
Can Self-Organizing P2P File Distribution Provide QoS
Guarantees?

Ruchir Bindal and Pei Cao
Department of Computer Science, Stanford University

{rbindal,cao}@cs.stanford.edu

ABSTRACT
In this paper, we examine the factors that contribute to the
variability in download time of a self-organizing P2P file dis-
tribution application such as BitTorrent. We conducted a
series of side-by-side live experiments, involving two clients
running on the same machine downloading the same file at
the same time. We found that the download latency varied
significantly, sometimes by a factor of 2. Surprisingly, the
main contributing factor isn’t the network bandwidths of
the set of neighbors that a client is given. Rather, it has to
do with the frequency of turn-overs in “close” neighbors, i.e.
those that are in a stable data-exchange relationship with
the client. Analysis of the log data shows that a client ob-
tains over 90% of the file from a small set of close neighbors,
and if a close neighbor leaves the network, it takes the client
a long time, over half an hour, to find another one. This
suggests that self-organizing P2P file distributions indeed
need external help in order to provide QoS guarantees, but
such guarantees are achievable with proper enhancements to
the P2P network.

1. INTRODUCTION
Using end-hosts (aka peers) to distribute files is fundamen-
tally more scalable than using central servers. The supply of
bandwidth grows linearly with demands. There are no cen-
tral bottlenecks such as servers or links to servers. Thus, it
is no surprise that many large content providers are looking
into the peer-to-peer approach for content delivery [5].

However, a main challenge for peer-to-peer content distribu-
tion is the lack of quality-of-service guarantees. Since peers
are not under the control of a central scheduler, it is diffi-
cult to guarantee to a peer that, upon joining the network,
it will obtain the whole file within a certain time window.
While this is not a problem when people do not pay for the
contents, it becomes an issue when they do.

In this paper, we investigate the question: can peer-to-peer
file distribution applications, such as BitTorrent, provide

quality-of-service guarantees? Put it another way, what con-
tributes to the variation in download times in P2P file dis-
tribution? BitTorrent is chosen as the application to study,
not only because of its popularity, but also because of its
simplicity.

To conduct the investigation, we ran a series of “side-by-
side” live experiments on the Internet. Two BitTorrent
clients were started on a desktop machine on the campus
network. They joined the same network at the same time
and attempted to download the same file. We measured how
long it took for each client to complete the download. We
also logged all interactions between a client and its peers,
then analyzed the logs to examine what made the slower
client take longer.

The findings are somewhat surprising. The upload speeds
from neighbors plays a minor role in determining download
latency. Instead, the client’s experience is very much af-
fected by a set of “close” neighbors. Though a client con-
nects to thousands of neighbors during its download, it ob-
tains the majority of the data from a very small (10s to 50s)
set of neighbors (we call these the “close” neighbors). At
any point during the download, the client is involved in sta-
ble data-exchange relationships with about 7 neighbors. The
client constantly uploads data to these neighbors, and it con-
stantly receives data from these neighbors. If one neighbor
leaves, however, it takes the client a long time (e.g. 30 min-
utes) to find another one. In the majority of cases, a close
neighbor leaves because it is disconnected from the network
abruptly (e.g. mobile hosts), or it has finished its download.
The slower client is slow because it has more turn-overs in

its close neighbors.

The results suggest that BitTorrent, through its “tit-for-tat”
scheme, essentially runs a completely distributed, random-
ized algorithm to establish matchings between the peers, i.e.
forming a random graph where each node has a degree of 7
(each node is allowed to upload to up to 7 neighbors concur-
rently). Unfortunately, the algorithm appears to take a long
time to converge if the matching is disturbed, e.g., when a
neighbor leaves. Since peers come and go on the Internet,
the results suggest that the current BitTorrent algorithm
will have difficulties providing predictable download times
to peers.

The analysis also suggests possible techniques to address the
problem, including dedicated high-speed “seed” peers that

are directed by trackers to help slow clients, and enhance-
ments to the BitTorrent protocol to enable fast convergence
time. Investigation of these techniques is part of our future
work.

2. BITTORRENT MECHANISMS
BitTorrent [4] and similar applications are the most popu-
lar P2P file distribution applications on the Internet today.
Various reports estimate that BitTorrent traffic accounts for
a quarter of the total Internet traffic today [6]. BitTorrent
aims to distribute large files to a large user population effi-
ciently. This is achieved by making use of the upload band-
width of all nodes (called peers) downloading the file. In
the following description, the terms node and peer are used
interchangeably.

To distribute a file via BitTorrent, the provider first gener-
ates a separate file containing some meta-information about
the shared file (called the torrent file). This torrent file con-
tains the address of the tracker (described below) and also
the size of each of the small file blocks that are exchanged
between the peers. The provider runs a tracker for this file,
either on its own or by registering the torrent file with a
public tracker. A tracker is a central server that keeps track
of all nodes downloading this file.

