
Is It Possible to Legislate Fair Share?

Abstract

Lost in the debate surrounding net neutrality is the as-
sumption that all end hosts play nice and “fair share” the
limited network bandwidth. Traditionally, “fair share” is
enforced through a combination of forces: there is a gen-
eral consensus on the TCP congestion control algorithm,
operating system vendors implement such algorithm in the
kernels and it cannot be changed, applications use TCP and
use only a small number of TCP connections, and perhaps
most importantly, network operators can identify abusive
applications and traffic-shape them.

Unfortunately, today these protective forces are being
weakened. The networking research community has pro-
posed at least nine different congestion control algorithms,
some more aggressive than others. Popular kernels such
as Linux have implemented all of the algorithms, and fur-
thermore, allow users with proper privileges to modify the
congestion control algorithm arbitrarily via loadable ker-
nel modules. Many P2P applications use four or more con-
nections between each host pair to improve their perfor-
mance. And finally, most proposals of Net-Neutrality legis-
lation prohibit network operators from traffic-shaping ap-
plications, for good reasons.

Therefore, for net-neutrality laws to avoid causing con-
gestion collapse on the Internet, the law must also define
proper end-host behavior, i.e. “fair-share”, and allow net-
work operators to detect violations of fair-share and ap-
ply punishment. This presents three immediate difficulties.
First, TCP only provides per-flow fairness, so to achieve
fair-share, one application shouldn’t use more flows than
the other. But having a law to limit the number of TCP con-
nections that an application can open is draconian to say
the least. Second, the TCP congestion control algorithm
is the key in providing per-flow fair-share, but the algo-
rithm itself is under active research, and legislation in this
area could stymie innovation. Finally, it’s difficult to have
cheap and yet accurate detection of fair-share violations in
routers, and any approximation techniques risk penalizing
the innocent.

This paper sketches out a set of potential solutions out of
this dilemma. A central theme of the proposal is that there
should be a code of conduct for “fair-share” involving the

number of TCP connection used and the TCP congestion
control algorithms used, and there should be a differentia-
tion between public hosts and private hosts. Public hosts
pledge to follow the “fair-share” code of conduct, and al-
low the behavior of their traffic to be monitored and their
pledges verified. In return, they receive a guarantee from
network providers that their traffic always receives the fair-
share and won’t be shaped. Private hosts do not have to be
constrained by the “fair-share” code of conduct, and in re-
turn they accept that their traffic will be shaped from time to
time as deemed appropriate by the network provider. Simi-
larly, there is a code of conduct for applications that utilize
private hosts’ networking resources for community benefit,
and a separation between “public” applications that won’t
be traffic-shaped and “private” applications that can be.

1. Notes to the Program Committee

I apologize for a hastily and poorly written paper. I am
somewhat embarrassed to submit such a poorly written pa-
per in the first place. However, the issue raised here is im-
portant; I haven’t seen a good discussion about it anywhere.
By submitting the paper, I am hoping to make this a discus-
sion topic at HotNet. I’ll definitely refine the paper should
you decide to accept it in some form.

This is an anonymous submission. Regardless of the
anonymity, the opinions and views expressed in this paper
in no way, shape or form reflect those of the author’s em-
ployer.

2. Introduction

TCP is the protocol used by virtual all end hosts for reli-
able communication and is a cornerstone for Internet stabil-
ity. The congestion control mechanism in TCP ensures that
data flows traveling along a network link fair-share the link
bandwidth, and when congestion occurs, the sending rates
of the flows are reduced. Details for TCP can be found in
many text books.

The fair-share property of TCP congestion control is
derived from its AIMD (additive-increase multiplicative-



decrease) algorithm. In TCP, the sender’s sending rate is
controlled by the congestion window,W . The flow cannot
have more thanW packets in flight. When a packet loss is
detected,W is halved. Afterward,W is only increased by
1 per round trip in order to probe for spare bandwidth.

The AIMD algorithm is proved to be fair. When the
RTTs of the flows are the same, even if one flow starts
with a much bigger share of the network bandwidth than
another flow, they converge to fair share of the network
bandwidth. This has been proved in a theoretical model,
and have been validated by simulations. The actual imple-
mentation of TCP has went through multiple iterations, with
Reno as the basis and SACK and FACK added later on.

However, AIMD only provides per-flow fairness. If ap-
plicationA uses 2 TCP flows while applicationB uses only
1 TCP flows, and bothA andB travel the same bottleneck
link, thenA will receive twice the share of the bandwidth.
Indeed, many P2P file sharing application uses many TCP
connections between peers and, left unconstrained, would
monopolize the Internet bandwidth, as shown in [2].

So far, the end-to-end principle of Internet design has
worked reasonably well due to the following reasons:

• there is a clear consensus on the TCP congestion con-
trol algorithm, i.e. AIMD.

• AIMD is implemented inside popular operating sys-
tems, and the applications cannot change its behavior.

• Popular applications use just 1 or 2 connections be-
tween hosts.

• Network providers have the right to traffic-shape data
traffic that are blatantly exploiting network resources.

