GROUP LAW. Let E be an elliptic curve defined by $y^2 = x^3 + Ax + B$. Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be points on E with $P_1, P_2 \neq \infty$. Define $P_1 + P_2 = P_3 = (x_3, y_3)$ as follows:

1. If $x_1 \neq x_2$ then

 $$
 x_3 = m^2 - x_1 - x_2,
 y_3 = m(x_1 - x_3) - y_1,
 \text{ where } m = \frac{y_2 - y_1}{x_2 - x_1}.
 $$

2. If $x_1 = x_2$ but $y_1 \neq y_2$, then $P_1 + P_2 = \infty$.

3. If $P_1 = P_2$ and $y_1 \neq 0$, then

 $$
 x_3 = m^2 - 2x_1,
 y_3 = m(x_1 - x_3) - y_1,
 \text{ where } m = \frac{3{x_1}^2 + A}{2y_1}.
 $$

4. If $P_1 = P_2$ and $y_1 = 0$, then $P_1 + P_2 = \infty$.

Moreover, define

$$
P + \infty = P
$$

for all points P on E.

THEOREM 2.1. The addition of points on an elliptic curve E satisfies the following properties:

1. (commutativity) $P_1 + P_2 = P_2 + P_1$ for all P_1, P_2 on E.

2. (existence of identity) $P + \infty = P$ for all points P on E.

3. (existence of inverse) Given P on E, there exists P' on E with $P + P' = \infty$. This point P' will usually be denoted $-P$.

4. (associativity) $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$ for all P_1, P_2, P_3 on E.

In other words, the points on E form an additive abelian group with ∞ as the identity element.

INTEGER TIMES A POINT. Let k be a positive integer and let P be a point on an elliptic curve. The following procedure computes kP.

1. Start with $a = k, B = \infty, C = P$.

2. If a is even, let $a = a/2$, and let $B = B, C = 2C$.

3. If a is odd, let $a = a - 1$, and let $B = B + C, C = C$.

1
4. If \(a \neq 0 \), go to step 2.

5. Output \(B \).

The output \(B \) is \(kP \) (see Exercise 2.8).

Lemma 2.2. Let \(G(u,v) \) be a nonzero homogeneous polynomial and let \((u_0 : v_0) \in \mathbb{P}^1_k \). Then there exists an integer \(k \geq 0 \) and a polynomial \(H(u,v) \) with \(H(u_0,v_0) \neq 0 \) such that

\[
G(u,v) = (v_0u - u_0v)^k H(u,v).
\]

Lemma 2.3. Let \(L_1 \) and \(L_2 \) be lines intersecting in a point \(P \), and, for \(i = 1, 2 \), let \(L_i(x,y,z) \) be a linear polynomial defining \(L_i \). Then \(\text{ord}_{L_i} P(L_2) = 1 \) unless \(L_1(x,y,z) = \alpha L_2(x,y,z) \) for some constant \(\alpha \), in which case \(\text{ord}_{L_1} P(L_2) = \infty \).

Definition 2.4. A curve \(C \) in \(\mathbb{P}^2_k \) defined by \(F(x,y,z) = 0 \) is said to be **nonsingular** at a point \(P \) if at least one of the partial derivatives \(F_x, F_y, F_z \) is nonzero at \(P \).

Lemma 2.5. Let \(F(x,y,z) = 0 \) define a curve \(C \). If \(P \) is a nonsingular point of \(C \), then there is exactly one line in \(\mathbb{P}^2_k \) that intersects \(C \) at order at least 2, and it is the tangent to \(C \) at \(P \).

Theorem 2.6. Let \(C(x,y,z) \) be a homogeneous cubic polynomial, and let \(C \) be the curve in \(\mathbb{P}^2_k \) described by \(C(x,y,z) = 0 \). Let \(\ell_1, \ell_2, \ell_3 \) and \(m_1, m_2, m_3 \) be lines in \(\mathbb{P}^2_k \) such that \(\ell_i \neq m_j \) for all \(i, j \). Let \(P_{ij} \) be the point of intersection of \(\ell_i \) and \(m_j \). Suppose \(P_{ij} \) is a nonsingular point on the curve \(C \) for all \((i,j) \neq (3,3) \). In addition, we require that if, for some \(i \), there are \(k \geq 2 \) of the points \(P_{1i}, P_{2i}, P_{3i} \) equal to the same point, then \(\ell_i \) intersects \(C \) at order at least \(k \) at this point. Also, if, for some \(j \), there are \(k \geq 2 \) of the points \(P_{ij}, P_{2j}, P_{3j} \) equal to the same point, then \(m_j \) intersects \(C \) at order at least \(k \) at this point. Then \(P_{33} \) also lies on the curve \(C \).