The supplier then starts its BitTorrent client. The client
automatically detects that it has the complete file and is
thereby a seed node in the network. The torrent file is then
published on the Internet using HTTP and interested down-
loaders can download it to run their BitTorrent clients with
the torrent file as the input. Since the tracker’s address is
already embedded in the torrent file, the clients can contact
the tracker using it.

2.0.0.1 Connecting to Neighbors
A peer who is interested in downloading the file first con-
tacts the tracker hosting the file to join the BitTorrent net-
work of this file. The network consists of the tracker and all
nodes downloading the file. The tracker randomly selects
C nodes (default C = 50) to give to p. Peer p then initi-
ates connections with those nodes. Whenever p’s neighbor
count drops below a certain threshold (default is 20), p con-
tacts the tracker again to obtain a new list of nodes.

2.0.0.2 Choking/Unchoking
The download proceeds mainly by peers exchanging blocks
with their neighbors. Peers exchange bit vectors of the
blocks in their possession with neighbors frequently, both
at the beginning and whenever a peer obtains new content.
Through the bit vector exchange, the peer p learns the up-
to-date content at each neighbor. If a neighbor has blocks
that p doesn’t have, p sends an “interested” message to the
neighbor. The neighbor, however, is not obligated to send
blocks to p. Instead, when and if the neighbor sends blocks
to p depends on the “choking/unchoking” algorithm in Bit-
Torrent, also called the “tit-for-tat” mechanism.

For each peer, there may be many neighbors interested in
its content. The “choking/unchoking” algorithm determines
which of them it should give the contents to. All connec-
tions are “choked” by default. If a peer decides to provide

contents to another peer, it “unchokes” the connection to
it. A peer can upload to multiple peers at the same time;
in our client, the default limit on the number of concurrent
uploads is 7. Hence, a peer has 7 unchoked connections at
a time.

Six of these connections are chosen using a “tit-for-tat” cri-
teria. A node keeps track of the rates at which it downloads
blocks from all neighbors. The rate is calculating by ob-
serving how much data are received from a neighbor over a
time interval of about 20 seconds, and dividing the amount
of data by the time interval. Thus, the rate takes into ac-
count not only the upload speed of the neighbor, but also
its consistency at giving the client data. Then, among the
neighbors expressing interest, six with the highest rate to
this node are unchoked. In other words, a peer rewards
other peers who previously gave data to it consistently at
good speed. The decision to choke/unchoke is made period-
ically (every 10 seconds), after which some of the currently
unchoked nodes may be choked and vice-versa.

For any seed (i.e. those that have the whole file), this deci-
sion is made based on the rates that the peers can receive
data from it. So the peers which download quickly from the
seed get a higher preference.

A pure “tit-for-tat” scheme would not allow brand new
peers, i.e. peers not holding any piece, to start download-
ing from anybody. To solve this problem, BitTorrent uses a
mechanism called optimistic unchoke. Every 30 seconds, a
node chooses a neighbor at random to unchoke, irrespective
of the download rate from that neighbor. The neighbor is
the last of the 7 connections unchoked by a peer. In addi-
tion to bootstrapping new peers, this mechanism also allows
a peer to find other peers that may have a better upload rate
to it. The chance of a new node being selected for an op-
timistic unchoke is three times that of a node that already
holds some blocks.

2.0.0.3 Piece Selection
Once a peer p expresses interest in a neighbor’s blocks, and
the neighbor unchokes the connection with p, p can request
a block from the neighbor. Exactly which block is read from
the neighbor is determined by the piece selection algorithm.

The default behavior in BitTorrent is that p uses a “rarest
first replication” algorithm. That is, among the blocks pro-
vided by a neighbor, the block that is least replicated among
all neighbors of p is chosen. Note that this is a local rarest
first; a node only has visibility into the contents of its neigh-
bors. It is not a global rarest first.

3. OVERVIEW OF EXPERIMENTS
We conducted a series of experiments with two BitTorrent
clients running side by side on the same host. They were
started simultaneously and they downloaded the same file.
In order to prevent the two clients from connecting to each
other (and thereby sharing the file among themselves), each
client was explicitly programmed to avoid connecting to the
host machine’s IP.

For both clients, the maximum number of concurrent up-
loads was set to 7 and no cap was imposed on the upload

bandwidth to be used. The maximum number of two-way
connections was set to 50, and the maximum number of con-
nections initiated by the peer was 35. In our experiments,
it appears that external peers actually could not connect to
our clients, possibly due to the firewall restrictions at Stan-
ford. Thus, the maximum number of neighbors that the
peer could talk to at the same time was 35. The environ-
ments for the two clients were kept as identical as possible.
They ran on the same host; they essentially had the exact
same upload and download bandwidths. They ran at the
same time, so the conditions of the Internet, and of the Bit-
Torrent network, were also the same. All parameters and
policies were configured the same in both clients.

