
Fast arithmetic and pairing evaluation

on genus 2 curves

David Freeman
University of California, Berkeley
dfreeman@math.berkeley.edu

November 6, 2005

Abstract

We present two algorithms for fast arithmetic in Jacobians of genus 2 curves. The first speeds
up the process of “double-and-add” by an estimated 5.5% over the standard algorithm. The
second modifies the construction of the functions used to compute the Weil and Tate pairings
in a way that saves 6 field multiplications per evaluation.

1 Introduction

Arithmetic on elliptic and hyperelliptic curves has been proposed as a basis for numerous crypto-
graphic protocols. Basic group operations can be used to construct Diffie-Hellman key exchange
and ElGamal signatures, while bilinear pairings such as the Weil and Tate pairings have been
proposed for three-way key establishment, identity-based encryption, short signatures, and other
applications. When analyzing an implementation of one of these protocols, it is important to know
how long each step in the algorithm takes to compute, as the security of the system will depend on
the ratio of the security parameters (e.g. key length) to computational time and power.

Eisenträger, Lauter, and Montgomery [ELM1] have given an algorithm that speeds up scalar
multiplication on an elliptic curve by streamlining the algorithm for “double-and-add,” a funda-
mental process used in computing scalar multiples in any group. We adapt their algorithm to
curves of genus 2. Specifically, for two points P and Q on the Jacobian of a genus 2 curve, we
eliminate an intermediate step in the computation of 2P + Q that costs three field multiplications.
Our algorithm achieves an improvement of 5.5% over the standard algorithm.

As an application of their arithmetic improvement, Eisenträger, et al. give a method for speed-
ing up evaluation of the functions used to compute the Weil and Tate pairings on elliptic curves.
We generalize this method to curves of genus 2. Using our algorithm, constructing these functions
requires 13 more multiplications than the standard algorithm, but evaluating them requires ap-
proximately 6 fewer. Thus our algorithm will speed up repeated evaluations of the pairing when
one of the points is fixed and the other varies.

1



Acknowledgments

I think Kristin Lauter for suggesting I pursue this line of research and for inviting me to Microsoft
Research to discuss these results. I also thank Ed Schaefer for providing helpful feedback on earlier
drafts of this paper.

2 Double-and-add algorithm

Let C be a curve of genus 2 defined by the equation y2 = f(x), where f(x) is a monic polynomial
of degree 5. We represent a point P on the Jacobian variety Jac(C) by a pair of polynomials
(a, b), where a is monic of degree at most 2 and b has degree less than the degree of a. (In most
cases, a will be quadratic and b linear.) If (x1, x2) are the zeroes of a and we let P1 = (x1, b(x1)),
P2 = (x2, b(x2)), then P is the divisor class [(P1) + (P2)− 2(∞)] ∈ Pic0(C). (If a is linear, we take
one of these points to be the point at infinity.)

Now let P,Q be elements of Jac(C). We wish to compute 2P + Q. We represent the points as
follows: P = (a1, b1), Q = (a2, b2), P + Q = (a3, b3), 2P + Q = (a4, b4). We assume for simplicity
that gcd(a1, a2) = gcd(a1, a3) = 1, the ai are quadratic, and that none of these four points is equal
to the identity.1 We first recall the standard algorithm for double-and-add on the Jacobian variety
Jac(C).

Algorithm 1 ([Cantor]). Let C be a curve of genus 2 defined by y2 = f(x) as above, and P,Q ∈
Jac(C) be represented by (ai, bi) also as above. The following algorithm takes input (f, a1, b1, a2, b2)
and computes (a4, b4) representing the point 2P + Q.

1. Use Euclid’s algorithm to compute (linear) polynomials k1, k2 such that k1a1 + k2a2 = 1.

2. Let â3 = a1a2 and b̂3 = b1 + k1a1(b2 − b1) (mod â3).

3. Let a3 = (f2 − b̂2
3)/â3 and b3 = −b̂3 (mod a3).

4. Use Euclid’s algorithm to compute (linear) polynomials h1, h3 such that h1a1 + h3a3 = 1.

5. Let â4 = a1a3 and b̂4 = b1 + h1a1(b3 − b1) (mod â4).

6. Let a4 = (f2 − b̂2
4)/â4 and b4 = −b̂4 (mod a4).

The key observation in simplifying the algorithm is contained in the following lemma. We need
one bit of notation: if a and b are polynomials, we let a (mod b) denote the unique polynomial r of
degree less than deg q such that a = pb+ r for some polynomial p. (I.e. a (mod b) is the remainder
when a is divided by b via the Euclidean algorithm.)

