
Verification of RNN-Based Neural
Agent-Environment Systems

Michael Akintunde, Andreea Kevorchian, Alessio Lomuscio,
Edoardo Pirovano

Imperial College London, UK

VNN 2019, Stanford, California

This work

We introduce Recurrent Neural Agent-Environment Systems
to formalise RNN-based agents interacting with an
environment with non-linear dynamics.
We define and study various verification problems for these
systems.
We define two methods to solve said verification problems.
We present an implementation and report experimental
results.
The paper builds upon work from previous work (KR’18)

Recurrent Neural Networks (RNNs)

Many approaches already exist to perform verification on
single FFNNs and closed-loop systems with FFNN-based
agents.
RNNs, equipped with a state that evolves over time, are
designed to process sequences of data

h

o

x

W(h→o)

W(h→h)

W(i→h)

Unroll ht−1

ot−1

xt−1

ht

ot

xt

ht+1

ot+1

xt+1

W(h→h) W(h→h) W(h→h) W(h→h)

W(h→o)

W(i→h)

W(h→o)

W(i→h)

W(h→o)

W(i→h)

Single-Layer Recurrent Neural Networks (RNNs)

Definition
A single-layer recurrent neural network (RNN) R with h hidden
units and input size i and output size o is a neural network
associated with the weight matrices W(i→h) ∈ Ri×h,
W(h→h) ∈ Rh×h and W(h→o) ∈ Rh×o, and the two activation
functions σ : Rh → Rh and σ′ : Ro → Ro.

Here we assume the activation functions σ = σ′ = ReLU.

Function Computed by an RNN

Definition (Function computed by RNN)

For an RNN R with weight matrices W(i→h), W(h→h) and
W(h→o), let x ∈ (Rk)n denote an input sequence of length n
where each element of the sequence is a vector of size k, with xt

denoting the t-th vector of x. We define hx
0 = 0 as a vector of 0s.

For each time step 1 ≤ t ≤ n, we define:

hx
t = σ(W(h→h)hx

t−1 + W(i→h)xt).

Then, the output of the RNN is given by f(x) = σ′(W(h→o)hx
n).

Recurrent Neural Agent-Environment Systems

Definition (RNN-AES)

A Recurrent Neural Agent-Environment System (RNN-AES) is
a tuple AES = (Ag,E, I) where:

Ag is a recurrent neural agent with action function
act : O∗ → Act,
E = (S,O, o, tE) is an environment with

state space S ⊆ Rm,
observation space O ⊆ Rm′ ,
observation function o : S → O and
transition function tE : S ×Act→ S,

I ⊆ S is a set of initial states.

Paths are sequences of env state observations determined by the
transition function tE from an initial state.
We assume linearly definable AES (both tE and I).

Bounded Specifications

Definition (Specifications)

For an environment with state space S ⊆ Rm, we consider a
fragment of LTL given by the following BNF:

φ ::= XkC | CU≤kC
C ::= C ∨ C | (i) op (j) | (i) op x

where op ∈ {<,≤,=, 6=,≥, >} , i, j ∈ {1, . . . ,m} , x ∈ R, k ∈ N.

Satisfaction

Satisfaction relation |= is defined as follows:

Definition (Satisfaction)

Given a path ρ ∈ Π on an RNN-AES and a formula φ:

ρ |= (i) op (j) iff ρ(0).i op ρ(0).j holds;
ρ |= C1 ∨ C2 iff ρ |= C1 or ρ |= C2;
ρ |= XkC iff ρ(k) |= C;
ρ |= C1U

≤kC2 iff there is some i ≤ k such that ρ(i) |= C2 and
ρ(j) |= C1 for all 0 ≤ j < i.

Verification problem

We say that an agent-environment system AES satisfies a
specification φ if it is the case that every path originating from an
initial state i ∈ I satisfies φ, denoted AES |= φ.

This is the basis of the verification problem:

Definition (Verification problem)

Determine if given an RNN-AES AES and a formula φ, it is the
case that AES |= φ.

Approach: Unrolling RNNs to FFNNs

Example: How to construct an FFNN from an RNN with input
sequence of length 4, input size of 2, 3 hidden units and output

size 1 (single output)?

h0 h1

x1

h2

x2

h3

x3

h4

o

x4

W(h→h) W(h→h) W(h→h) W(h→h)

W(i→h) W(i→h) W(i→h)

W(h→o)

W(i→h)

Approach: Unrolling RNNs to FFNNs
Input on Start (IOS)

Scale input values according to the weights of W(i→h). At each
time step when the input is needed, pass it unchanged to the
corresponding hidden layer of the FFNN.

x11 x12 x21 x22 x31 x32 x41 x42

o

FFNN constructed from RNN with length 4 input sequence, input size of
2, 3 hidden units and output size 1.

Approach: Unrolling RNNs to FFNNs
Input on Demand (IOD)

At the time step when the input term is needed, scale the input
(on demand) and pass to the corresponding hidden layer of the
FFNN, otherwise propogate the term’s original value.

x11 x12 x21 x22 x31 x32 x41 x42

o

FFNN constructed from RNN with length 4 input sequence, input size of
2, 3 hidden units and output size 1.

Equivalences

Theorem
For an RNN-AES AES and a specification φk,

AES |= φk iff IOD(AES) |= φk iff IOS(AES) |= φk.

Verification on bounded specifications of RNN-AES can be
recast as FFNN-AES verification. See paper for further details
of the unrolling methods.

Verification for FFNN-AES addressed in KR’18 paper.

