
Dan Boneh

CS255: identification protocols

Announcements:

• HW#4 is out on the course web site

• Last lecture: guest lecture by Jennifer Granick, ACLU

Dan Boneh

Quick recap
Signatures:
• From trapdoor functions (such as RSA)

• From CRH (one-time sigs ⇒ many-time sigs, good for software updates)

• From discrete-log: next week

Certificates: bind a public key to an identity

[issuer-id, subject-id, PK, validity-period, serial #, …] + [CA sig]

Revocation methods: expiration and CRLset (list of revoked serial #s)

What if a CA incorrectly issues a cert to an adversary?

Dan Boneh

Certificate wrong issuance: the problem

Person-in-the-middle attack:
attacker sees all traffic, server cannot detect

bankattackerClientHello ClientHello
BankCertBadCertForBank

ServerCert (Bank)ServerCert (rogue)

GET https://bank.com

TLS key exchange TLS key exchange
k1 k1 k2 k2

HTTP data enc with k1 HTTP data enc with k2

(cert for Bank by a valid CA -- 1200 CAs)

Dan Boneh

A defense: cert transparency (CT)
Idea: CA’s must push all certs. they issued to a public log

• Browser will only use a cert if it is published on (two) log servers

• Server attaches to certificate a signed statement from log (SCT)

• Companies can scan logs to look for invalid issuance (service by CA)

April 30, 2018:
• CT required by chrome.

Otherwise, cert is rejected.

Dan Boneh

ID protocols

Overview

Part 3: Done with crypto primitives, moving on to protocols.

Dan Boneh

The Setup

Alg. G

User P
(prover)

Server V
(verifier)

sk vk

yes/nono key exchange

vk either public
or secret

Dan Boneh

Applications: physical world
– Physical locks: (friend-or-foe)

• Wireless car entry system
• Opening an office door

– Login at a bank ATM or a desktop computer

Dan Boneh

Applications: Internet
Login to a remote web site after a key-exchange
with one-sided authentication (e.g. HTTPS)

Prover Verifierone-sided auth. key exchange
k k

sk vk

ID protocol

Alice

bank.com ???

Dan Boneh

Prover Verifier

ID Protocols: how not to use
• ID protocol do not establish a secure session

between Alice and Bob !!
• Not even when combined with anonymous key exch.
• Vulnerable to man in to the middle attacks

anon. key exchange
k k

sk vk

ID protocol

Alice
Insecure!

??? ???

Dan Boneh

Prover Verifier

ID Protocols: how not to use
• ID protocol do not set up a secure session

between Alice and Bob !!
• Not even when combined with anonymous key exch.
• Vulnerable to man in to the middle attack

key exch.
ka kb

sk vk
key exch.

ka kb

proxy ID protocol

Alice

??? ???

Dan Boneh

ID Protocols: Security Models
1. Direct Attacker: impersonates prover with no additional

information (other than vk)
– Door lock

2. Eavesdropping attacker: impersonates prover after eavesdropping
on a few conversations between prover and verifier
– Wireless car entry system

3. Active attacker: interrogates prover and then attempts to
impersonate prover
– Fake ATM in shopping mall

Dan Boneh

ID protocols

Direct attacks

Dan Boneh

Basic Password Protocol (incorrect version)

• PWD: finite set of passwords

• Algorithm G (KeyGen):
• choose pw ¬ PWD. output sk = vk = pw.

User P
(prover)

Server V
(verifier)

sk

sk vk
yes
iff sk=vk

Dan Boneh

Basic Password Protocol (incorrect version)

Problem: vk must be kept secret
• Compromise of server exposes all passwords
• Never store passwords in the clear!

Alice pwalice

Bob pwbob

… …

password file on server

Dan Boneh

Basic Password Protocol: version 1
H: one-way hash function from PWD to X
• “Given H(x) it is difficult to find y such that H(y)=H(x)”

Alice H(pwA)

Bob H(pwB)

… …

password file on serverUser P
(prover)

Server V
(verifier)

sk

sk vk = H(sk)

yes iff H(sk)=vk

Dan Boneh

Problem: Weak Password Choice
Users frequently choose weak passwords:
(SplashData, 2018, from more than 5 million passwords leaked on the Internet)

Dictionary of 360,000,000 words covers about 25% of user passwords

1. 123456 6. 111111
2. password 7. 1234567
3. 123456789 8. sunshine
4. 12345678 9. qwerty
5. 12345 10. iloveyou

Note: Google password checker

Dan Boneh

Online dictionary attack: attacker has a list of usernames.
For each username the attacker tries the password ‘123456’.