Lemma 1. Let C be a curve of genus 2 defined by y2 = f(x). Let ai, bi, hi, ki be defined as in
Algorithm 1 above. Then

k1(b2 − b1) (mod a2) = −h1(b3 + b1) (mod a3) (1)
1I am currently working on the degenerate cases.

2



Proof. Given our simplifying assumption that the ai are quadratic and coprime, the polynomial
y − b̂3 is the unique cubic polynomial through the four points defining P and Q. Since f(x) is a
polynomial of degree 5, this cubic intersects C in exactly two additional points; namely, the points
that define −P −Q. Thus if we were to add P and −P −Q via Algorithm 1, we would construct
the same polynomial in step 2. Since −P −Q is represented by (a3,−b3), this implies that

b̂3 = b1 − h1a1(b3 + b1) (mod a1a3), (2)

and the identity (1) follows.

At this point we take our cue from the elliptic curve case (cf. [ELM1, §3]) and set

λ1 = k1(b2 − b1) (mod a2) = −h1(b3 + b1) (mod a3),
λ2 = h1(b3 − b1) (mod a3) = −λ1 − 2h1b1 (mod a3).

(On an elliptic curve, the quantities λ1 and λ2 are slopes of the lines used in computing the
(geometric) group law; here they can be thought of as a “slope” describing a cubic.) We now have
b̂3 = b1 + λ1a1 and b̂4 = b1 + λ2a1, so there is no need to reference b3 when computing b4. Our new
algorithm can be summarized as follows:

Algorithm 2 ([Cantor]). Let C be a curve of genus 2 defined by y2 = f(x) as above, and P,Q ∈
Jac(C) be represented by (ai, bi) also as above. The following algorithm takes input (f, a1, b1, a2, b2)
and computes (a4, b4) representing the point 2P + Q.

1. Use Euclid’s algorithm to compute (linear) polynomials k1, k2, h1, h3 such that k1a1+k2a2 = 1
and h1a1 + h3a3 = 1.

2. Let λ1 = k1(b2 − b1) (mod a2) and λ2 = −λ1 − 2h1b1 (mod a3).

3. Let â3 = a1a2 and b̂3 = b1 + λ1a1.

4. Let a3 = (f2 − b̂2
3)/â3.

5. Let â4 = a1a3 and b̂4 = b1 + λ2a1.

6. Let a4 = (f2 − b̂2
4)/â4 and b4 = −b̂4 (mod a4).

The correctness of Algorithm 2 follows from Lemma 1 and the correctness of Algorithm 1. Note
that we still need to compute b̂3 since it is used in the computation of a3. The total savings is thus
one polynomial division; specifically, the computation of b3 = −b̂3 (mod a3).

Proposition 2. Given an implementation of Algorithm 1, let t be the maximum number of field
multiplications executed in performing Algorithm 1, and let s be the number of field multiplications
executed in computing b3 from b̂3 and a3. Then Algorithm 2 can be performed with at most t − s
field multiplications.

Proof. It suffices to show that every multiplication performed in Algorithm 2 is also performed in
Algorithm 1, with the exception of the computation of b3. The only step where this is not obvious
is step 5. In this step, Algorithm 2 computes a1(−λ1 − 2h1b1) (mod a1a3) in the place where
Algorithm 1 computes a1h1(b3 − b1) (mod a1a3). Thus if we store λ1 when it is computed in step
2, these operations take the same number of field multiplications.

3



In [ELM2, §4.5], the authors state that adding two distinct elements of Jac(C) costs 26 multipli-
cations and 2 inversions, so forming 2P +Q via (P +Q)+P as in Algorithm 1 costs 52 multiplications
and 4 inversions. The computation of b3, which our simplification omits, involves computing the
remainder of the cubic polynomial b̂3 divided by the monic quadratic a3. This computation re-
quires four multiplications. If, as in [ELM1], we estimate a division as 5.18 multiplications, our
total savings is 4 multiplications out of 72.7, or 5.5%.

3 Pairing algorithm

The algorithms for computing the Weil and Tate pairings make use of rational functions with
prescribed poles and zeroes. For any nonzero point T ∈ Jac(C) we denote by (T ) the unique
effective divisor of degree 2 such that T is the class of (T )− 2(∞) in Pic0(C) [CF, Ch. 1]. Now let
m > 0 be an integer, and fix an nonzero m-torsion point R of Jac(C). For an integer c > 0, let fc

be a function such that
div fc = c(R)− (cR)− (2c− 2)(∞).