These are protective forces that enable the Internet to func-
tion. (We are ignoring the discussions of UDP here, since
major applications on the Internet today are no longer using
UDP, and the Slammer worm has made rate-limiting UDP a
necessity that no one is challenging).

However, today these protections are being weakened:

• Loss of the consensus: Due to AIMD’s poor perfor-
mance in long-distance fat-pipe networks, TCP’s con-
gestion control algorithm has been a very active re-
search area. There are no less than nine proposals
floating around. Some of these claimed to be TCP-
friendly. Some have already been shown to be quite
unfriendly to TCP Reno. Nevertheless, they have been
all implemented in Linux.

• Ease of modification of TCP: It’s no surprise that, with
so many algorithms on the table, the operating system
developers would decide to make the TCP implemen-
tation modular, and in the process, make them kernel
modules that can be changed by any user allowed to

load up kernel modules. Starting in Linux 2.6, Linux
has introduced the TCP congestion control API, which
made several key components of TCP stack operations
hooks that a user can register modules with. If a user
wanted to, he or she can make the TCP run arbitrary
congestion control functions.

• Loss of Net-Etiquette in Programmers: It used to be
that distributed applications were developed by pro-
grammers that are sensitive to fairness in networking.
Rise of P2P file-sharing applications changed all that.

• Threat of Legislation: Most proposed Net-Neutrality
legislation outlaws traffic shaping, for very good rea-
sons: traffic-shaping can be easily abused to discrimi-
nate certain applications.

If we were to enact laws prohibiting network providers
from bandwidth-limiting data traffic, then we should also
enact laws prohibiting end-hosts from unfair behavior. But
is it possible to define what behaviors are fair and what are
unfair?

Any definition of fair-share has to include both limits on
the number of TCP connections an end-host/application can
use and and requirements on the congestion control algo-
rithm used. However, it is simply unfathomable for a law
to decree how many TCP connections an application can
use. Furthermore, given the difficulty that AIMD experi-
ences in large Bandwidth-Delay-Product (BDP) networks,
it’d be difficult to legislate the congestion control algorithm
too.

To resolve this difficulty, we propose that the hosts on
the Internet be put into two categories, public or private,
with different constraints and privileges accorded to both.
Similarly, we propose that applications be put into two cat-
egories, public or private. We elaborate below.

3. Public vs Private Hosts and Applications

After years of security attacks, the Internet has evolved
into a cluster of walled fortresses called Intranets. Practi-
cally every business employs firewalls to prevent access to
internal machines from the Internet, and most, if not all,
residential users have firewalls or gateways to protect ma-
chines at home. In fact, researchers have proposed that the
Internet be a “off by default” network [1].

The types of hosts that are “open” on the Internet are
quite limited, mostly web sites and DNS servers. These
hosts run a very limited set of well-defined applications.
These hosts, or rather, businesses associated with these
hosts, care that the traffic sent by them are not rate-limited
by network service providers.

A compromise can thus be made that such hosts (actu-
ally, the IP addresses of these hosts) be declared “public”

2



hosts, and constraints be put on these hosts in return for the
privilege of not being shaped. All other hosts are considered
“private” hosts. No constraints are put on their behavior, in-
cluding what kernels they use, what applications they run,
and how many TCP connections they use. In return, their
traffic will be subject to shaping when deemed appropriate
by their network service provider.

Similarly, applications can declare whether they fair-
share or not. Applications such as P2P systems that uti-
lize private hosts for community benefits have a right to see
that their traffic are not limited by network providers, but
to gain that right they need to promise that they do not un-
fairly take resources away from other hosts and other ap-
plications. Since many Internet service providers are built
out with an assumption of the traffic mix from their user
base, the code of conduct of “fair-share” for applications
inevitably involves promises of concurrency of peer activi-
ties.

4. Code of Conduct for Hosts

We propose the following fair-share code of conduct for
public hosts:

• Public hosts do not initiate TCP connections to other
hosts. Instead, they behave as mere receivers.

• The client agents that connect to the public hosts
should use only up to 2 TCP connections for data, and
1 TCP connection for control.

• Public hosts use BDP-appropriate congestion control
algorithm. That is, for BDP below certain range, TCP
Reno AIMD congestion control is used. For BDP
above certain range, a small set of TCP congestion
control algorithms, to be determined by the research
community, are allowed.

Monitoring and verification of the code of conduct can
be performed by any network service providers that carry
traffic between private hosts and public hosts. The direction
of the connection is easy to monitor.

The number of connections are harder to monitor. In the
case of public hosts having no control over the client agents
that run on private hosts to connect to them (for example,
web sites and browser applications), there is little chance
for public hosts to cheat. In the case of public hosts having
client agents installed on private hosts to connect to them,
the service provider best situated to verify that those agents
are not cheating is the service provider directly connected
to the private hosts, i.e. “eyeball ISPs”.

Verifying that the public hosts are using the claimed con-
gestion control algorithm is perhaps the hardest. Here, we
propose two approaches, one macro-level monitoring, and
one micro-level random testing.

Macro-level Monitoring The macro-level monitoring
approach is best performed by the “eyeball ISPs”, which
also has the most interest in making sure that the public
hosts do not cheat. Its principle is very similar to the TCP-
friendly test as advocated in [4].