In the experiments, the original BitTorrent client [3] is
changed to log all significant events. For each event, the
log message includes the event ID, timestamp, the IP and
port number of the neighbor that the event corresponds to,
and event-specific information. At the end of each experi-
ment, the client’s log file is saved for further analysis. The
events logged are:

• Tracker: Response received for a request sent to the
tracker. Logged message also includes the number of
neighbors received in the response.

• Connect: Connection request sent to a neighbor.

• Choke: Choke message received from a neighbor.

• Unchoke: Unchoke message received from a neighbor.

• PChoke: Choke message sent to a neighbor.

• PUnchoke: Unchoke message sent to a neighbor.

• Interested: Interested message sent to a neighbor.

• Ninterested: Not Interested message sent to a neigh-
bor.

• Ginterested: Interested message received from a neigh-
bor.

• Guninterested: Not Interested message received from
a neighbor.

• Piece: Data received from a neighbor. Logged message
also includes the amount of data received and block
number in the file this data belongs to.

• Lost: Connection to a neighbor is lost.

• Close: Connection to a neighbor is closed by the client.

• Bitvector: Bitvector received indicating which file
blocks are present at the neighbor.

• Have: The client now has a full file block. Logged
message includes the block number which the client
has finished downloading.

Table 1 shows a summary of the results. For each exper-
iment, we estimate the size of the BitTorrent network for
the file by merging the list of neighbors seen by the two
clients. In all experiments the network has about 1500 to
2200 peers, which means that during the lifetime of the

Exp. Ratio of Ratio of Ratio of Ratio of
download times R1 R2 R3

1 1.82 1.10 1.03 0.97
2 1.26 1.29 1.23 1.28
3 1.09 0.70 0.71 0.66
4 1.22 1.24 1.43 1.55
5 1.58 1.54 1.87 3.62
6 1.50 1.20 1.19 1.07
7 1.27 0.91 0.81 0.60
8 1.63 1.06 1.20 1.48
9 1.03 0.88 0.79 0.70
10 1.63 2.47 2.54 3.53
11 1.21 1.26 1.26 1.12
12 1.78 1.34 1.33 1.45
13 1.28 1.15 1.37 1.17

Table 2: Ratios of download times and three esti-
mates of unweighted average download rates. The
download time ratio is calculated as (time for slower
client / time for faster client). The average rate ra-
tios are (avg. rate for faster client / avg. rate for
slower client). R1 is the estimate including all peers,
R2 includes only those who provide at least 256 KB
of data, R3 includes only those who provide at least
2.5 MB of data.

downloads there are thousands of other peers downloading
the file as well. The effective download rate, which is sim-
ply (filesize/download − duration), ranges from 10KB/s
to 30KB/s. Though our host is on a university network,
the majority of the peers are probably cable-modem peers,
which explains the low effective throughput. The results
show that, even though the two clients were configured the
same and ran in the same external environments, the down-
load time differs by up to a factor of 2. In real time this
would mean a difference of 6 to 12 hours, which would not
be tolerated by users who pays for the download.

4. UNDERSTANDING THE CAUSE OF
PERFORMANCE VARIATION

Despite the fact that the two clients run with identical con-
figurations, there are big differences in the download times
that they experienced in almost all cases (ref. Table 1). A
natural question is: what made the slower peer unlucky?

4.1 Per-Slot Analysis
We first partition the download time into idle and active
times, and calculate the download concurrency (i.e. how
many neighbors are sending data to it at any point in time)
for the client. For each TCP connection between the client
and a neighbor, the download state, i.e. the state of data
flowing from the neighbor to the client, alternates between
waiting for data and actually receiving data. We call the
state that the client is waiting for data the idle state, and
the state that it is actually receiving data the active state.
The download can become idle either because the client is
choked by the neighbor or because it is not interested in the
neighbor’s data. Similarly, the download is active when the
client is interested in the neighbor and is unchoked by it.

The log analysis tool first aggregates information for each
connection. Each connection is modeled as a finite state
machine. As the log lines are read, a connection’s state is

Exp. # File size Exp. Date Network Size Download time Effective Download rate
(secs.) (Kilo-Bytes/sec.)

Client 1 Client 2 Client 1 Client 2
1 700 MB April 11 ’06 1563 23,823 43,401 30.8 16.9
2 1400.5 MB April 12 ’06 2070 51,219 64,589 28.7 22.7
3 702 MB April 12 ’06 1851 55,982 61,034 13.1 12.1
4 700 MB April 13 ’06 1246 22,688 27,594 32.4 26.6
5 702 MB April 13 ’06 1837 40,409 63,951 18.2 11.5
6 1400.5 MB April 14 ’06 1959 47,399 70,977 31.0 20.7
7 700.5 MB April 14 ’06 2112 51,304 65,128 14.3 11.3
8 700.75 MB April 15 ’06 2141 43,767 71,526 16.8 10.3
9 699.75 MB April 29 ’06 1170 40,324 41,715 18.2 17.6
10 702 MB April 29 ’06 1169 27,258 44,375 27.0 16.6
11 700.25 MB April 29 ’06 1384 33,247 40,194 22.1 18.3
12 701.5 MB May 4 ’06 1435 40,344 71,826 18.2 10.2
13 701 MB May 4 ’06 1614 52,421 67,026 14.0 11.0

Table 1: File size, Experiment date, Network size and Download time and Effective download rate in the
various experiments. Network size refers to the total number of unique peers encountered by the two clients.

updated when its logged events are encountered, and the
relevant information is stored in a hash table indexed by
the neighbor’s IP address.

