CS255: identification protocols

Announcements:
e HWH#4 is out on the course web site

* Last lecture: guest lecture by Jennifer Granick, ACLU

Quick recap

Signatures:

* From trapdoor functions (such as RSA)

* From CRH (one-time sigs = many-time sigs, good for software updates)

* From discrete-log: next week

Certificates: bind a public key to an identity

[issuer-id, subject-id, PK, validity-period, serial #, ...] + [CA sig]

Revocation methods: expiration and CRLset (list of revoked serial #s)

What if a CA incorrectly issues a cert to an adversary?

Certificate wrong issuance: the problem

GET https://bank.com BadCertEorBank
ClientHello attacker ClientHello bank

) =
W ServerCert (rogue) ServerCert (Bank)

(cert for Bank by a valid CA -- 1200 CAs)

TLS key exchange . . TLS key exchange

<«

k1 kl k2 kz
HTTP data enc with k, HTTP data enc with k,

> >

Person-in-the-middle attack:
attacker sees all traffic, server cannot detect

Dan Boneh

A defense: cert transparency (CT)

Idea: CA’s must push all certs. they issued to a public log

* Browser will only use a cert if it is published on (two) log servers

» Server attaches to certificate a signed statement from log (SCT)

 Companies can scan logs to look for invalid issuance (service by CA)

April 30, 2018: a

e CT required by chrome. Your connection is not private
Attackers might be trying to steal your information from

Oth e rWise, Ce rt iS rejected . :lu')(')«elny| eward.chase.com (for ex 1!‘:\[‘\; ‘[‘:‘1 rds, m

cards)

Part 3: Done with crypto primitives, moving on to protocols.

ID protocols

Overview

The Setup

b

Al

g. G

~

no key exchange

vk either public
or secret

Applications: physical world

— Physical locks: (friend-or-foe)
* Wireless car entry system
* Opening an office door

— Login at a bank ATM or a desktop computer

Applications: Internet

Login to a remote web site after a key-exchange
with one-sided authentication (e.g. HTTPS)

sk o

one-sided auth. key exchange

ID protocol

ID Protocols: how not to use

* |ID protocol do not establish a secure session
between Alice and Bob !!

* Not even when combined with anonymous key exch.
* Vulnerable to man in to the middle attacks

sk o ° vk

o

anon. key exchange

ID protocol

ID Protocols: how not to use

e |ID protocol do not set up a secure session
between Alice and Bob !!

* Not even when combined with anonymous key exch.
* Vulnerable to man in to the middle attack

proxy ID protocol
&

ID Protocols: Security Models

Direct Attacker: impersonates prover with no additional
information (other than vk)

— Door lock

Eavesdropping attacker: impersonates prover after eavesdropping
on a few conversations between prover and verifier
— Wireless car entry system

. Active attacker: interrogates prover and then attempts to
impersonate prover

— Fake ATM in shopping mall

Dan Boneh

ID protocols

Direct attacks

Basic Password Protocol (ncorrect version

* PWD: finite set of passwords

e Algorithm G (KeyGen):
e choose pw <« PWD. output sk=vk=pw.

sk

(A yes
iff sk=vk

&

Basic Password Protocol (ncorrect version

Problem: vk must be kept secret

 Compromise of server exposes all passwords

* Never store passwords in the clear!

password file on server

Alice PW,jice

Bob PWyoh

Basic Password Protocol: version 1

H: one-way hash function from PWD to X
* “Given H(x) itis difficult to find y such that H(y)=H(x)”

password file on server

Alice H(pw,)

Bob H(pwsg)

yes iff H(sk)=vk

Problem: Weak Password Choice

Users frequently choose weak passwords:

(SplashData, 2018, from more than 5 million passwords leaked on the Internet)

123456
password
123456789
12345678
12345

A S o

6.
7.
8.
9.
10.

111111
1234567
sunshine
qwerty

iloveyou

Dictionary of 360,000,000 words covers about 25% of user passwords

Note: Google password checker

Dan Boneh

The 25 top passwords on the list cover more than 10% of users

Nearly 3% of people use the worst password, 123456.

Online dictionary attack: attacker has a list of usernames.
For each username the attacker tries the password ‘123456’.

e Success after 33 tries on average (!)

