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Abstract

We propose a general framework that converts (ordinary) signature schemes having certain properties
into linearly homomorphic signature schemes, i.e., schemes that allow authentication of linear functions on
signed data. The security of the homomorphic scheme follows from the same computational assumption
as is used to prove security of the underlying signature scheme. We show that the following signature
schemes have the required properties and thus give rise to secure homomorphic signatures in the standard
model:

• The scheme of Waters (Eurocrypt 2005), secure under the computational Diffie-Hellman asumption
in bilinear groups.

• The scheme of Boneh and Boyen (Eurocrypt 2004, J. Cryptology 2008), secure under the q-strong
Diffie-Hellman assumption in bilinear groups.

• The scheme of Gennaro, Halevi, and Rabin (Eurocrypt 1999), secure under the strong RSA
assumption.

• The scheme of Hohenberger and Waters (Crypto 2009), secure under the RSA assumption.

Our systems not only allow weaker security assumptions than were previously available for homomor-
phic signatures in the standard model, but also are secure in a model that allows a stronger adversary than
in other proposed schemes.

Our framework also leads to efficient linearly homomorphic signatures that are secure against our
stronger adversary under weak assumptions (CDH or RSA) in the random oracle model; all previous
proofs of security in the random oracle model break down completely when faced with our stronger
adversary.
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1 Introduction

Suppose Alice has some set of datam1, . . . ,mk that she signs with a digital signature and stores in a database.
At some later point in time Bob queries the database for the mean m of the data. Since Bob suspects the
database might be malicious, he also wants Alice’s signature on m to prove that the mean was computed
correctly. Bob’s bandwidth is limited, so he can’t simply download the whole database, verify the signature,
and compute the mean himself. Or maybe he has the bandwidth but Alice has requested that the data be kept
private, with only the mean to be made public. What is Bob to do?

Homomorphic signatures [JMSW02, BFKW09, GKKR10, BF11a, AL11, BF11b] are a cryptographic
primitive that addresses this problem. In a homomorphic signature scheme, a user signs messagesm1, . . . ,mk

in some message spaceM, producing signatures σ1, . . . , σk; verification is performed as usual for a signature
scheme. The “homomorphic” property is as follows: given this set of signatures and a function f :Mk →M
from a set of “admissible” functions F , anyone can produce a signature on the pair (f, f(m1, . . . ,mk)) ∈
F ×M. Validation of the signature asserts that the claimed value is indeed the result of applying f to the
underlying data; if the system is secure, then a malicious adversary cannot compute a valid signature on
(f,m∗) for any m∗ 6= f(m1, . . . ,mk).

Homomorphic signatures were originally proposed by Johnson, Molnar, Song, and Wagner [JMSW02]
and were adapted for the above application by Boneh, Freeman, Katz, and Waters [BFKW09], whose
motivation was to authenticate packets in network coding protocols [ACLY00, LYC03]. Other applications of
homomorphic signatures include computing statistics, Fourier transforms, or least-squares fits on authenticated
data, all of which can be done using “linearly homomorphic” signatures; i.e., those that authenticate linear
functions [BF11b, §2]..

The construction of Boneh et al. uses bilinear groups and authenticates linear functions on vectors over
large prime fields. Follow-up work by Gennaro, Katz, Krawczyk, and Rabin [GKKR10] is based on RSA and
authenticates linear functions on vectors over the integers, while the system of Boneh and Freeman [BF11a]
is based on lattice assumptions and authenticates linear functions on vectors over small fields. In a recent
breakthrough, Boneh and Freeman [BF11b] showed how to use “ideal lattices” to authenticate polynomial
functions on data; this system is currently the only one that goes beyond linear functions.

In all of the above systems security is proven in the random oracle model. At present there are only two
homomorphic signature schemes proven secure in the standard model. The first is a scheme of Attrapadung
and Libert [AL11] that is based on the Lewko-Waters IBE scheme [LW10] and uses bilinear groups of
composite order. Signatures consist of three group elements of size at least 1024 bits, and security is
proven using three nonstandard (fixed-size) assumptions, two of which are decisional and one of which is
computational. The second is a scheme of Catalano, Fiore, and Warinschi [CFW11a] that is based on the
general framework of “adaptive pseudo-free groups.” In the instantiation based on the strong RSA assumption,
signatures consist of two integers of size at least 1024 bits.