The analysis tool then groups connections into “slots”. Since
the maximum number of connections is limited to 35, a client
tries to fill all 35 slots in order to maximize its download
speed. In other words, each slot is a resource and the client’s
goal is to maximize its utilization. The analysis tool assigns
a connection to a slot on a first-come first-served basis. The
tool marks a slot as active if there is a connection occupy-
ing it and the download state of the connection is active.
Conversely, the tool marks a slot as idle if no connection
occupies the slot (i.e. the total number of connections is
less than 35), or the download state for the connection in
the slot is idle. For each slot, its total idle time, total active
time, and total data received are calculated.

Let T be the total download time of the client, and W be
the average idle time of a slot. Since the default number
of concurrent uploads in BitTorrent is 7, the average con-
current downloads that the client receives is also about 7
(the presence of seeds, which only upload, may increase this
number). Let C be the average download concurrency that
the client experiences. Since the total number of slots is 35,
W = T ∗ (35 − C)/35. Thus, C can be calculated using W .

Let S be the total file size. Let Ri be the speed at which
neighbor i sends data to the client, and Di be the amount
of data that neighbor i sends to the client. Then the har-
monic mean of the neighbor’s speeds is S/

P

i
Di/Ri, which

measures the effective rate experienced by the client during
the active times of the slots. Since Di/Ri is essentially the
total active time of the connection with the neighbor, the
harmonic mean can also be calculated as S divided by the
total active time over all slots.

Table 3 shows the average idle time, harmonic mean of
download rates, and average download concurrency in each
experiment. The results show that the slower peer is not
slow because it has a lower download concurrency; in fact, in
a few cases its download concurrency is higher. In most ex-
periments, the download concurrency is quite similar for the
two clients. Hence, the difference in performance is caused

by the effective download speed that the client obtains from
its neighbors (i.e. the weighted harmonic mean of the down-
load speeds).

4.2 Impact of Neighbors’ Upload Speeds
Naturally, our next question is: was the slower client un-
lucky because the tracker gave it a slower set of neighbors?
To answer this question, we estimate the “upload speeds”
of the neighbors. It is difficult to measure the throughput
of the TCP connection with a neighbor from the applica-
tion. However, we can estimate the network bandwidth by
observing the amount of data arrived during an active inter-
val. The estimate does not necessarily reflect actual network
speed, but is useful for comparisons of the neighbors’ speeds.

Specifically, for each connection, the analysis tool calculates
its total active time (i.e. the duration when the download
state is active) Ti, and the total amount of data that ar-
rived from this connection Di. The “upload speed” for the
neighbor is set to be Di/Ti. Three estimates are used: R1 is
unweighted average of all neighbors that ever give any data
to the peer, R2 is unweighted average of neighbors providing
more than 256KB of data, and R3 is that of those provid-
ing more than 2.5MB of data. Three estimates are used
because the method of calculating the upload speed is inac-
curate, and each estimate essentially represents a different
way to sample the upload speeds. The relative ratio of the
download times and of the rates of the two clients in our
experiments are shown in Table 2

The results show that the “upload speed” is only a minor
factor in determining the download time. Indeed, in 3 out of
the 13 experiments, download is faster for the peer that has
a slower set of neighbors. The correlation coefficient of the
download time ratio and the average “upload speed” ratio is
only 0.57 for R1, 0.43 for R2, and 0.47 for R3. Thus, while
“upload speed” does play a role in determining download
time, its effect is moderate. Other factors are at play here.

4.3 Effect of “Close” Neighbors
In each experiment, the client connects to a lot of peers.
However, not all peers upload data to it. In fact, the major-
ity of the data is given by a handful of peers. Table 4 shows
the number of unique peers that a client connects to dur-

Exp. Client Total download Avg. idle time Avg. download rate Avg.
time (secs.) (T) (secs.) (W) (Bytes/sec.) (R) Concurrency