Can be mitigated by e.g., IP-based rate limiting

Offline Dictionary Attacks

Suppose attacker obtains a single vk =H(pw) from server

e Offline attack: hash all words in Dict until a word w is found
such that H(w) = vk

e Time O(|Dict|) per password

Off the shelf tools (e.g. John the ripper):
* Scan through all 7-letter passwords in a few minutes
* Scan through 360,000,000 guesses in few seconds

= will recover 23% of passwords

Batch Offtline Dictionary Attacks

Suppose attacker steals entire pwd file F

* Obtains hashed pwds for all users Alice H(pwa)

e Example (2012): Linkedin (6M: SHA1(pwd)) Bob H(pws)

Batch dict. attack:

* For eachw e Dict: testif H(w) appearsin F (using fast look-up)

Total time: O(|Dict| + |[F|) [Linkedin: 6 days, 90% of pwds. recovered]

Much better than attacking each password individually !

Preventing Batch Dictionary Attacks

Public salt: id S h
« When setting password, Alice | Sy | H(pwa, Sp)
pick a random n-bit salt S Bob Sg H(pwyg , Sg)

 When verifying pw for A,

testif H(pw, S,) = h,

Recommended salt length, n =64 bits
* Attacker must re-hash dictionary for each user

Batch attack time is now: O(|Dict| x |F|)

How to hash a password?

Linked-in: SHA1 hashed (unsalted) passwords

= 6 days, 90% of passwords recovered by exhaustive search

The problem: SHA1 is too fast ...
attacker can try all words in a large dictionary

To hash passwords:
* Use a keyed hash function (e.g., HMAC) where key stored in HSM

* |n addition: use a slow, space-hard function

How to hash?

PBKDF2, bcrypt: slow hash functions

* Slowness by “iterating” a crypto hash function like SHA256
Example: H(pw) = SHA256(SHA256(... SHA256(PW, S,) ...))

* Number of iterations: set for 1000 evals/sec

* Unnoticeable to user, but makes offline dictionary attack harder
Problem: custom hardware (ASIC) can evaluate
hash function 50,000x faster than a commodity CPU

= attacker can do dictionary attack much faster
than 1000 evals/sec.

How to hash: a better approach

Scrypt: a slow hash function AND need lots of memory to evaluate
= custom hardware not much faster than commodity CPU

Problem: memory access pattern depends on input password
= local attacker can learn memory access pattern
for a given password

= eliminates need for memory in an offline dictionary attack

Is there a space-hard function where time is independent of pwd?
e Password hashing competition (2015): Argon2i (also Balloon)

ID protocols

Security against
eavesdropping attacks

(one-time password systems)

Eavesdropping Security Model

/Adversary is given: A
* Server’s vk, and 0
e the transcript of several interactions between

honest prover and verifier. (example: remote car unlock)

_adv. goal is to impersonate prover to verifier

/

A protocol is “secure against eavesdropping” if no efficient
adversary can win this game

The password protocol is clearly insecure !

One-time passwords (secretv, stateful

Setup (algorithm G):
* Choose random key k
e Output sk=(k,0) ; vk=(k,0) 543502

Identification:

ro < F(k,0)
r, < F(k,1)

L—G digits

often, time-based updates: r <« F(k, time) [stateless]

Yes iff
r = F(k,0)

Dan Boneh

Th e SEC U rl D SySte m (secret vk, stateful)

“Thm”: if Fis a secure PRF then protocol
is secure against eavesdropping

RSA SecurlD uses AES-128:

128 bit key 1 6 digit output
32 bitctr —

Advancing state: sk « (k, i+1)

* Time based: every 60 seconds (TOTP)
 User action: every button press

Both systems allow for skew in the counter value

TOTP: Google authenticator

6-digit timed one-time passwords (TOTP) based on [RFC 6238]

To enable TOTP for a user: web site presents QR code with

embedded data: otpauth://totp/Example:alice@dropbox.com?
secret=JBSWY3DPEHPK3PXP & issuer=Example

MY e OF B 3:48
Google Authenticator

Enter this verification code if

Subsequent user logins require user to present TOTP prompted during account sign-in:

543502

Dan Boneh

Server compromise exposes secrets

March 2011:
 RSA announced servers attacked, secret keys stolen
= enabled SecurlD user impersonation

Is there an ID protocol where server key vk is public?