1.1 Our Contributions

A general framework for homomorphic signatures. Motivated by a desire to construct efficient systems
with stronger security, we propose a general framework that converts (ordinary) signature schemes having
certain properties into linearly homomorphic signature schemes. The security of the homomorphic scheme
follows from the same computational assumption as is used to prove security of the underlying signature
scheme. We show that the following signature schemes have the required properties and thus give rise to
secure homomorphic signatures:

• The scheme of Waters [Wat05], secure under the (co-)computational Diffie-Hellman asumption in
bilinear groups.
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• The scheme of Boneh and Boyen [BB08], secure under the q-strong Diffie-Hellman assumption in
bilinear groups.

• The scheme of Gennaro, Halevi, and Rabin [GHR99], secure under the strong RSA assumption.

• The scheme of Hohenberger and Waters [HW09b], secure under the RSA assumption.

The resulting homomorphic constructions are all secure under a computational (as opposed to a decisional)
assumption in the standard model, and the pairing-based constructions offer shorter signatures than those
of [AL11] or [CFW11a]. Our framework also leads to a variant of the construction of Attrapadung and Libert,
as the signature scheme derived from Lewko-Waters IBE has the required properties; the security proof,
however, requires decisional assumptions.

A stronger security model. Not only do our systems allow weaker security assumptions than were
previously available for homomorphic signatures, but our schemes are proven secure in a model that allows
a stronger adversary than in other proposed schemes. Specifically, in all previous schemes the adversary
could adaptively query signatures on many data sets but was required to submit all messages belonging to a
given data set at the same time, after which he would receive signatures on all of the messages at once. In our
security model the adversary is allowed to adaptively query one message at a time, and even to intersperse
queries from different data sets. It was not previously known how to construct a homomorphic signature
scheme that is secure against this adversary.

We also observe that certain of our constructions are also secure in the random oracle model under weak
assumptions: the Waters-based scheme (actually the same as that of Gentry and Silverberg [GS02]) under
(co-)CDH in bilinear groups, and the Gennaro-Halevi-Rabin scheme under RSA. While these random-oracle
schemes are less efficient than current homomorphic schemes that use the same assumptions [BFKW09,
GKKR10], they are secure against our stronger adversary. All previous proofs of security in the random
oracle model break down completely when faced with our stronger adversary.

It is possible to modify the proofs of the standard-model schemes of Attrapadung-Libert [AL11] and
Catalano-Fiore-Warinschi [CFW11a] to work against our stronger adversary; in Appendix B we address a
variant of the former.

Many schemes. Our framework gives users a wide range of options when choosing a homomorphic
signature scheme, including variability of the underlying vector space (vectors over Fp for pairing-based
systems, vectors over Z for RSA-based ones) and tradeoffs between security and efficiency (the most efficient
systems require stronger assumptions). We also expect our framework to be applicable to other signature
schemes, both existing and not yet proposed.

1.2 Overview of Our Construction

We consider linearly homomorphic signature schemes, in which messages are vectors v with coordinates in
some ring R and functions are R-linear combinations of messages. Using network coding terminology, we
call a set of vectors that can be linearly combined with each other a “file.”

The impetus for our framework comes from comparing the Attrapadung-Libert homomorphic signa-
tures [AL11] to the Lewko-Waters signatures on which they are based [LW10]. The Lewko-Waters system
uses a cyclic group G whose order N = pqr is a product of three distinct primes, along with a nondegenerate,
symmetric bilinear map ê on G. A signature on a message m consists of two group elements

(σ1, σ2) =
(
grhs, gαH(m)rhs

′)
,
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where g, h are public group elements of prime order p, q, respectively; gα is the secret key; H is a hash func-
tion; and r, s, s′ are random in ZN . Verification can be carried out by testing whether ê(σ2, g)/ê(σ1, H(m))
is equal to e(g, g)α, where this last value is also public. (Here g and h are constructed so that ê(g, h) = 1.)

Attrapadung and Libert convert this scheme to a homomorphic scheme that signs n-dimensional vectors
defined over ZN . The main idea is that to sign a vector v = (v1, . . . , vn) belonging to a file F , we use
the underlying scheme to sign the filename F (or more precisely, a “tag” chosen at random to identify F )
and then add on a signed “homomorphic hash” of the vector v using the same randomness on the g part.
Specifically, the signature has the form

(σ1, σ2, σ3) =
(
grhs, gαH(F )rhs

′
, (hv11 · · ·h

vn
n )rhs

′′)
where h1, . . . , hn are additional public group elements in 〈g〉 and s′′ is random. To verify, we check whether
the first two components form a valid signature on F , and whether ê(σ1,

∏
hvii ) = ê(σ3, g).