(The existence of such a function follows from the Riemann-Roch theorem.) For integers b, c > 0,
let gb,c be the (unique) cubic of the form y = p(x) passing through the four points defining bR
and cR (tangent if there are points in common), and gb+c be the quadratic in x with zeroes at the
x-coordinates of the two points defining (b + c)R (i.e. two vertical lines passing through (b + c)R
and −(b + c)R). Then we have the formula

fb+c = fb · fc ·
gb,c

gb+c
. (3)

Note that to compute fb+c, we must first compute the point bR + cR. To take advantage of
our improved addition algorithm, we wish to find a way to evaluate the function f2b+c without
referencing the intermediate b3 computed in step 3 of the standard algorithm to compute bR +
bR + cR (see above).

We begin by using (3) to write f2b+c as

f2b+c =
fb · fb · fc

g2b+c
·
gb,c · gb+c,b

gb+c

The term gb,c ·gb+c,b/gb+c is the product of two cubics divided by a quadratic. Its divisor is equal to
2(P )+ (Q)+ (−2P −Q)− 4(∞). We wish to replace this function with a single quartic polynomial
that has the same divisor.

Proposition 3. Let C be a curve of genus 2 defined by y2 = f(x), R an m-torsion point, and
b, c ∈ Z. Let P = bR be represented by (a1, b1), Q = cR be represented by (a2, b2). Then there is a
polynomial q(x, y) of the form q(x, y) = r(x) + y · s(x), where deg r = 4 and deg s = 1, such that

div q = 2(P ) + (Q) + (−2P −Q)− 4(∞)

Furthermore, q can be computed from the intermediates of Algorithm 1 without performing any
divisions.

Remark. For simplicity, we make the same assumptions as in Section 2; namely, that the ai

are quadratic and pairwise coprime, and none of the points is equal to the identity.

4



Proof. Let P + Q be represented by (a3, b3). From equation (2), step 5 of Algorithm 1, and the
identity h1a1 + h3a3 = 1, we find that

b̂3 = −b3 + h3a3(b1 + b3) (mod a1a3)
b̂4 = b3 + h3a3(b1 − b3) (mod a1a3).

These are cubic polynomials through the points defining P,Q,−P − Q and P, P + Q,−2P − Q,
respectively. Let µ1 = h3(b1 + b3) (mod a1) and µ2 = h3(b1 − b3) (mod a1). Then the following is
a function with divisor equal to 2(P ) + (Q) + (−2P −Q)− 4(∞):

b̂3 · b̂4

a3
=

(y + b3 − µ1a3)(y − b3 − µ2a3)
a3

.

Expanding in powers of a3, this is equal to

y2 − b2
3

a3
− y(µ2 + µ1) + b3(µ1 − µ2) + µ1µ2a3. (4)

Since the zeroes xi of a3 give two points (xi, b3(xi)) on the curve C, the first term of (4) is a cubic
polynomial, and it follows that (4) is a polynomial of the form specified in the Proposition.

Now let ai = x2 + αix + βi. If we assume that f(x) is a monic quintic with no degree 4 term
(which we may do over any field of characteristic not equal to 2 by making a linear change of
variables), then we have

y2 − b2
3

a3
= x3 + α3x

2 + linear term.

(Here and throughout this section, by “linear term” we mean a line c1x + c0.) Our quartic is thus

q(x, y) = x3 + α3x
2 + b3(µ1 − µ2) + µ1µ2a3 − y(µ1 + µ2) + linear term in x.

To specify the equation for q(x, y) more precisely, write

µ1µ2a3 = c4x
4 + c3x

3 + c2x
2 + linear term in x.

Let γ be the leading coefficient of b1(µ1 + µ2) and δ be the leading coefficient of b3(µ1 − µ2). Then
we have

q′(x, y) = a1(x− α1 + α3 − γ + δ + c4(x2 − α1x + α2
1 − β1) + c3(x− α1) + c2) (5)

−(y − b1)(µ1 + µ2)
= (x3 + α3x

2) + γx2 + (c4x
4 + c3x

3 + c2x
2)− y(µ1 + µ2) + linear term in x

= q(x, y) + linear term in x.

(Recall that a1 = x2 + α1x + β1.) Since q(x, y) and q′(x, y) are equal up to a linear term in x, and
they are both equal to zero at the two points defining P , we conclude they are equal. Thus (5)
gives a formula for q(x, y) that can be computed from the intermediates of Algorithm 1 without
performing any divisions.

