40 ACAS
Xu benchmarks, 40 TinyTaxiNet benchmarks, and 40 MNIST
benchmarks), and vary the timeout parameter t of iterative
propagation. Each job is run with 32 cores, and a wall-clock
timeout of 1 hour, on the same cluster as in Experiment IV-C1.
Results. Fig. 4 shows the preprocessing time + solving time
of different configurations on commonly solved instances. The
percentage next to each bar represents the average percentage
of ReLUs fixed by iterative propagation. Though the run-time
and unfixed ReLUs continue to decrease as we invest more
in iterative propagation, performing iterative propagation no
longer provides performance gain when the per-ReLU-timeout
exceeds 8 seconds.

3) Ultra-Scalability of S&C: S&C-Marabou runs on a
single machine, which intrinsically limits its scalability to the
number of hardware threads. To investigate how the S&C
algorithm scales with much higher degrees of parallelism, we
implemented it on top of the gg platform [27].

The gg platform facilitates expressing parallelizable com-
putations and executing them. To use it, the programmer
expresses their computation as a dependency graph of tasks,
where each task is an executable program that reads and writes
files. The output files can encode the result of the task, or an
extension to the task graph that must be executed in order
to produce that result. The gg platform includes tools for
executing tasks in parallel. Tasks can be executed locally,
using different processes, or remotely, using cloud services
such as AWS Lambda [28]. Since these cloud services offer a
high degree of concurrency with little setup or administration,
gg is a convenient tool for executing massively parallel
computations [27].

In our implementation of the S&C algorithm on top of gg,
each task runs the base solver with a timeout. If the solver
completes, the task returns the result; otherwise it returns a
task graph extension encoding the division of the problem
into sub-queries. We call this implementation of the S&C
algorithm, gg-Marabou.

We measure the performance of S&C and gg-Marabou at
varying levels of parallelism to establish that they perform
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similarly and to evaluate the scalability of the S&C algorithm.
Our experiments use three underlying infrastructures: S&C-
Marabou (denoted thread), gg-Marabou executed locally
(gg-local), and gg-Marabou executed remotely on AWS
Lambda [28] (gg-lambda). We vary the parallelism level,
p, from 4 to 16 for the local infrastructures and from 4 to
1000 for gg-lambda. For gg-lambda, we run 3 tests per
benchmark, taking the median time to mitigate variation from
the network. From the UNSAT ACAS Xu benchmarks which
S&C-Marabou can solve in under two hours using 4 cores, we
chose 5 of the hardest instances. We set T0 = 5 s, F = 1.5,
N = 2⌊(5+log2 p)/3⌋ and use the input-based partitioning
strategy.

Results. Fig. 5 shows how mean runtime (across benchmarks)
varies with parallelism level and infrastructure. Our first con-
clusion from Fig. 5 is that gg does not introduce signifi-
cant overhead; at equal parallelism levels, all infrastructures
perform similarly. Our second conclusion is that gg-Marabou
scales well up to over a hundred workers. This is shown by
the constant slope of the runtime/parallelism level line up to
over a hundred workers. We note that the slope only flattens
when total runtime is small: a few minutes.

V. RELATED WORK

Over the past few years, a number of tools for verify-
ing neural network have emerged and broadly fall into two
categories — precise and abstraction-based methods. Precise
approaches are complete and usually encode the problem as an
SAT/SMT/MILP constraint [13, 16, 17, 29, 30]. Abstraction-
based methods are not necessarily complete and abstract the
search space using intervals [14, 15] or more complex abstract
domains [31]–[33]. However, most of these approaches are
sequential, and for details, we refer the reader to the survey
by Liu et al. [34]. To the best of our knowledge, only
Marabou [17] and Neurify [15] (and its predecessor Relu-
Val [14]) leverage parallel computing to speed up verification.

As mentioned in Sec. IV, Neurify combines symbolic
interval analysis with linear relaxation to compute tighter
output bounds and uses off-the-shelf solvers to derive more
precise bounds for ReLUs. These interval analysis techniques
lend themselves well to parallelization, as independent linear
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programs can be created and checked in parallel. By contrast,
S&C-Marabou creates partitions of the original query and
solves them in parallel. Neurify supports a selection of hard-
coded benchmarks and properties and often requires modi-
fications to support new properties, while Marabou provides
verification support for a wide range of properties.

Split-and-Conquer is inspired by the Cube-and-Conquer
algorithm [18], which targets very hard SAT problems. Cube-
and-Conquer is a divide-and-conquer technique that partitions
a Boolean satisfiability problem into sub-problems by conjoin-
ing cubes —a cube is a conjunction of propositional literals—
to the original problem and then employing a conflict-driven
SAT solver [35] to solve each sub-problem in parallel. The
propositional literals used in cubes are chosen using look-
ahead [36] techniques. Divide-and-conquer techniques have
also been used to parallelize SMT solving [37, 38]. Our
approach uses similar ideas to those in previous work, but
is optimized for the VNN domain.

Iterative propagation is, in part, inspired by the look-ahead
techniques. While the latter is used to partition the search
space, the former is used to reduce the overall complexity
of the problem.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a set of techniques that leverage
parallel computing to improve the scalability of neural network
verification. We described an algorithm based on partitioning
the verification problem in an iterative manner and explored
two strategies that work by partitioning the input space or by
splitting on ReLUs, respectively. We introduced a branching
heuristic and a direction heuristic, both based on the notion
of polarity. We also introduced a highly parallelizable pre-
processing algorithm for simplifying neural network verifica-
tion problems. Our experimental evaluation shows the benefit
of these techniques on existing and new benchmarks. A pre-
liminary experiment with ultra-scaling using the gg platform
on Amazon Lambda also shows promising results.

Future work includes: i) Investigating more dynamic strate-
gies for choosing hyper-parameters of the S&C framework.
ii) Investigating different ways to interleave iterative propaga-
tion with S&C. iii) Investigating the scalability of ReLU-based
partitioning to high levels of parallelism. iv) Improving the
performance of the underlying solver, Marabou, by integrating
conflict analysis (as in CDCL SAT solvers and SMT solvers)
and more advanced bound propagation techniques such as
those used by Neurify. v) Extending the techniques to handle
other piecewise-linear activation functions such as hard tanh
and leaky ReLU, to which the notion of polarity applies.
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