In the macro-level monitoring approach, the router es-
timates, for a public host under monitoring, the aggregate
drop rate for flows from the host (p), the total number of
flows (K), and the RTTs between the private hosts and the
public host (R).

Given the three estimates, assuming that the aggregate
drop ratep reflects the average drop rate of each flow, the
standard TCP friendly test [4] says that the total packets
sent by the public host should be bounded byK ∗ (1.5 ∗

sqrt(2/3))/(R∗sqrt(p)). Note that any drop rate observed
by one router is a lower bound on the actual drop rate, thus
the sending rate is upper-bounded by the formula here.

Estimating the aggregate drop rate is easy: just keep the
total number of dropped packets that are from the public
host and the total number of packets sent by the public host.

The total number of flows to the public hosts can be es-
timated by using the probabilistic counting approach [3].
Probabilistic counting uses very little state and can be im-
plemented efficiently. With a few counters, the estimate can
be made very close to the actual count.

The RTT between the public host and the private hosts
served by the router can also be estimated relatively easily,
through a variety of existing methods.

Micro-level Random Testing A router can randomly test
if a particular TCP flow follows a particular congestion con-
trol algorithm by selecting a flow and emulating the TCP
stack from the connection establishment to tear-down. Even
though the router might not see the packet drops from the
flow, it can infer the packet drops from retransmitted pack-
ets.

5. Code of Conduct for Applications

For better or worse, the current ISPs are built out with
certain assumptions about the statistical multiplexing ofthe
users’ traffic. By assuming that not all users will be sending
or receiving data at the same time, the cost of the network
is reduced, and the reduced costshould havetranslated into
lowered costs for consumers.

Current P2P applications, unfortunately, completely vi-
olate these multiplexing assumptions. They take network
resources away from other hosts. This is the reason why
ISPs are forced to rate-limit these applications.

Businesses using P2P applications for community ben-
efits have a legitimate demand that the applications’ traffic
not be rate-limited. On the other hand, the ISPs also have

3



a legitimate demand that these P2P applications do not mo-
nopolize network resources at the expense of others.

To escape this dilemma, we again propose a fair-share
code of conduct for applications that utilize private hosts.
The code of conduct reflects the following:

• the P2P application can only use at most 2 TCP con-
nections between private hosts;

• the P2P application should make its TCP flow clearly
recognizable by routers, either by running on fixed
ports, or by having a clear identifier in the first packet
sent after connection establishment, so that the deep
packet-inspection engine at the router can identify the
flows and appropriate tag them;

• the P2P application agrees to abide by the multiplexing
constraints of any ISP whose private hosts are peers in
the application. That is, if an ISP demands that onlyC
hosts can perform data transfers for the application at
the same time, then the P2P application should abide
by that demand.

The last requirement means that the routers need to com-
municate with the P2P applications. To signal its constraints
to the P2P application, the router can use two approachs.
One is to simply deny connections between two peers if the
number of connections between peers in a P2P application
exceeds a limit. This gives a clear signal to the P2P applica-
tion; however, it does not suite the need of applications that
keep connections with lots of peers but most of the connec-
tions are idle.

The second approach is for a router to apply congestion
signal collectively. That is, when dropping one packet from
a flow belonging to the P2P application, the router drops
packets from other flows belonging to the same applica-
tion, so that more flows from the P2P applications back off.
(Since the concern in this case is not that private hosts ma-
nipulate their own kernels to help the P2P application, one
can assume that the private hosts will use proper TCP con-
gestion control algorithm and the flows will back off when
experiencing loss. )

Assume that the router detectsn active flows belonging
to the P2P application and the multiplexing assumption says
onlym should be active, then whenever the router drops one
packet from a flow, it drops one packet from(n/m)2 other
flows from the same application. Since the flows are clearly
recognizable, this can be easily done.

In a way, the second approach is a way of rate-limiting.
However, unlike the current traffic-shaping practices, this
form of rate-limiting is explicit, and the P2P applications
can adjust to it.

6. Discussions

It has been noted at a recent NANOG meeting that, while
content providers fear that they might be discriminated by
the ISPs, ISPs are thinking about BitTorrent when they ve-
hemently oppose Net-Neutrality, There is a clear discon-
nect.

Both proponents and opponents of Net-Neutrality make
good arguments. Perhaps, by clearly acknowledging the
role that end hosts and applications play in affecting dis-
tribution of network resources, we can create a common
ground for discussion.

References

[1] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and
S. Shenker. Off by default!Proceedings of the ACM SIG-
COMM HotNets-IV, 2005.

[2] K. Cho, K. Fukuda, H. Esaki, and A. Kato. The impact and
implications of the growth in residential user-to-user traffic.
ACM SIGCOMM Computer Communication Review, pages
207–218, 2006.

[3] P. Flajolet and G. Martin. Probabilistic counting algorithms
for data base applications.Journal of Computer and System
Sciences, 1985.

[4] S. Floyd and K. Fall. Promoting the use of end-to-end con-
gestion control in the Internet.IEEE/ACM Transactions on
Networking, 7(4):458–472, 1999.

4