5



Analysis of savings

First we consider the cost of evaluating the function gb,c · gb+c,b/gb+c in the standard algorithm for
computing the Weil or Tate pairing. As above, we let P = bR = (a1, b1) and Q = cR = (a2, b2),
and follow the notation of Section 2. Then gb,c = y − b̂3 is the cubic passing through P , Q, and
−P −Q; g2b,c = y − b̂4 is the cubic passing through P , P + Q, and −2P −Q; and gb+c = a3 is the
quadratic with zeroes at the x-coordinates of P + Q. We thus have

gb,c · gb+c,b

gb+c
=

(y − b1 − λ1a1)(y − b3 − λ2a3)
a3

. (6)

This formula contains three multiplications and one division. Evaluating each of the polynomials
ai (monic quadratic), bi (linear) and λi (linear) takes one multiplication, so evaluating the entire
formula requires 10 multiplications and one division.

Next, we wish to use the expression (5) to evaluate q(x, y) at a point (x0, y0). This process
requires two steps: first constructing the polynomial, and then evaluating it.

Constructing the polynomial requires computation of the linear polynomials µi and the con-
stants ci, γ, and δ. Recall that

b̂3 = b1 + λ1a1 = −b3 + µ1a3.

In the elliptic curve case λ1, µ1, and the bi are all constants, and since the ai are monic we can
conclude immediately that λ1 = µ1. In the genus 2 case we find that the leading coefficients of λ1

and µ1 are equal, but must do some work to obtain the constant term. Recall that ai = x2+αix+βi,
and let λ1 = l1x + l0, and µ1 = m1x + m0. Then l1 = m1, and since the x3 and x2 terms of λ1a1

and µ1a3 are equal, we conclude that

µ1 = λ1 + l1(α1 − α3).

Thus we can construct µ1 from λ1, a1, and a3 with one multiplication. Similarly, since λ2a1 and
µ2a3 have the same cubic and quadratic terms, we can construct µ2 from λ2, a1, and a3 with one
multiplication.

As for the constants, γ and δ are both leading coefficient of products of two linear polynomials,
so they require one multiplication each. Finally, c4, c3, c2 are the first three coefficients of the
quartic µ1µ2a3, and they require one, three, and five multiplications respectively. We conclude
that construction of q(x, y) requires 13 multiplications.

Evaluating q(x, y) at a point requires evaluation of three polynomials: a3 (monic quadratic), b1

(linear), and µ1 + µ2 (linear). Evaluation of these polynomials takes one multiplication each. The
factor x2−α1x+α2

1−β1 = x(x−α1)+α2
1−β1 may be evaluated with two multiplications, and the

remainder of the formula requires four multiplications. Thus evaluating the polynomial requires
nine multiplications.

Conclusion

Given the ai, bi, and λi, the standard formula (6) requires no multiplications to construct and
10 multiplications and one division to evaluate. On the other hand, our quartic q(x, y) takes
13 multiplications to construct and 9 multiplications to evaluate. Estimating a division as 5.18

6



multiplications as in [ELM1], we see that evaluating the polynomial three or more times leads to
an overall improvement. In particular, if one were to evaluate (say) the Tate pairing φ(P,Q) for
fixed P and varying Q, using our polynomial q(x, y) would save the equivalent of 6 multiplications
per evaluation.

Finally, we note that the constant δ is the only part of the formula which references b3. (It is
defined as the leading coefficient of b3(µ1 − µ2).) Thus if a way were found to evaluate δ without
using b3, we would be able to apply the speedup of section 2 to the evaluation of the pairing.
Unfortunately, we have not yet figured out a way to circumvent this use of b3.

References

[Cantor] Cantor, David G., “Computing in the Jacobian of a hyperelliptic curve,” Math. Comp.
48 (1987), 95-101.

[CF] Cassels, J.W.S., and E.V. Flynn, Prolegomena to a middlebrow arithmetic of curves of
genus 2, Cambridge University Press, Cambridge 1996.

[ELM1] Eisenträger, Kirsten, Kristin Lauter, and Peter Montgomery, “Fast elliptic curve arithmetic
and improved Weil pairing evaluation,” in Topics in Cryptology: CT-RSA 2003, Ed. Marc
Joye, Springer LNCS 2612, Berlin 2004, 343-354.

[ELM2] Eisenträger, Kirsten, Kristin Lauter, and Peter Montgomery, “Improved Weil and Tate
pairings for elliptic and hyperelliptic curves,” in Algorithmic Number Theory: ANTS-VI,
Ed. Duncan Buell, Springer LNCS 3076, Berlin 2004, 169-183.

[L] Lauter, Kristin, “The equivalence of the geometric and algebraic group laws for Jacobians
of genus 2 curves,” Topics in Algebraic and Noncommutative Geometry, AMS Contempo-
rary Mathematics Series 324 (2003) 165-171.

7