• Success after 33 tries on average (!)

• The 25 top passwords on the list cover more than 10% of users

• Nearly 3% of people use the worst password, 123456.

Can be mitigated by e.g., IP-based rate limiting

Dan Boneh

Offline Dictionary Attacks
Suppose attacker obtains a single vk = H(pw) from server
• Offline attack: hash all words in Dict until a word w is found

 such that H(w) = vk
• Time O(|Dict|) per password

Off the shelf tools (e.g. John the ripper):
• Scan through all 7-letter passwords in a few minutes
• Scan through 360,000,000 guesses in few seconds
 ⇒ will recover 23% of passwords

Dan Boneh

Batch Offline Dictionary Attacks
Suppose attacker steals entire pwd file F
• Obtains hashed pwds for all users

• Example (2012): Linkedin (6M: SHA1(pwd))

Batch dict. attack:
• For each w Î Dict: test if H(w) appears in F (using fast look-up)

Total time: O(|Dict| + |F|) [Linkedin: 6 days, 90% of pwds. recovered]

Much better than attacking each password individually !

Alice H(pwA)

Bob H(pwB)

… …

Dan Boneh

Preventing Batch Dictionary Attacks
Public salt:

• When setting password,
pick a random n-bit salt S

• When verifying pw for A,
test if H(pw, SA) = hA

Recommended salt length, n = 64 bits
• Attacker must re-hash dictionary for each user

Batch attack time is now: O(|Dict| ´ |F|)

Alice SA H(pwA , SA)

Bob SB H(pwB , SB)

… … …

hSid

Dan Boneh

How to hash a password?
Linked-in: SHA1 hashed (unsalted) passwords

 ⇒ 6 days, 90% of passwords recovered by exhaustive search

The problem: SHA1 is too fast …
attacker can try all words in a large dictionary

To hash passwords:

• Use a keyed hash function (e.g., HMAC) where key stored in HSM

• In addition: use a slow, space-hard function

Dan Boneh

How to hash?
PBKDF2, bcrypt: slow hash functions
• Slowness by “iterating” a crypto hash function like SHA256
 Example: H(pw) = SHA256(SHA256(… SHA256(pw, SA) …))

• Number of iterations: set for 1000 evals/sec
• Unnoticeable to user, but makes offline dictionary attack harder

Problem: custom hardware (ASIC) can evaluate
 hash function 50,000x faster than a commodity CPU

 ⇒ attacker can do dictionary attack much faster
 than 1000 evals/sec.

Dan Boneh

How to hash: a better approach
Scrypt: a slow hash function AND need lots of memory to evaluate
 ⇒ custom hardware not much faster than commodity CPU

Problem: memory access pattern depends on input password
 ⇒ local attacker can learn memory access pattern
 for a given password
 ⇒ eliminates need for memory in an offline dictionary attack

Is there a space-hard function where time is independent of pwd?
• Password hashing competition (2015): Argon2i (also Balloon)

Dan Boneh

ID protocols

Security against
 eavesdropping attacks

(one-time password systems)

Dan Boneh

Eavesdropping Security Model
Adversary is given:
• Server’s vk, and
• the transcript of several interactions between

honest prover and verifier. (example: remote car unlock)

adv. goal is to impersonate prover to verifier

A protocol is “secure against eavesdropping” if no efficient
adversary can win this game

The password protocol is clearly insecure !

Dan Boneh

One-time passwords (secret vk, stateful)

Setup (algorithm G):
• Choose random key k
• Output sk = (k,0) ; vk = (k,0)

Identification:

prover serverr0 ¬ F(k,0)
sk = (k,0) vk = (k,0) Yes iff

 r = F(k,0)r1 ¬ F(k,1)
sk = (k,1) vk = (k,1)

often, time-based updates: r ¬ F(k, time) [stateless]

6 digits

Dan Boneh

The SecurID system (secret vk, stateful)

“Thm”: if F is a secure PRF then protocol
 is secure against eavesdropping

RSA SecurID uses AES-128:

Advancing state: sk ¬ (k, i+1)
• Time based: every 60 seconds (TOTP)
• User action: every button press
Both systems allow for skew in the counter value

F128 bit key
32 bit ctr

6 digit output

Dan Boneh

TOTP: Google authenticator
6-digit timed one-time passwords (TOTP) based on [RFC 6238]

To enable TOTP for a user: web site presents QR code with
embedded data: otpauth://totp/Example:alice@dropbox.com?
 secret=JBSWY3DPEHPK3PXP & issuer=Example

Subsequent user logins require user to present TOTP

Dan Boneh

Server compromise exposes secrets
March 2011:
• RSA announced servers attacked, secret keys stolen
 ⇒ enabled SecurID user impersonation

Is there an ID protocol where server key vk is public?