To make signatures on different vectors within a file compatible, we need to use the same randomness
r in the underlying signature each time, so the σ1 and σ2 components are the same for each vector in the
file. Attrapadung and Libert achieve this property by applying a pseudorandom function to the filename
F to produce r. Once the randomness is the same across all vectors within a file, the homomorphic
property follows: given two vectors v,w in the same file F and two signatures σv = (σ1, σ2, σ3) and
σw = (σ1, σ2, σ

′
3) produced with the same value of r, the triple (σ1, σ2, σ3σ

′
3) is a valid signature on the

vector v + w. Specifically, we have

ê(σ1,
∏
hvi+wii ) = ê(σ1,

∏
hvii ) · ê(σ1,

∏
hwii ) (by bilinearity of ê)

= ê(σ3, g) · ê(σ′3, g) (by the verification property for σ and τ )
= ê(σ3σ

′
3, g) (by bilinearity of ê).

This property generalizes in the obvious way to authenticate ZN -linear combinations of arbitrary numbers of
vectors in (ZN )n.

Pre-homomorphic signatures. The idea of using a homomorphic hash to authenticate linear combinations
of vectors goes back to Krohn, Freedman, and Mazières [KFM04], and the idea of signing such a hash is
used in several previous constructions [BFKW09, GKKR10, BF11b]. The key idea here — and the one that
we can generalize to other systems — is signing the filename and the hash separately and tying them together
with the signing function.

Specifically, the abstract properties of the Lewko-Waters scheme that make the homomorphic scheme
work are as follows:

• The signature contains a component σ1 = gf(m,r) for some fixed group element g and some function f
of the message m and randomness r. (In Lewko-Waters we take f(m, r) = r, modulo h components.)

• Given σ1,m, and two group elements x and y, there is an efficient algorithm to test whether y = xf(m,r).
(In Lewko-Waters we use the pairing.)

In Section 3 we formalize these properties in the notion of a pre-homomorphic signature.
Our main construction is as follows: given a pre-homomorphic signature, we form a homomorphic

signature on a vector v in a file F by generating signing randomness r using a PRF, signing the tag τ
identifying F to produce the component σ1 = gf(m,r) (and perhaps some other component σ2), and then
forming the component σ3 = (

∏
hvii )f(m,r). The signature on v is (σ1, σ2, σ3). As in the Attrapadung-Libert

scheme, homomorphic operations within the same file can be carried out by multiplying σ3 components, and
verification can be carried out using the testing algorithm. As stated this system is “weakly” secure, and we
must add some kind of “chameleon hash” to obtain full security; details are in Section 3.4.
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Examples. Surveying the literature, we see that many pairing-based schemes have the “pre-homomorphic”
structure we define. These include the CDH-based schemes of Gentry-Silverberg [GS02], Boneh-Boyen
[BB04], and Waters [Wat05], where signatures have the same general form as in the Lewko-Waters system,
as well as that of Boneh-Boyen [BB08], where signatures have the form g1/(x+m+yr) and security is based
on the q-strong Diffie-Hellman problem. In all cases we can use the pairing to determine whether two pairs
of elements have the same discrete log relationship.

Expanding into the RSA space, we see that the signatures of Gennaro, Halevi, and Rabin [GHR99]
also have our “pre-homomorphic” form: signatures are of the form g1/H(m) mod N , and we can easily test
whether y = x1/H(m) by raising both sides to the power H(m). GHR signatures are secure under the strong
RSA assumption; Hohenberger and Waters [HW09b] demonstrate a hash function H that allows for a proof
of security of the same construction under the (standard) RSA assumption.

Security. As formalized by Boneh et al. [BFKW09] for network coding and adapted to the more general
homomorphic setting by Boneh and Freeman [BF11b], an attacker tries to break a homomorphic signature
scheme by adaptively submitting signature queries to a challenger and outputting a forgery. The forgery
is a tuple (τ∗,w∗, σ∗, f∗) consisting of a “tag” τ∗ that identifies a file, a vector w∗, a signature σ∗, and a
function f∗. There are two winning conditions: either τ∗ does not identify one of the files queried to the
challenger (a Type 1 forgery), or τ∗ does identify such a file F , but w∗ is not equal to f(v1, . . . ,vk), where
v1, . . . ,vk are the vectors in F (a Type 2 forgery). (See Section 2.1 for formal definitions.)