1
1 23823.00 19623.56 3521.18 8.81
2 43401.00 36091.60 2041.75 8.42

2
1 51219.00 42012.06 3207.98 8.99
2 64589.00 51861.36 2324.59 9.85

3
1 55982.00 45913.18 1489.09 8.99
2 61034.00 51906.68 1632.28 7.48

4
1 22688.00 19077.66 4106.17 7.96
2 27594.00 23651.58 3741.93 7.14

5
1 40409.00 35190.96 2865.46 6.46
2 63951.00 53207.12 1408.89 8.40

6
1 47399.00 37694.90 3035.93 10.24
2 70977.00 56108.20 1989.55 10.47

7
1 51304.00 40044.62 1342.52 10.97
2 65128.00 54450.10 1400.65 8.20

8
1 43767.00 34170.76 1557.26 10.96
2 71526.00 56537.36 1012.79 10.48

9
1 40324.00 31852.40 1765.58 10.50
2 41715.00 33277.98 1783.22 10.11

10
1 27258.00 22994.96 3472.64 7.82
2 44375.00 35299.76 1660.82 10.23

11
1 33247.00 27451.22 5086.57 8.72
2 40194.00 32952.00 4089.30 9.01

12
1 40344.00 33110.24 2058.47 8.97
2 71826.00 58120.46 1100.94 9.54

13
1 52421.00 45063.66 2027.80 7.02
2 67026.00 55409.32 1294.53 8.67

Table 3: Average idle time, download rate and concurrency in each experiment.

Exp. Client Total Close Data to
peers peers close peers

1
1 618 16 86.05
2 1065 32 85.47

2
1 1044 24 90.12
2 1331 40 87.23

3
1 1138 27 80.47
2 1250 31 90.17

4
1 612 14 77.62
2 731 20 88.75

5
1 954 11 52.28
2 1344 47 90.26

6
1 946 24 93.25
2 1237 40 90.00

7
1 1142 32 81.01
2 1360 43 88.84

8
1 1022 26 90.86
2 1531 58 86.03

9
1 733 33 81.05
2 790 28 77.51

10
1 578 14 78.18
2 830 33 84.96

11
1 772 12 68.47
2 892 22 89.40

12
1 777 27 83.54
2 1140 48 73.66

13
1 999 28 74.89
2 1094 34 87.14

Table 4: Total number of peers versus the number
of close peers for each experiment. “Data to close
peers” is the total amount of data uploaded to close
peers as a percentage of the total data uploaded.

ing the course of its download, and the minimum number
of peers that give the client 90% of the file. In other words,
if we sort all peers by the amount of data that they give to
the client, and find the top N peers that together give 90%
of the file, the result N is a very small number. We call the
top N peers “close” peers of the client.

As one can observe from the Table 4, the # of close neighbors
consistently predicts performance. The smaller the number
is, the faster the download proceeds. A client that gets its
data from fewer peers always performs better. The only
exception to this rule is experiment 9, but in this case the
difference in download times between the two clients is very
small. In fact, if one compares the minimum number of peers
that provide 50% and 75% of the data to the client in each
experiment, these numbers consistently predict performance
as well. Figure 1 illustrates the results. In both graphs, the
line representing the faster client is consistently lower than
the line representing the slower client. This result leads us to
examine the relationship between the client and its “close”
peer more carefully.

4.3.1 Matching Between the Peers
What makes “close” peers close to the client? We initially
guessed the following: that their upload speeds to the client
are the highest among the peers, that the client connects to
these neighbors first, that the client has been unchoked by
these neighbors first, etc. However, examination of the logs
proves these guesses to be wrong.

Instead, the “closeness” seems to reflect a stable data-
exchange relationship between the client and the peers. Ta-
ble 4 shows the total data uploaded to these close peers as a
percentage of the total data that the client uploads to other
peers. The percentage is very close to 90%.

Figure 1: Minimum number of peers that give 50 % (left) and 75 % (right) of data, both for faster and slower
clients.

Figure 2 shows the relationship graphically. For each con-
nection between the client and a close peer, the figure shows
three intervals: the duration of the connection, the duration
of the client downloading data from the peer, and the du-
ration of the client uploading data to the peer. The figure
clearly shows a high overlap of the three intervals. Due to
space constraints, we present the graph only for client 1 of
experiment 5, but it is similar for all other experiments and
clients. The graphs for all other experiments can be found
at [2].

We believe that the “tit-for-tat” mechanism in BitTorrent
is responsible for establishing a close relationship between
close peers and the client. This relationship can be ini-
tiated both ways; either the remote peer starts uploading
to the client and then the client reciprocates by unchoking
and uploading to it, or vice-versa. When selecting a peer
to unchoke, the BitTorrent client keeps the effective rate of
download, i.e. amount of data received from a peer divided
by the observation interval, of all peers, and selects the one
with the highest effective download rate. Since the observa-
tion interval is usually more than 20 seconds, the effective
download rate favors peers which have been giving data con-
sistently, even if the download was at a low rate. So, once a
peer becomes close, it stays close for a long time.

Since each peer can upload to 7 neighbors concurrently,
BitTorrent effectively runs a randomized, completely dis-
tributed algorithm to obtain a perfect matching between
peers, i.e. an undirected random graph where each node
has degree of 7. In other words, each peer can have 7 close
neighbors at a time, and peer A only becomes close to peer
B if both have openings for a close neighbor.

4.3.2 Cost of Peer Leaving
It should not be a surprise that once an established matching
is disturbed, it takes a long time for the algorithm to re-
establish the matching. For a client, the departure of a
close peer incurs a significant penalty in terms of increased
download time. The client establishes a close relationship
with a peer by keeping it unchoked and uploading data to it.

