
Fractal Hash Sequence Representation and

Traversal

Markus Jakobsson ∗

RSA Laboratories

Bedford, MA 01730

mjakobsson@rsasecurity.com

Abstract

We introduce a novel amortization technique for computation of con-
secutive preimages of hash chains, given knowledge of the seed. While all
previously known techniques have a memory-times-computational com-
plexity of O(n) per chain element, the complexity of our technique can
be upper bounded at O(log2 n), making it a useful primitive for low-cost
applications such as authentication, signatures and micro-payments. Our
technique uses a logarithmic number of pebbles associated with points on
the hash chain. The locations of these pebbles are modified over time.
Like fractals, where images can be found within images, the pebbles move
within intervals and sub-intervals according to a highly symmetric pat-
tern.

Keywords: amortization, authentication, hash chain, smart dust.

1 Introduction

With a trend towards smaller and smaller computers, there is a need for more
efficient cryptographic methods. While this is true for cellular phones, smart
cards, and handheld devices, the need is perhaps most striking for smart dust.
The term ”smart dust”, coined in [6], refers to very small computational devices
covering a large area, often for purposes of surveillance, whether seismic or mil-
itary (see, e.g., [1, 9] for a more exhaustive list of applications). These dust
computers, while not quite as small yet as their name suggests, still suffer se-
vere enough computational and storage limitations to make most cryptographic
methods too costly. Like most networked devices, though, dust computers need
some means for authentication of information passed between them.

∗This work was performed while not employed.

1



For devices where computational limitations rule out the use of standard
digital signatures, message authentication codes (MACs) provide an alternative.
However, standard use of MACs require each pair of communicating devices to
share a secret key, which is impossible for applications where the number of
pairs is too large given the available storage. To address this problem, Perrig et
al. [4, 5] proposed the use of hash chains – each device having one such chain
– to compute MAC keys. According to his idea, a device would compute and
broadcast a message and its MAC during a first time interval, and then release
the key (or some value from which this can be computed) during a later time
interval. Recipients could verify the MAC first after the key is released, and
would trust the authenticity of the MAC based on the knowledge that only the
sender could have known the key at the time the MAC was broadcast. (Clearly,
this assumes synchronization.) The correctness of a recent key is verified by
hashing and comparing the result to a less recent key associated with the same
chain, and therefore with the sender. This less recent key may either be an inter-
mediary value or the public ”beginning key”. Thus, Perrig’s solution straddles
the fence between public key and secret key cryptography, taking some of the
functionality of the former while aiming for the efficiency of the latter.

However, we note that his solution fails to marry functionality with effi-
ciency, given that it ignores the fact that computing the next hash chain value
may in itself be a far costlier undertaking than computing a standard signa-
ture, or require more storage than is reasonable. We address this problem by
introducing a new technique for deriving sequences of hash chain values. Thus,
our method is directly applicable to authentication on computationally limited
devices, and more generally, to applications involving the use of hash chains.
The computation of the next hash value may either be based on time, such as
in [4], or on events, such as in [3, 8].

Consider a hash chain with a starting point v0 and an endpoint vn, where
the latter is the seed from which the chain is computed. Each element vi is
the hash image of the next value on the chain, i.e., vi = h(vi+1). Our aim
is to compute and output the series v1, v2, . . . , vn – in that order – and in a
manner that requires minimal memory and computational requirements. It is
clear that previously output values are not useful in computing the next value
to be output, since the hash function is one-way. Instead, the output values
have to be computed by iterative application of the hash one-way function to a
value towards the end of the chain.

A trivial solution to the problem of generating consecutive hash chain ele-
ments requires O(n) computation per value to be output, where n is the length
of the chain; such a solution would plainly recompute the chain from the end
value to the wanted value for each element. Another trivial solution would store
not only the end value, but all values of the chain, and plainly perform a lookup
for each value to be output. Such a solution would have a memory complex-
ity of O(n). One could easily trade memory and storage against each other in
these trivial solutions by storing some fraction of the values, and computing the

2



chain from such a stored point for each element to be output. It can be seen
that such variations of these trivial approaches all will have a memory-times-
computational complexity of O(n).