For our general construction, we give a direct reduction that shows that a Type 1 forgery leads to a break
of the underlying signature scheme. Furthermore we show that if the underlying signature scheme is strongly
unforgeable, then certain Type 2 forgeries also break the underlying scheme. We also observe that since the
identifying tags are chosen by the challenger, the underlying scheme need only be unforgeable against a weak
adversary, i.e., one that submits all of its message queries before receiving the public key. This relaxation
allows for improved efficiency in our construction.

For the remaining Type 2 forgeries we do not have a black-box reduction to the underlying signature
scheme. However, we can do the next best thing: we can abstract out properties of the scheme’s security
proof that allow us to use a forgery in the homomorphic system to solve the computational problem used
to prove the underlying scheme secure. Specifically, suppose we have a simulator that takes an instance of
a computational problem and mimics the underlying signature scheme. Let f be the “pre-homomorphic”
signing function discussed above, and suppose that the simulator can produce two group elements x, y with
the following properties:

• The simulator can compute xf(m,r) for all message queries.

• The simulator can compute yf(m,r) for all but one message query m∗.

• If r∗ is the randomness used to sign m∗, then the value of yf(m
∗,r∗) can be used to solve the computa-

tional problem.

A typical example of such a simulator is the kind used in security proofs of (strong-)RSA signatures [GHR99,
Fis03, HK08, HW09a, HW09b]: if {ei} is the set of integers that need to be inverted mod ϕ(N) to answer
signature queries, we compute E =

∏
ei and E∗ =

∏
i 6=` ei for a random ` and set x = gE mod N ,

y = gE
∗

mod N . Using Shamir’s trick(Lemma A.1) , given y1/e` we can recover g1/e` and in many cases
solve the computational problem.

Given such a simulator, we “program” the homomorphic hash function so that for all vectors queried by
the adversary, Hhom(v) consists of x factors only and therefore all signatures can be computed. However, if
the adversary produces a linear function f∗ described by coefficients (c1, . . . , ck) and a vector w∗ such that
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w∗ 6=
∑
civi, then we can show that with noticeable probability the hash of w∗ has a nontrivial y factor, and

therefore a forged signature can be used to solve the computational problem.
Our general security theorem appears in Section 5. Details of the simulators for our example systems

appear in Section 6. In Appendix C we show how to modify our schemes in bilinear groups to achieve
privacy; specifically, a derived signature on m′ = f(m1, . . . ,mk) reveals nothing about the values of the mi

that cannot be obtained from the value of m′ and the knowledge of f . (We also show that our RSA schemes
do not have this property.)

1.3 Concurrent Work

In concurrent and independent work, Catalano, Fiore, and Warinschi [CFW11b] have proposed two new
linearly homomorphic signature schemes that are secure in the standard model: one based on Boneh-Boyen
signatures and secure under the q-SDH assumption, and one based on Gennaro-Halevi-Rabin signatures and
secure under the strong-RSA assumption. Signatures in these schemes consist only of the σ3 component of
our corresponding schemes. In our construction the σ1 and σ2 components are used to bind the file identifier
to the signature; in [CFW11b] this is not necessary since the signing function already makes use of the file
identifier. Signatures in [CFW11b] are thus shorter than those arising from our construction. The strong-RSA
construction also has the feature that the length of integer vectors to be signed is unbounded. (Our RSA
constructions as well as that of [GKKR10] require an upper bound on vector length.)

While the constructions in [CFW11b] are proved secure only against an adversary that queries entire files
at once, it is possible to modify the proofs to work against our stronger adversary. We also expect that if the
hash function from [HW09b] is used in the strong-RSA scheme, the resulting scheme is secure under the
(standard) RSA assumption. However, it does not appear that the techniques of [CFW11b] can be used to
produce linearly homomorphic signatures based on Waters signatures and the co-CDH assumption.

Acknowledgments. The author thanks Nuttapong Attrapadung, Dan Boneh, and Benoı̂t Libert for helpful
discussions, and the anonymous referees for their feedback.