 0

 2

 4

 6

 8

 10

 12

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Cl
os

e
Pe

er
 N

o.

Time

Conn. Interval
D/L Interval
U/L Interval

Figure 2: Time intervals in which the client is con-
nected to, downloading from and uploading to close
peers for experiment 5, client 1.

So if a close peer leaves the network, the client has to look
for another peer to fill the void created. Since the number
of concurrent uploads is limited and not every peer would
reciprocate by giving data back, finding another close peer
takes up a lot of time.

Table 5 shows, for each experiment, the average time it takes
the client to find another close peer after a close peer leaves.
To calculate these times, the analysis tool views each close
peer as occupying one of 7 or 8 concurrent upload slots.
When one close peer leaves and a new one occupies the same
slot, the difference in time between the two events is the time
wasted for making this switch. Averaging the wasted time
over all such switches gives the average wasted time for the
client.

The results explain why a higher number of close peers in-
dicates a slower peer. A higher number of close peers means
that the client has to pay the switching overhead more often,
thus increasing the download time.

Exp. Client Avg. Time
wasted (secs.)

1
1 2008.20
2 2624.33

2
1 2120.73
2 2828.04

3
1 3002.38
2 5362.95

4
1 2981.33
2 1509.00

5
1 2611.00
2 3223.81

6
1 1921.73
2 1781.20

7
1 1617.35
2 2479.07

8
1 1004.14
2 3307.49

9
1 2831.19
2 3449.86

10
1 1916.60
2 2805.72

11
1 1621.67
2 2497.58

12
1 2535.85
2 2866.87

13
1 5464.06
2 5487.29

Table 5: Average time wasted between losing a close
peer and finding a new one.

4.4 Reasons of Close Neighbors Leaving
Why do close peers leave a client? We observe that once a
peer becomes close, it continues uploading data to the client
until one of the following situations occur:

1. the peer disconnects from the network;

2. the peer decides to choke our client;

3. the client becomes uninterested in the peer;

Peers that do not encounter any of the above situations keep
uploading till the client finish downloading the entire file.

Table 6 shows the number of peers in each of the above
categories for each experiment. It shows that a slower client
has more peers falling in categories 1 and 2 than the faster
client. The number of peers in category 3 is very small across
all experiments.

What cause peers in category 1) and 2) to stop sending data
to the client? We further categorized these peers’ actions as
follows:

1. Case A: the peer disconnects from the network while it
is still receiving data from the client. The fact that it is
downloading from the client when it gets disconnected
strongly suggests that the disconnect has happened
randomly, e.g. a mobile host.

2. Case B: the peer chokes the client, but the client does
not choke it back and keeps sending data to the peer.
This represents a potentially buggy behavior in the
standard BitTorrent client.

Exp. Client Case 1 Case 2 Case 3

1
1 6 5 3
2 14 11 0

2
1 8 9 2
2 18 14 2

3
1 10 11 0
2 10 15 1

4
1 3 5 2
2 7 9 1

5
1 3 4 1
2 16 25 1

6
1 8 11 1
2 16 19 1

7
1 17 9 1
2 16 23 3

8
1 14 6 1
2 28 20 4

9
1 8 16 2
2 7 10 3

10
1 1 6 1
2 8 14 1

11
1 5 2 2
2 4 14 0

12
1 10 10 2
2 15 27 0

13
1 12 10 0
2 22 9 0

Case 1 : # of peers that disconnected
Case 2 : # of peers who choked
Case 3 : # of peers who got uninteresting

Table 6: Distribution showing why download from
a peer stops

3. Case C: the peer chokes the client, followed by either
the client choking it in return or the connection being
severed.

4. Case D: the peer is a seed and therefore the client
never uploads to it. After uploading data to the client
for some time, either the peer chokes the client or just
disconnects.

5. Case E: the client chokes this peer first, and either
this peer chokes the client back or the connection is
severed. This usually happens when our client decides
that it has found a better peer.

6. Case F: the peer became uninterested in our client.
Most likely, this is because it has finished its download.

Table 7 shows the results of classifying the peers in categories
1 and 2 of table 6 using the above method. Case A and Case
F are situations not affected by any BitTorrent mechanism,
and not under the influence of our BitTorrent client. Table 7
shows that across all experiments, the slower client has more
case A and case F peers than the faster client.

Case B is rare among the experiments, indicating that the
BitTorrent client tends to implement tit-for-tat correctly.
Case D has a higher count in the slower client than in the
faster client. Intuitively, seeds should have helped our client.
However, further examinations of the log find that these
seeds are responsible for a small fraction of the data. In
other words, they rank quite low in the list of close peers.
Thus, it is possible that the slower client finds more of them
because its download takes longer.