Lemma 2.7. Let \(R(u,v) \) and \(S(u,v) \) be homogeneous polynomials of degree 3, with \(S(u,v) \) not identically 0, and suppose there are three points \((u_i : v_i), i = 1, 2, 3 \), at which \(R \) and \(S \) vanish. Moreover, if \(k \) of these points are equal to the same point, we require that \(R \) and \(S \) vanish to order at least \(k \) at this point (that is, \((v_iu - u_iv)^k \) divides \(R \) and \(S \)). Then there is a constant \(\alpha \in K \) such that \(R = \alpha S \).

Lemma 2.8. \(D(x,y,z) \) is a multiple of \(\ell_1(x,y,z)m_1(x,y,z) \).

Lemma 2.9. \(\ell(P_{22}) = \ell(P_{23}) = \ell(P_{32}) = 0 \)

Lemma 2.11. Let \(P_1, P_2 \) be points on an elliptic curve. Then \((P_1 + P_2) - P_2 = P_1 \) and \(-(P_1 + P_2) + P_2 = -P_1 \)

Theorem 2.13 (Pascal’s Theorem). Let \(ABCDEF \) be a hexagon inscribed in a conic section (ellipse, parabola, or hyperbola), where \(A, B, C, D, E, F \) are distinct points in the affine plane. Let \(X \) be the intersection of \(AB \) and \(DE \), let \(Y \) be the intersection of \(BC \) and \(EF \), and let \(Z \) be the intersection of \(CD \) and \(FA \). Then \(X, Y, Z \) are collinear (see Figure 2.4).

Corollary 2.15 (Pappus’s Theorem). Let \(\ell \) and \(m \) be two distinct lines in the plane. Let \(A, B, C \) be distinct points of \(\ell \) and let \(A', B', C' \) be distinct points of \(m \). Assume that none of these points is the intersection of \(\ell \) and \(m \). Let \(X \) be the intersection of \(AB \) and \(A'B' \), let \(Y \) be the intersection of \(BC \) and \(BC' \), and let \(Z \) be the intersection of \(CA \) and \(C'A' \). Then \(X, Y, Z \) are collinear (see Figure 2.5).
PROPOSITION 2.16. Let K be a field of characteristic not 2 and let
\[y^2 = x^3 + ax^2 + bx + c = (x - e_1)(x - e_2)(x - e_3) \]
be an elliptic curve E over K with $e_1, e_2, e_3 \in K$. Let
\[x_1 = (e_2 - e_1)^{-1}(x - e_1), \quad y_1 = (e_2 - e_1)^{-3/2}y, \quad \lambda = \frac{e_3 - e_1}{e_2 - e_1}. \]
Then $\lambda \neq 0, 1$ and
\[y_1^2 = x_1(x_1 - 1)(x_1 - \lambda) \]

THEOREM 2.17. Let K be a field of characteristic not 2. Consider the equation
\[v^2 = au^4 + bu^3 + cu^2 + du + q^2 \]
with $a, b, c, d, q \in K$. Let
\[x = \frac{2q(v + q) + du}{u^2}, \quad y = \frac{4q^2(v + q) + 2q(du + cu^2) - (d^2u^2/2q)}{u^3}. \]
Define
\[a_1 = d/q, \quad a_2 = c - (d^2/4q^2), \quad a_3 = 2qb \]
and
\[a_4 = -4q^2a, \quad a_6 = a_2a_4. \quad (1) \]
Then
\[y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6. \]
The inverse transformation is
\[u = \frac{2q(x + c) - (d^2/2q)}{y}, \quad v = -q + \frac{u(ux - d)}{2q}. \]
The point $(u, v) = (0, q)$ corresponds to the point $(x, y) = \infty$ and $(u, v) = (0, -q)$ corresponds to $(x, y) = (-a_2, a_1a_2 - a_3)$.