Dan Boneh

The S/Key system (public vk, stateful)

Notation: H(n)(x) = H(H(…H(x)…))

Algorithm G: (setup)
• Choose random key k ¬ K
• Output sk = (k,n) ; vk = H(n+1)(k)

Identification:

n times

H(n+1)(k)H(n)(k)H(n-1)(k)H(n-2)(k)k H(k)

vk
pwd #1pwd #2pwd #3pwd #4

Dan Boneh

The S/Key system (public vk, stateful)

Identification (in detail):

• Prover (sk=(k,i)): send t ¬ H(i) (k) ; set sk ¬ (k,i-1)

• Verifier(vk=H(i+1)(k), t): if H(t)=vk then vk¬t, output “yes”

Notes: vk can be made public;
 but need to generate new sk after n logins (n ≈ 106)

“Thm”: S/Keyn is secure against eavesdropping (public vk)
 provided H is one-way on n-iterates

Dan Boneh

SecurID vs. S/Key
S/Key:

• public vk, limited number of authentications

• Long authenticator t (e.g., 80 bits)

SecurID / TOTP:

• secret vk, unlimited number of authentications

• Short authenticator (6 digits)

Dan Boneh

ID protocols

Security against
 active attacks

(challenge-response protocols)

Online Cryptography Course Dan Boneh

Dan Boneh

Active Attacks

• Offline fake ATM: interacts with user; later tries to
impersonate user to real ATM

• Offline phishing: phishing site interacts with user;
 later authenticates to real site

All protocols so far are vulnerable

vk
User P
(prover)

sk

probe #1

probe #q

Server V
(verifier)

vkimpersonate

Dan Boneh

MAC-based Challenge Response (secret vk)

“Thm”: protocol is secure against active attacks (secret vk),
provided (SMAC , VMAC) is a secure MAC and |M| ≥ 2128

User P
(prover)

sk

Server V
(verifier)

vk

k ¬ Ksk = k vk = k

random m ¬ M

t ¬ SMAC(k, m)

VMAC(k, m, t)

Dan Boneh

MAC-based Challenge Response
Problems:
• vk must be kept secret on server
• dictionary attack when k is a human pwd:

 Given [m , SMAC (pw, m)] eavesdropper can
 try all pw Î Dict to recover pw

Main benefit:
• Both m and t can be short
• CryptoCard: 8 chars each

Dan Boneh

Sig-based Challenge Response (public vk)

“Thm”: Protocol is secure against active attacks (public vk), provided
(GSIG ,Sign,Verify) is a secure digital sig. and |M| ≥ 2128

but t is long (³20 bytes)

User P
(prover)

sk

Server V
(verifier)

vk

(sk, vk) ¬ GSIGsk vk

random m ¬ M

t ¬ Sign(sk, m)

Replace MAC with a digital signature:

Verify(vk, m, t)

Dan Boneh

Signature-based Challenge Response
in the real world

Dan Boneh

The Universal Second Factor (U2F) Standard

Goals:
• Browser malware cannot steal user credentials
• U2F should not enable tracking users across sites
• U2F uses counters to defend against token cloning

service (github.com)browserU2F token

(and WebAuthn)

Dan Boneh
skID

The U2F protocol: two parts (simplified)

Device registration:

Authentication:

service
(github.com)

browser

service browser

ID, challengeID, challenge

pkID, sigID, handle pkID, sigID, handle

ID, chal., handleID, chal., handle

sigID, ctr sigID, ctr

(pkID,
 handle)

sk

sk

skID

verify
sig.

with pkID

Dan Boneh
skID

The U2F protocol: two parts (simplified)

Device registration:

Authentication:

service
(github.com)

browser

service browser

ID, challengeID, challenge

pkID, sigID, handle pkID, sigID, handle

ID, chall., handleID, chall., handle

sigID, ctr sigID, ctr

(pkID,
 handle)

sk

sk

skID

verify
sig.

with PKID

Unlinkable pkID per site
prevents user tracking across sites

Dan Boneh

Summary
ID protocols: useful in settings where adversary cannot interact

with prover during impersonation attempt

Three security models:

• Direct: passwords (properly salted and hashed)

• Eavesdropping attacks: One time passwords
– SecurID: secret vk, unbounded logins
– S/Key: public vk, bounded logins

• Active attacks: challenge-response

Dan Boneh

THE END