Case C and E are results of the choking/unchoking interac-
tions between the client and its peers. Case E is initiated
by the client: it believes that it has found something better.
We examine the connection interval graphs (e.g. Figure 2)
of all experiments, and find that in many cases, the time
when the download from one peer ends is quite close to the
time when the connection from another close peer begins,
indicating that indeed, the client has switched to a faster
peer. However, there are also cases where the new “close”
peer only sticks around for a very short time, indicating that
perhaps it has not been a good idea for the client to switch
to the new peer. Case C is initiated by a close peer, indicat-
ing that the peer has found a better client. Case C is not
under the direct control of the client, and its impact on the
clients appear to be minor.

Summarizing the results, we conclude that the reasons for
higher turn-over in close peers for the slower client are
mainly events outside its control, including peers that are
mobile hosts and disconnect randomly, peers that finish its
download and exit, or peers that simply do not stay in the
P2P network for long. In the next section, techniques that
could potentially help the unlucky client are explored.

5. TECHNIQUES TO IMPROVE QOS
Our investigation naturally leads to the following ideas to
improve the predictability of download times of P2P file dis-
tribution. Some of the ideas are more suited for content
providers that can spend some resources to facilitate the
download process, and use client software that is not easy
to modify. Others are more suited for pure peer-to-peer sys-
tems.

• Dedicated “helper” seeds that aid peers during their
transition from one close peer to another. Assuming
that the client software is trustworthy, the client can
notify the tracker that it has just lost a close peer and
is in the process of trying to find another one. The
tracker can then assign one of the helper seeds to send
data to the client, so that its download is not slowed
down. The help ends when the client finds another
close peer.

• Algorithm techniques to speed up the convergence of
the tit-for-tat matching algorithm. For example, the
BitTorrent protocol can be changed so that peers no-
tify each other of their respective close neighbors. The
intention is that when a peer A leaves the network,
those who are close to A can try A’s neighbors first in
order to find new close peers, since A’s neighbors are
most likely to have an upload slot open.

• Refinements of choking/unchoking algorithm to avoid
unnecessary turn-overs in close peers. This would re-
duce mistakes in Case E as discussed in Section 4.4.

Unfortunately, detailed explorations of these techniques are
out of the scope of this paper and remain our future work.

6. RELATED WORK

Exp. Client A B C D E F

1
1 1 0 0 1 3 6
2 3 1 2 4 4 11

2
1 4 0 4 0 4 5
2 6 0 3 3 12 8

3
1 5 0 1 2 4 9
2 2 0 5 3 6 9

4
1 0 0 2 1 1 4
2 2 0 2 3 1 8

5
1 1 1 1 1 0 3
2 6 0 8 6 6 15

6
1 3 0 5 0 6 5
2 6 1 6 8 4 10

7
1 3 0 4 3 10 6
2 9 0 5 4 9 12

8
1 5 0 2 2 6 5
2 8 0 5 5 18 12

9
1 5 0 8 1 4 6
2 0 1 4 0 5 7

10
1 0 1 0 3 0 3
2 4 1 1 4 3 9

11
1 0 0 1 1 2 3
2 1 1 0 4 3 9

12
1 3 0 2 2 5 8
2 7 0 4 13 4 14

13
1 7 1 1 2 5 6
2 8 0 0 2 10 11

A : # that disconnected randomly
B : # that choked first, were never
choked back
C : # that choked first, then got
choked or disconnected
D : # of seeds
E : # that were choked first, then
choked or disconnected
F : # that became uninterested

Table 7: Details of clients’ uploads behavior

Because of its popularity, in recent years there have been
many studies on BitTorrent. At its heart, BitTorrent at-
tempts to solve the “broadcasting problem”, i.e. dissemi-
nating M messages in a population of N nodes in the short-
est time. In the setting of the Internet where nodes can
communicate in both directions simultaneously and have
the same bandwidth, the lower bound on download time is
M + log2(N) units, where a unit is the time it takes for two
nodes to exchange a message. Assuming that all nodes are
completely connected, an optimal algorithm that relies on
a centralized scheduler is described in [12]. The algorithm
goes in rounds, and establishes matching pairs among nodes
in a deterministic fashion. Similar algorithms are also dis-
cussed in [13, 8]. We note that the matchings used in these
optimal algorithms are quite similar to the matching per-
formed by BitTorrent.

Simulation studies have found that in typical settings of ca-
ble modem and DSL nodes the links are almost fully utilized
all the time [1, 8]. The results indicate that the random al-
gorithms used by BitTorrent lead to nearly optimal perfor-
mance. However, these studies do not look into the impact
of peers leaving, and do not investigate the variations in
download performance.