The S/Key system (pubiicvk, statefu

Notation: H™M(x) = \H(H(.--H(X)---))}

n times
Algorithm G: (setup)

* Choose random key k « K
e Qutput sk=(kn) ; vk= H("+1)(k)

Identification:

k H(k) H™(k) H™P(k) B H™(K)
® ¥ G R RN [39 30 e >®
1 1 1 1 vk
pwd #4 pwd #3 pwd #2 pwd #1

The S/Key system (pubiicvk, statefu

/Identification (in detail): I

« Prover (sk=(k,i)): send t< H' (k) ; set sk <« (k,i-1)

i Verifier(vk=H(*1)(k), t): if H(t)=vk then vk<«t, output “yes”)

Notes: vk can be made public;
but need to generate new sk after n logins (n = 10°)

“Thm”: S/Key, is secure against eavesdropping (public vk)
provided H is one-way on n-iterates

SecurlD vs. S/Key
5/Key:

* publicvk, limited number of authentications

* Long authenticator t (e.g., 80 bits)

SecurlD / TOTP:

 secret vk, unlimited number of authentications

e Short authenticator (6 digits)

Online Cryptography Course Dan Boneh

ID protocols

Security against
active attacks

(challenge-response protocols)

Active Attacks

vk

@

o Offline fake ATM: interacts with user; later tries to
impersonate user to real ATM

probe #1

probe #q

*f\

Impersonate

» Offline phishing: phishing site interacts with user;
later authenticates to real site

All protocols so far are vulnerable

Dan Boneh

MAC-based Challenge Response (secret vk)

k < K

Sk=k vk = k

random m <« M

t < Syiaclk, m)

Vyaclk, m, t)

“Thm”: protocol is secure against active attacks (secret vk),
provided (Spac, Vvac) is @ secure MAC and |M| > 2128

Dan Boneh

MAC-based Challenge Response

Problems:

* vk must be kept secret on server

dictionary attack when k is a human pwd:

Given [m , Syac(pw, m)] eavesdropper can

try all pw € Dict to recover pw

Main benefit:

Both m and t can be short
CryptoCard: 8 chars each

CRYPTOCard

Sig-based Challenge Response (pubiicw

Replace MAC with a digital signature:

sk

(Sk, Vk) < GSIG

random m<« M

vk

t < Sign(sk, m)

Verify(vk, m, t)

“Thm”: Protocol is secure against active attacks (public vk), provided
(Gsg,Sign,Verify) is a secure digital sig. and |M]| > 2128

but t is long (=20 bytes)

Signature-based Challenge Response
in the real world

The Universal Second Factor (U2F) Standard

(and WebAuthn)

Goals:

Browser malware cannot steal user credentials
U2F should not enable tracking users across sites
U2F uses counters to defend against token cloning

U2F token browser service (github.com)

The U2F protocol: two parts (simplified)

Device registration:

ID, challenge
@i
i '

1 kaDl SI8 D, handle

- ID, challenge

(/X (Pkip,

g\ pkip, sigp, handle

browser

handle)

service
(github.com)

Authentication:

handle

- ID, chal,,

I]

(/\ verify
sig.

o ID, chal., handle
i

skip

S|g|D, ctr

sigp, ctr

|

browser

o
E— with pk

service

Dan Boneh

The U2F protocol: two parts (simplified)

Device registration:

~ ID, challenge ID, challenge (/\
o) 4 [=
1

1] kaDl Singl handle ' JEEEEEARRERE RN pk|D, Sig|D, handle handle)
sk Ibrowser | service
Mgithub.com)
‘ 4
Authentication: Unlinkable pk,p per site
- ID, chall., ha prevents user tracking across sites (/\ verify
’ —(Ec=) .
' \) EB0= sig
“ L sigp, ctr [EE==\ Sigi, Ctr E—— with PK

skip browser service

Dan Boneh

Summary

ID protocols: useful in settings where adversary cannot interact
with prover during impersonation attempt

Three security models:

 Direct: passwords (properly salted and hashed)

* Eavesdropping attacks: One time passwords
— SecurID: secret vk, unbounded logins
— S/Key: public vk, bounded logins

* Active attacks: challenge-response

THE END