MILP Encoding for ReLU-FFNN
Maganti & Lomuscio, 2017, Cheng, Nührenberg & Ruess, 2017

ReLU activation function

x(i)
j = max

(
0,W(i)

j x(i−1) + b(i)
j

)
, j = 1 · · · |L(i)|

Active phase: x(i)
j = W(i)

j x(i−1) + b(i)
j (set δ̄(i)

j = 0)
Inactive phase: x(i)

j = 0 (set δ̄(i)
j = 1)

Value of δ̄j forces two of the four constraints to become
vacuously true, and the other two correspond exactly to
inactive/active phase of neuron:

x(i)
j ≥W(i)

j x(i−1) + b(i)
j

x(i)
j ≤W(i)

j x(i−1) + b(i)
j +Mδ̄

(i)
j

x(i)
j ≥ 0

x(i)
j ≤M(1− δ̄(i)

j)

Verifying RNN-AESs via MILP

Theorem
The MILP PFFNN is feasible for x̄(1) = x̄, x̄(m) = ȳ iff fNN (x̄) = ȳ.

Verification problem can be solved via MILP by considering
the linear programming problem defined on the unrolled
RNN truncated by the bound on the spec.

Theorem
Verification of RNN-AESs against bounded specifications is
coNP-complete.

Verification Procedure

Goal: Take RNN-AES AES = (AgN ,

Environment E︷ ︸︸ ︷
(S,O, o, tE), I) and a

specification φ. Return whether φ is satisfied on the system.

For XkC:
For each step n from 0→ k, add constraints corresponding to
the observation function, the unrolling of length n of the RNN
and the transition function of the environment
Check whether C̄ can be satisfied in any of the states possible
after k steps, and return result accordingly.

Verification Procedure

For C1U
≤kC2:

For each n from 0 to k, check whether C2 is always satisfied
in valid paths of length n that have not already had C2
satisfied earlier on. If so, return True.
Otherwise, continue from states not satisfying C2. Check if
not all of these satisfy C1. If so, return False.
Otherwise, we’re on a valid path. Continue to add the
constraints corresponding to the observation function, the
unrolling of length n of the RNN and the transition function
of the environment. Iterate to n+ 1.
If reached n = k without a result returned, there must exist a
path of length k along which C2 is never satisfied, and so we
return False.

RNSVerify

Experimental toolkit produced, solving desired verification
problems.
Takes as input an RNN-AES, property φ and produces
associated MILP problem.
Fed to Gurobi 7.5.2 to solve.
If output is False, counterexample in the form of a trace is
shown.

Example: OpenAI Pendulum
Brockman et. al, 2016

Example (Pendulum)

OpenAI Gym task Pendulum-v0:
System composed of a pendulum and an agent which can
apply a force to the pendulum.
Agent can observe the current angle θ of the pendulum
(θ = 0 indicates that it is perfectly vertical) and the
pendulum’s angular velocity θ̇.
Agent chooses a small torque to be applied to the pendulum
at each time step.
Aim: Learn how to keep the pendulum upright by applying
torque at each time step.

Example: OpenAI Pendulum
Brockman et. al, 2016

Evaluation: OpenAI Pendulum

Agent observes the angle and angular velocity and applies a torque
to keep it vertical.

Encoded as a RNN-AES: agent-environment system,
non-linear transition function, and sequence of env state
observations.
Agent’s policy synthesised using Q-Learning on a ReLU-RNN.
Env approximated from data (since env is non linear).

RNSVerify found several bugs in the synthesised agent, e.g., the
agent would apply the torque incorrectly in some situations.

Verification Results
Input on Start – Evaluation on Pendulum [OpenAI, 2018]

Check the property Xn(θf > −ε) for different values of n and ε
using IOS. Fix (θi, θ̇i) ∈ [0, π/64]× [0, 0.3].

ε
π/10 π/30 π/50 π/70

1 0.056s 0.067s 0.011s 0.014s
2 0.052s 0.179s 0.138s 0.197s
3 0.372s 0.904s 5.794s 0.552s
4 2.578s 7.222s 0.378s 0.368s
5 20.57s 31.07s 0.748s 0.663s
6 73.97s 3.264s 31.07s 23.99s
7 54.30s 96.54s 116.8s 207.8s

n

8 693.2s 294.9s 239.8s 243.3s

Greyed areas denote False result, hence insufficiently trained
system.

Verification Results
Input on Demand – Evaluation on Pendulum [OpenAI, 2018]

Check the property Xn(θf > −ε) for different values of n and ε
using IOD. Fix (θi, θ̇i) ∈ [0, π/64]× [0, 0.3].

ε
π/10 π/30 π/50 π/70

1 0.004s 0.012s 0.011s 0.014s
2 0.060s 0.114s 0.244s 0.253s
3 0.247s 1.068s 6.092s 0.125s
4 2.176s 5.359s 0.182s 0.198s
5 10.04s 0.293s 0.317s 0.294s
6 13.99s 0.367s 0.357s 0.359s
7 31.93s 0.497s 0.488s 0.478s

n

8 0.689s 0.660s 0.696s 0.703s

Greyed areas denote False result, hence insufficiently trained
system.

Number of Constraints and Variables

n
Input on Start Input on Demand
V C V C

1 273 336 273 336
2 736 736 620 766
3 1455 1806 1055 1306
4 2494 3101 1590 1971
5 3917 4876 2237 2776
6 5788 7211 3008 3736
7 8171 10186 3915 4866
8 11130 13881 4970 6181

Table: For different values of n, size of constraint problem constructed by
RNSVerify w.r.t number of variables (V) and constraints (C) when
checking Xn(θf > −ε). We observe a degradation in performance with
the length of the paths.

Conclusions

Increased attention to verifiable AI.
First approach on verification of a closed-loop system
composed of a neural agent based on an ReLU-RNN.
Sound and complete procedure produced, effective for
controllers of limited complexity.
Approach is independent of the underlying solver.