There are numerous measurement studies of BitTorrent traf-
fic on the Internet [7, 11, 10]. In [7], detailed traces gathered
over a period of 8 months (Jun ’03 to Mar ’04) are analyzed

to study the availability and performance of BitTorrent net-
works. Their findings of average download speed of 30KB/s
are quite close to the results in this paper. In [11], the Bit-
Torrent network for the Linux RedHat 9 distribution was
studied via both a 5-month tracker log and detailed logs of
a single peer’s download. The study found that the aver-
age download rate was around 500kb/s, possibly due to the
presence of many dedicated high-speed seeds for the file.
The study also noted that there was a high variation in
the download throughput experienced by the peers. How-
ever, the study did not look into the causes of the variation.
In [10], interactions between multiple BitTorrent networks
were studied, and the authors proposed that BitTorrent net-
works cooperate to improve performance. The study noted
that the download performance fluctuated widely with the
peer population, but did not compare performance of peers
downloading files during the exact same time periods. These
studies do not focus on investigating the detailed causes of
variations in download times.

Finally, studies have investigated using network coding to
improve BitTorrent [9]. The use of network coding solves
the “last missing block” problem and significantly improves
content availability in the network. The use of network cod-
ing is complementary to the issues we investigate here.

7. CONCLUSIONS AND FUTURE WORK
This paper tries to answer the following question: if two
BitTorrent clients are downloading the same file at the same
time and their download times differ significantly, what is
causing one client to be slower than the other? Answers to
this question not only suggest ways to improve the perfor-
mance of BitTorrent, but also highlight factors that deter-
mine the download performance and point out ways to offer
QoS guarantees on the download time.

Analysis of 13 side-by-side experiments demonstrates that
a dominant factor in a client’s performance is the behavior
of its close neighbors, including how often they leave the
network and how often they choke the client. This factor
is more important than the network bandwidth of the set
of peers that the client is given, a result that is somewhat
surprising. Part of the reason lies in the fact that the current
tit-for-tat mechanism appears to converge slowly; it takes a
long time for a client to find a new close peer if an old one
leaves.

There are a number of limitations to our study. Our mea-
surement of a peer’s network bandwidth is not precise. More
comprehensive studies could utilize the various information
related to an IP address, such as the AS and geo-location, to
obtain better estimates. We have also not studied QoS issues
related to the use of TCP protocol in BitTorrent, particular
the fairness among parallel connections and its impact on
choking/unchoking. Finally, we have not examined in detail
the impact of the size of the P2P network on download per-
formance. Investigation of these issues remains our future
work.

Our immediate next step is to explore, via simulation and
implementation, techniques that reduce the variance in Bit-
Torrent peers’ performance, including ideas described in Sec-
tion 5. We plan to validate the techniques with real-life

experiments such as hosting trackers for legitimate popular
content, and would welcome any sources of such content for
this study.

8. REFERENCES
[1] A. Bharambe, C. Herley, and V. N. Padmanabhan.

Understanding and deconstructing bittorrent
performance. In Proceedings of SIGMETRICS, 2005.
http://research.microsoft.com/p̃admanab/papers/msr-
tr-2005-03.pdf.

[2] R. Bindal and P. Cao. Bittorrent performance study:
Connection interval graphs, 2006.
http://crypto.stanford.edu/c̃ao/bt-
study/conn intervals/.

[3] B. Cohen. http://download.bittorrent.com/.

[4] B. Cohen. Incentives build robustness in bittorrent,
2003.
http://citeseer.nj.nec.com/cohen03incentives.html.

[5] B. B. Corporation. Warner bros to sell movies on net,
2006.
http://news.bbc.co.uk/1/hi/entertainment/4665438.stm.

[6] EContentMag.com. Chasing the user: The revenue
streams of 2006, 2006.
http://www.econtentmag.com/Articles/ArticleReader.aspx
?ArticleID=14532&ContextSubtypeID=8.

[7] P. G. Epema. The bittorrent p2p file-sharing system:
Measurements and analysis.
http://citeseer.ist.psu.edu/725723.html.

[8] P. Ganesan and M. Seshadri. On cooperative content
distribution and the price of barter. In Proceedings of

ICDCS, 2005.
http://dbpubs.stanford.edu:8090/pub/2005-4.

[9] C. Gkantsidis and P. Rodriguez. Network coding for
large scale content distribution. In Proceedings of

IEEE INFOCOM, 2005.
http://research.microsoft.com/p̃ablo/papers/-
nc contentdist.pdf.

[10] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and
X. Zhang. Measuremsnts, analysis and modeling of
bittorrent-like systems. In Proceedings of the Internet

Measurement Conference, 2005.
http://www.imconf.net/imc-
2005/papers/imc05efiles/guo/guo.pdf.

[11] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber,
A. Hamra, and L. Garces-Erice. Dissecting bittorrent:
Five months in a torrent’s lifetime. In Proceedings of

the 5th Passive and Active Measurement Workshop,
2004. http://citeseer.ist.psu.edu/izal04dissecting.html.

[12] J. Mundinger and R. Weber. Efficient file
dissemination using peer-to-peer technology.
http://www.statslab.cam.ac.uk/Reports/2004/2004-
01.pdf.

[13] X. Yang and G. de Veciana. Service capacity of peer
to peer networks. In Proceedings of IEEE INFOCOM,
2004. http://citeseer.ist.psu.edu/yang04service.html.