We introduce a technique whose memory and computational complexities
both are O(log n). More specifically, the algorithm performs ⌈log2 n⌉ hash func-
tion applications per output element, and uses ⌈log2 n⌉ memory cells, where
each cell stores one hash chain value along with some short state information.
For example, if the hash chain has length 232, and SHA [7] is the hash function
of choice, then each one of the 32 storage cells has size 2log2 n+160 = 224 bits,
totalling 896 bytes of storage for all pebbles. If we output one hash value per
second, such a chain would last for more than 68 years.

Our techniques can be illustrated by the following example. Assume that
we store three values; the seed, and two additional pebbles. A pebble stores the
hash chain value for a position it is associated with. Instead of spacing the three
elements n/3 apart (which would require computation of no more than n/3 hash
function applications per round), we position one in in the middle of the interval
(i.e., at position n/2), and one in the middle of the first of the resulting two
intervals (i.e., at n/4). As before, the ”seed pebble” is located at position n.
Consider now the cost of traversing this chain. Given the maximum distance
to the next pebble, one can see that this requires a maximal computational
effort of n/4 during the first n/2 rounds. After the first pebble (at position
n/4) has been reached, it is relocated to the position of the seed (namely, to
position n), and gradually moved to position 3n/4 – in the middle of the second
interval. Each such step ”costs” one hash function evaluation, but the cost of
all the steps is amortized over the time during which the pebble is moved. If the
pebble reaches its destination by the time the value at position n/2 is output,
the ”maximum distance” to the next pebble remains n/4 over the remainder of
the execution. By adding more pebbles, each ”splitting” smaller and smaller
intervals, the computational cost can be further reduced.

Our techniques are intellectually related to the pebbling techniques used for
key update in a recent paper by Itkis and Reyzin [2]. They store several pebbles,
each one of which correspond to a node in a tree, and the values associated
with this node. Then, for each step, and according to a particular pattern,
pebbles move downwards in the tree, allowing the computation of leaf values in
an amortized manner. While this basic idea is the same as in our technique,
the movement patterns and the resulting schemes are different, as are the two
applications.

2 Algorithm

Goal. We say that a hash chain (v0, v2, . . . , vn) has a starting point v0 and
an endpoint vn. Here, vn is a random value selected at the initialization of the
chain, and each other value vi is the hash image of the next hash chain value

3



vi+1. Thus, v0 = h(v1) = h(h(v2)), etc. We wish to output the hash chain
values in order of consecutive preimages, starting with v0 and ending with vn.
For simplicity, we assume that the length of the hash chain is a power of two,
namely n = 2σ.

Intuition. At any time, the current pointer (which coresponds to what ele-
ment gets output) is in one interval of size 4; one of size 8; one of size 16; and
so on, up to the length of the hash chain. A pebble is associated with each such
interval, and ”strives towards” the midpoint of the interval. Given the way the
intervals are arranged, such midpoints constitute endpoints for smaller intervals.
When the current pointer reaches a pebble, a new interval of the same size is
created, adjacent to the old interval, and the pebble is started off at its end.
Since this is a midpoint for a larger interval, another pebble will be found there.
The newly relocated pebble then moves to the middle of its own interval, taking
a few steps for every output value we generate. With each pebble we associate
a value, corresponding to the hash chain value at the location of the pebble.
Thus, when a pebble is reassigned to a new interval, it obtains the value of the
pebble in its aqcuired position; for each step it moves, it applies the hash func-
tion to its value. Given that the current pointer is always in intervals populated
by pebbles, we can bound the computational effort to derive the output value
from the pebble values.

Setup. During the setup phase, an endpoint vn is chosen and the resulting
sequence of hash images (corresponding to the desired hash chain) is computed.
This may be performed on a more powerful device than that which will later
compute and output consecutive preimages.

In order to allow an efficient computation of consecutive preimages of the
hash chain, we store and maintain a particular representation of the chain. This
representation consists of a list of pebbles, each one of which is associated with
a position and a hash sequence value, among other things. Since the pebbles
are continously relocated, each of them also stores a destination (the position to
which they are going) and two values that determine where a pebble is placed
after having been reached, and how its destination is computed. These values
are referred to as StartIncr and DestIncr. For pebble pj , 1 ≤ j ≤ σ, the following
assignment is made during setup:























pj .StartIncr ← 3× 2j

pj .DestIncr← 2j+1

pj .position← 2j

pj .destination← 2j

pj .value← v2j

We refer to the pebble initialized as pj as a ”type-2j pebble”. Thus, the
pebble starting in position 2 is called a ”type-2 pebble”, while the pebble starting

4



in position 4 is called a ”type-4 pebble.” Over time, the positions, destinations
and values of the pebbles will be modified. The list of pebbles will be kept sorted
with respect to their destination values. Here, we will call the first element of
the sorted list p1, and the last one pσ. (Therefore, it is not the case that the first
pebble, p1, will remain a type-2 pebble through the execution of the protocol.)