2 Preliminaries

2.1 Homomorphic Signatures

In a homomorphic signature scheme we can sign messagesm in some message spaceM and apply functions f
to signed messages for f in some set of “admissible” functions F . Each set of messages is grouped together
into a “data set” or “file,” and each file is equipped with a “tag” τ that serves to bind together the messages in
that file. Formally, we have the following.

Definition 2.1 ([BF11b]). A homomorphic signature scheme is a tuple of probabilistic, polynomial-time
algorithms (Setup, Sign,Verify,Eval) as follows:

• Setup(1λ, k). Takes a security parameter λ and a maximum data set size k. Outputs a public key pk
and a secret key sk. The public key pk defines a message spaceM, a signature space Σ, and a set F of
“admissible” functions f : Mk →M.

• Sign(sk, τ,m, i). Takes a secret key sk, a tag τ ∈ {0, 1}λ, a message m ∈ M and an index i ∈
{1, . . . , k}, and outputs a signature σ ∈ Σ. (The index i indicates that this is the ith message in the
file.)
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• Verify(pk, τ,m, σ, f). Takes a public key pk, a tag τ ∈ {0, 1}λ, a message m ∈M, a signature σ ∈ Σ,
and a function f ∈ F , and outputs either 0 (reject) or 1 (accept).

• Eval(pk, τ, f, ~σ). Takes a public key pk, a tag τ ∈ {0, 1}λ, a function f ∈ F , and a tuple of signatures
~σ ∈ Σk, and outputs a signature σ′ ∈ Σ.

Let πi : Mk →M be the function πi(m1, . . . ,mk) = mi that projects onto the ith component. We require
that π1, . . . , πk ∈ F for all pk output by Setup(1λ, k).

Informally, the correctness conditions of our scheme are that (a) a signature produced by Sign on message
m with index i verifies for the projection function πi, and (b) if Eval is given a function g and signatures that
verify for messages mi and functions fi, then the signature output by Eval verifies for the message g(~m) and
the function obtained by composing g with the fi.

Formally, we require that for each (pk, sk) output by Setup(1λ, k), we have:

1. Let τ ∈ {0, 1}λ be any tag, let m ∈ M be any message, and let i ∈ {1, . . . , k} be any index. If
σ ← Sign(sk, τ,m, i), then with overwhelming probability
Verify(pk, τ,m, σ, πi) = 1.

2. Let τ ∈ {0, 1}λ be any tag, let ~µ = (µ1, . . . , µk) ∈ Mk be any tuple of messages, let ~σ =
(σ1, . . . , σk) ∈ Σk be signatures produced by zero or more iterative applications of Eval on the outputs
of Sign(sk, τ, µi, i), and let (f1, . . . , fk, g) ∈ Fk+1 be any tuple of admissible functions. Let g ◦ ~f
denote the function that sends ~x = (x1, . . . , xk) to g(f1(~x), . . . , fk(~x)). If Verify(pk, τ,mi, fi) = 1
for some m1, . . . ,mk ∈M, the message g(m1, . . . ,mk) is inM, and the function g ◦ ~f is admissible,
then with overwhelming probability

Verify
(
pk, τ, g(~m), Eval

(
pk, τ, g, ~σ

)
, g ◦ ~f

)
= 1.

Note that if fi = πi is the ith projection function, then the function g ◦ ~f in condition (2) is equal to
g. Thus condition (2) says that if we apply Eval to the function g and signatures σi = Sign(pk, τ, µi, i) for
i = 1, . . . , k, then the resulting signature verifies for the message g(~µ) and the function g.

A linearly homomorphic signature scheme is a homomorphic signature scheme where the message
spaceM consists of n-dimensional vectors over a ring R, and the set of admissible functions F consists
of R-linear functions from (Rn)k to R. We identify F with a subset of Rk by representing the function
f(v1, . . . ,vk) =

∑
ckvi as the vector (c1, . . . , ck) ∈ Rk.

Relationship to Network Coding. Definition 2.1 generalizes the definition of Boneh, Freeman, Katz and
Waters for signatures in network coding systems [BFKW09, Definition 1]. In network coding, a file is parsed
as a set of vectors v′1, . . . ,v

′
k ∈ Fnp . Each vector v′i is then “augmented” by appending the ith unit vector ei,

creating k “augmented vectors” v1, . . . ,vk ∈ Fn+kp . It is these augmented vectors that are transmitted
through the network.