PROPOSITION 2.18. Let K be a field of characteristic not 2. Let $c, d \in K$ with $c, d \neq 0$ and d not a square in K. The curve
\[C : u^2 + v^2 = c^2(1 + du^2v^2) \]
is isomorphic to the elliptic curve
\[E : y^2 = (x - c^4d - 1)(x^2 - 4c^4d) \]
via the change of variables
\[x = \frac{-2c(w - c)}{u^2}, \quad y = \frac{4c^2(w - c) + 2c(c^4d + 1)u^2}{u^3} \]
where $w = (c^2du^2 - 1)v$. The point $(0, c)$ is the identity for the group law on C and the addition law is
\[(u_1, v_1) + (u_2, v_2) = \left(\frac{u_1v_2 + u_2v_1}{c(1 + du_1u_2v_1v_2)}, \frac{v_1v_2 - u_1u_2}{c(1 - du_1u_2v_1v_2)} \right) \]
for all points $(u_i, v_i) \in C(K)$. The negative of a point is $-(u, v) = (-u, v)$.
Theorem 2.19. Let \(y_1^2 = x_1^3 + A_1x_1 + B_1 \) and \(y_2^2 = x_2^3 + A_2x_2 + B_2 \) be two elliptic curves with \(j \)-invariants \(j_1 \) and \(j_2 \), respectively. If \(j_1 = j_2 \), then there exists \(\mu \neq 0 \) in \(\overline{K} \) (= algebraic closure of \(K \)) such that

\[
A_2 = \mu^4 A_1, \quad B_2 = \mu^6 B_1.
\]

The transformation

\[
x_2 = \mu^2 x_1, \quad y_2 = \mu^3 y_1
\]

takes one equation to the other.

Lemma 2.20. Let \(E \) be defined over \(\mathbf{F}_q \). Then \(\phi_q \) is an endomorphism on \(E \) of degree \(q \), and \(\phi_q \) is not separable.

Proposition 2.21. Let \(\alpha \neq 0 \) be a separable endomorphism of an elliptic curve \(E \). Then

\[
\deg \alpha = \# \ker(\alpha),
\]

where \(\ker(\alpha) \) is the kernel of the homomorphism \(\alpha : E(\overline{K}) \to E(\overline{K}) \).

If \(\alpha \neq 0 \) is not separable, then

\[
\deg \alpha > \# \ker(\alpha).
\]

Theorem 2.22. Let \(E \) be an elliptic curve defined over a field \(K \). Let \(\alpha \neq 0 \) be an endomorphism of \(E \). Then \(\alpha : E(\overline{K}) \to E(\overline{K}) \) is surjective.

Lemma 2.24. Let \(E \) be the elliptic curve \(y^2 = x^3 + Ax + B \). Fix a point \((u,v)\) on \(E \). Write

\[
(x, y) + (u, v) = (f(x, y), g(x, y)),
\]

where \(f(x, y) \) and \(g(x, y) \) are rational functions of \(x, y \) (the coefficients depend on \(u, v \)) and \(y \) is regarded as a function of \(x \) satisfying \(dy/dx = (3x^2 + A)/(2y) \). Then

\[
\frac{d}{dx} f(x, y) = \frac{1}{g(x, y)}.
\]

Lemma 2.26. Let \(\alpha_1, \alpha_2, \alpha_3 \) be nonzero endomorphisms of an elliptic curve \(E \) with \(\alpha_1 + \alpha_2 = \alpha_3 \).

Write

\[
\alpha_j(x, y) = (R_{\alpha_j}(x), yS_{\alpha_j}(x)).
\]

Suppose there are constants \(c_{\alpha_1}, c_{\alpha_2} \) such that

\[
\frac{R'_{\alpha_1}(x)}{S'_{\alpha_1}(x)} = c_{\alpha_1}, \quad \frac{R'_{\alpha_2}(x)}{S'_{\alpha_2}(x)} = c_{\alpha_2}.
\]

Then

\[
\frac{R'_{\alpha_3}(x)}{S'_{\alpha_3}(x)} = c_{\alpha_1} + c_{\alpha_2}.
\]

Proposition 2.28. Let \(E \) be an elliptic curve defined over a field \(K \), and let \(n \) be a nonzero integer. Suppose that multiplication by \(n \) on \(E \) is given by

\[
n(x, y) = (R_n(x), yS_n(x))
\]
for all \((x, y) \in E(K)\), where \(R_n\) and \(S_n\) are rational functions. Then

\[
\frac{R'_n(x)}{S_n(x)} = n.
\]

Therefore, multiplication by \(n\) is separable if and only if \(n\) is not a multiple of the characteristic \(p\) of the field.

PROPOSITION 2.29. Let \(E\) be an elliptic curve defined over \(\mathbb{F}_q\), where \(q\) is a power of the prime \(p\). Let \(r\) and \(s\) be integers, both not \(0\). The endomorphism \(r\phi_q + s\) is separable if and only if \(p \nmid s\).