In addition to the above assignments, we compute the following:

{

current.position← 0
current.value← v0

In some applications, the starting point current.value (i.e., v0) of the chain
may be made public. The remaining values (as described above) are stored on
the device that will compute and output the sequence of preimages of the hash
chain.

Computing the next value. In order to compute the next hash value on
the chain (starting with v1), the following computation is performed:

1. If current.position = n then (Arrived at the end?)
halt (Quit)

else
increase current.position by one (Move pointer forward)

2. For 1 ≤ j ≤ σ do (Consider all pebbles)
If pj .position 6= pj .destination then (If not arrived ...)

pj .position← pj .position− 2 (... then move it ...)
pj .value← h(h(pj .value)) (... and update value)

3. If current.position is odd then
output h(p1.value) (Hash and output)

else
output p1.value (Output stored value)
p1.position← p1.position + p1.StartIncr (Reached: reassign)
p1.destination← p1.position + p1.DestIncr (and reassign)
If p1.destination > n then (Pebble redundant?)

p1.destination← ⊥ (Then retire pebble!)
p1.position← ⊥

else
p1.value← FindV alue (Call function to set value)

Sort pebbles (Sort w.r.t. destination)

The sorting of the pebbles at the end of the third step is done with respect
to the destination of the pebbles, where ⊥ is considered infinity. It suffices to
sort in the newly modified pebble p1 into the otherwise sorted list. We note that
this will cause the previous pebble p2 to be renamed p1, along with other such
renamings, as the naming of the pebbles relate to their position in the sorted
list.

5



The function FindV alue goes through the list of pebbles, returning the value
pi.value for the pebble pi, 2 ≤ i ≤ σ for which pi.position = p1.position.

Remark on storage requirements. In the above, we indicate that each
pebble requires storage of its StartIncr, DestIncr, position, destination and
value. However, only the latter three of these have to be stored.

Namely, in order to save space, one can derive the quantities StartIncr
and DestIncr from the type of a pebble (we note that these are 3 × type resp.
2 × type). The type, in turn, can be derived from the position of the pebble.
(We note that the derived quantities are only needed when a pebble is to be
relocated, at which time it has already arrived to its destination, which is unique
to this pebble.)

In particular, if position indicates where an inactive pebble (i.e., a pebble
that has arrived at its destination) is located, then one can see that its type is
x, where position/x is an odd integer. (Given that x is a power of two, only one
value x satisfies this relationship. This value x can easily be computed by trying
all possible values for x.) The above technique works since for all pebbles that
are inactive, their position can be described as x(1 + 2j), where x is the pebble
type and j is a counter indicating how many times the pebble in question has
been relocated after setup.

In the following section we will prove that the above protocol correctly out-
puts the sequence of conscutive hash preimages. We also upper-bound the
computational requirements of the protocol.

3 Claims and Proofs

Lemma 1: (Successful reassignment.) Let p1 be a pebble whose position

and destination have just been updated. The assignment of p1’s value will always
be successful, i.e., if p1.position ≤ n, then there exists a pebble pi, 2 ≤ i ≤ σ,
such that pi.position = p1.position.

It can easily be seen that assignments to positions corresponding to the
setup-positions will be successful, since there pebbles by definition have arrived
at their destinations. In the following, we therefore only consider movements to
other positions.

We say that a pebble whose position equals its destination is inactive. Con-
sider an inactive pebble p of type x 6= 2 during the time it spends at a certain
position. We have that one or more pebbles will be reassigned to p’s destination
during this time period. We can assume that p is not in the position it was
assigned to during the setup (since that case is handled seperately.) Then, the
first pebble to be reassigned to p’s position will be of type x/2. (This can easily
be seen given how intervals are divided and subdivided – recall that we do not

6



consider pebbles that are located where they were assigned during setup; the
first pebble to be assigned to their positions will be of type x/4.)