In the network coding protocol, each router in the network creates random linear combinations of its
incoming vectors and passes the resulting vectors downstream. The vectors’ augmentation carries information
about the function that has been applied. Specifically, the ith unit vector that we append to the ith data
vector represents the projection function πi. If we apply the linear function f : (Fn+kp )k → Fn+kp given by
f(x1, . . . , xk) =

∑
i cixi, then the “augmentation component” of w = f(v1, . . . ,vk) (i.e., the last k entries)

is exactly (c1, . . . , ck). Thus there are two equivalent ways of viewing a signature on a derived vector w:
as a signature on the entire vector w, or as a signature on the pair (w′, f) where w′ =

∑
i civ

′
i is the first

n components of w. Our definition takes the latter view, as it is the one that generalizes more readily to
nonlinear functions (see e.g. [BF11b]).
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2.2 Security

The goal of an adversary attacking a homomorphic signature scheme is to produce a signature on a message-
function pair that cannot be derived from previously seen data and signatures. This can be done in two ways:
the adversary can produce a signature on a function-message pair that doesn’t correspond to a previously seen
data set (a Type 1 forgery), or the adversary can authenticate an incorrect value of a function on a previously
seen data set (a Type 2 forgery).

In our model, the adversary is allowed to make adaptive queries on data sets of his choice. Our adversary
is allowed to query one message at a time and proceed adaptively within each data set, or even to intersperse
queries from different data sets. In contrast, in previous works the adversary was required to submit all
messages in a given data set at once. This new flexibility implies a third type of forgery: the adversary might
output a function-message pair that corresponds to a previously seen data set, but for which the adversary has
not queried enough messages for the function’s output to be well-defined on the input data set. We call this
forgery a Type 3 forgery.

In our model (and in our constructions) we must avoid collisions between tags τ , so we have the challenger
choose them uniformly from {0, 1}λ. Since the adversary can intersperse queries from different files, the
signer must maintain a state to ensure that each query is signed with the correct tag and index.

Definition 2.2 (adapted from [BF11b]). A homomorphic signature scheme S = (Setup, Sign,Verify,Eval)
is unforgeable against an adaptive per-message attack (or simply unforgeable) if for all k the advantage of any
probabilistic, polynomial-time adversary A in the following game is negligible in the security parameter n:

Setup: The challenger runs Setup(1λ, k) to obtain (pk, sk) and gives pk to A. The public key defines a
message spaceM, a signature space Σ, and a set F of admissible functions f : Mk →M.

Queries: A specifies a filename F ∈ {0, 1}∗ and a message v ∈ M. If v is the first query for F , the
challenger chooses a tag τF uniformly from {0, 1}λ, gives it to A, and sets a counter iF = 1. Otherwise, the
challenger looks up the value of τF previously chosen and increments the counter iF by 1. The challenger
then gives to A the signature σ(F,iF ) ← Sign(sk, τF ,v, iF ).

The above interaction is repeated a polynomial number of times, subject to the restriction that at most k
messages can be queried for any given filename F . We let VF denote the tuple of elements v queried for
filename F , listed in the order they were queried.

Output: A outputs a tag τ∗ ∈ {0, 1}λ, a message w∗ ∈M, a signature σ∗ ∈ Σ, and a function f∗ ∈ F .

We say a function f is well-defined on F if either iF = k or iF < k and f(VF ,viF+1, . . . ,vk) takes the same
value for all possible choices of (viF+1, . . . ,vk) ∈Mk−iF . The adversary wins if Verify(pk, τ∗,w∗, σ∗, f∗) =
1 and one of the following hold:

(1) τ∗ 6= τF for all filenames F queried by A (a Type 1 forgery),

(2) τ∗ = τF for filename F , f∗ is well-defined on F , and w∗ 6= f∗(VF ) (a Type 2 forgery), or

(3) τ∗ = τF for filename F and f∗ is not well-defined on F (a Type 3 forgery).

The advantage HomSig-Adv[A,S] of A is the probability that A wins the game.

For t ∈ {1, 2, 3}, we say that the scheme is secure against type t forgeries if the winning condition in
Definition 2.2 is restricted to type t forgeries only. For a general homomorphic signature scheme, it may not
be possible for the challenger to efficiently detect a type 3 forgery (i.e., determine whether the function f∗
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output by the adversary is well-defined on F ). However, for linearly homomorphic schemes, it is easy to
detect such a forgery. As a result, we can convert an adversary that ouputs a Type 3 forgery into one that
outputs a Type 2 forgery.