Let us therefore consider where a pebble p is located when the first pebble
is moved to p’s destination. We have that the distance between the pebble p of
type x and the pebble p′ of type x/2 is exactly x/2 at the time when they are
both inactive. Therefore, it will take exactly x/2 protocol executions between
the time when p is reassigned and when p′ is reassigned. Since each active peg
moves two steps per protocol execution, and the distance between its reassigned
starting positon and destination equals its type, we have that p will become
inactive during the same execution as p′ is reassigned. Given that during one
protocol execution, any reassignment is performed after all pebbles are moved,
we have that all reassignments will be successful, and the lemma holds.

Lemma 2: (Correct output.) The correct sequence of values is output by
the protocol.

If instead of outputting p1.value resp. h(p1.value) we were to output p1.position
resp. p1.position+1, then n consecutive protocol executions would generate the
the output sequence 1 . . . n. This holds since all reassignments will be successful
(lemma 1), and the distance to the next pebble (at the beginning of the step
1) is always 1 resp. 2. The latter holds since each even position 1 ≤ i ≤ n can
be written as a number i = x(1 + 2j) for some positive j and some x that is a
power of two. This is the jth reassignment destination of the pebble of type x.

Moreover, when a pebble’s position is reassigned, its value is set to the value
of the pebble with the same position. For each round of the protocol, pebbles
whose positions are decreased (in step 2) have their values modified accordingly.
Therefore, the value associated with each pebble will be the hash chain value
corresponding to the pebble’s position. Given that the output equals p1.value
when p1.position = current.position, and that the output equals h(p1.value)
when p1.value = current.position + 1, the lemma holds.

Lemma 3: (Computational cost.) For each output element, at most σ
hash function evaluations have to be performed.

It can be seen that if pebble pj is active (has a position different from
its destination) then pj+1 is not active (i.e., it has arrived at its destination).
Moreover, pσ−1 and pσ can be seen never to be active. Thus, a maximum of
⌈(σ − 2)/2⌉ pebbles are moved for each round, and each is moved a maximum
of two steps. The computation of the output given p1 requires at most one hash
function application. Therefore, the computational cost per output element
is upper bounded by 2⌈(σ − 2)/2⌉ + 1 ≤ 2(σ − 1)/2 + 1 = σ hash function
evaluations.

Full proofs will be supplied in the extended version of the paper.

7



Acknowledgements

Many thanks to Ari Juels for help simplifying the algorithm, and to Gustav
Hast, Adrian Perrig, Tal Rabin and Leo Reyzin for helpful suggestions and
valuable discussions.

References

[1] ”Desirable Dust”, A survey about the real-time economy, The Economist,
Feb 2 ’02, pp. 8–9.

[2] G. Itkis and L. Reyzin, ”Forward-Secure Signatures with Optimal Signing
and Verifying,” Crypto ’01, pp. 332–354.

[3] S. Micali, ”Efficient Certificate Revocation,” Proceedings of RSA ’97, and
U.S. Patent No. 5,666,416.

[4] A. Perrig, R. Canetti, D. Song, and D. Tygar, ”Efficient and Secure Source
Authentication for Multicast,” Proceedings of Network and Distributed
System Security Symposium NDSS 2001, February 2001.

[5] A. Perrig, R. Canetti, D. Song, and D. Tygar, ”TESLA: Mul-
ticast Source Authentication Transform”, Proposed IRTF draft,
http://paris.cs.berkeley.edu/ ˜ perrig/

[6] K. S. J. Pister, J. M. Kahn and B. E. Boser, ”Smart Dust: Wire-
less Networks of Millimeter-Scale Sensor Nodes. Highlight Article in
1999 Electronics Research Laboratory Research Summary.”, 1999. See
http://robotics.eecs.berkeley.edu/ ˜ pister/SmartDust/

[7] FIPS PUB 180-1, ”Secure Hash Standard, SHA-1,”
www.itl.nist.gov/fipspubs/fip180-1.htm

[8] S. Stubblebine and P. Syverson, ”Fair On-line Auctions Without Special
Trusted Parties,” Financial Cryptography ’01.

[9] ”Where’s the smart money?”, Science and Technology, The Economist,
Feb 9 ’02, pp. 69–70.

8