Proposition 2.3. LetH be a linearly homomorphic signature scheme with message spaceM⊂ Rn for some
ring R. IfH is secure against Type 2 forgeries, thenH is secure against Type 3 forgeries.

Proof. Let A be an adversary that attacksH and outputs a Type 3 forgery. We exhibit an algorithm B that
outputs a Type 2 forgery. Algorithm B first runs algorithm A against the challenger. Let (τ∗,w∗, σ∗, f∗) be
the Type 3 forgery output by A. Let v1, . . . ,vt be the queries made by A for the file corresponding to τ∗,
and let f∗ = (c1, . . . , ck). There are two cases:

1.
∑t

i=1 civi 6= w∗. In this case B queries file τ∗ with vectors vi = 0 for all i > t.

2.
∑t

i=1 civi = w∗. The fact that f∗ is not well-defined on F means there is some j > t such that cj 6= 0.
Then B chooses some nonzero vector e, queries file τ∗ with vectors vi = 0 for i > t, i 6= j, and
queries vector vj = e.

In both cases B outputs the same forgery as A. We verify that this is a Type 2 forgery. In the first case this is
immediate since f∗(v1, . . . ,vk) =

∑t
i=1 civi 6= w∗. In the second case we have

f∗(v1, . . . ,vk) =
∑t

i=1 civi + cje = w∗ + e 6= w∗.

Privacy. In addition to the unforgeability property described above, one may wish homomorphic signatures
to be private, in the sense that a derived signature on m′ = f(m1, . . . ,mk) reveals nothing about the values
of the mi beyond what can be ascertained from the values of m′ and f . In Appendix C we give the formal
definition of this property, which was introduced by Boneh and Freeman [BF11a].

2.3 Background on Signatures and Complexity Assumptions

A signature scheme is a tuple S of three probabilistic polynomial-time algorithms S = (KeyGen,Sign,Verify).
KeyGen takes a security parameter λ (in unary) and returns public and secret keys. Sign takes a secret key
and a message and returns a signature. If Sign is randomized, we will often write the randomness explicitly
as an additional input. Verify takes a public key, a message, and a signature, and returns 1 (accept) or 0
(reject). We require that for every (pk, sk)← KeyGen(1λ), if σ ← Sign(sk,m) then Verify(pk,m, σ) = 1.
In all of our examples we assume that the message space is {0, 1}λ; one can expand the message space by
first applying a collision-resistant hash function F : {0, 1}∗ → {0, 1}λ to the message.

The security of a signature scheme S is captured in the following “unforgeability game” between a
challenger and an adversary A:

• The challenger computes (pk, sk)← KeyGen(1λ) and sends pk to A.

• Proceeding adaptively, A submits messages mi to the challenger and receives signatures σi =
Sign(sk,mi)

• A outputs a message m∗ and a signature σ∗.
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We say that (m∗, σ∗) is a forgery if Verify(pk,m∗, σ∗) = 1 and m∗ 6= mi for all i. We say that (m∗, σ∗) is a
strong forgery if Verify(pk,m∗, σ∗) = 1 and (m∗, σ∗) 6= (mi, σi) for all i. (A forgery is a valid signature on
a previously unseen message; a strong forgery is a new signature on any message.)

We define Sig-Adv[A,S] to be the probability that A outputs a forgery, and we define Sigs-Adv[A,S]
to be the probability that A outputs a strong forgery. We say that S is unforgeable (respectively, strongly
unforgeable) if Sig-Adv[A,S] (repsectively, Sigs-Adv[A,S]) is negligible in the security parameter λ for all
polynomial-time adversaries A. Note that if S has the property that each message has a unique signature,
then unforgeable and strongly unforgeable are equivalent.

We also consider a weaker notion of security, captured in the following “weak unforgeability game”:

• A submits messages m1, . . . ,mq to the challenger.

• The challenger computes (pk, sk)← KeyGen(1λ) and σi ← Sign(sk,mi) for i = 1, . . . , q and sends
pk and the σi to A.

• A outputs a message m∗ and a signature σ∗.

We define forgery and strong forgery as above, and define Sigw-Adv[A,S] and Sigs,w-Adv[A,S] to be the
probability that A outputs a forgery and a strong forgery, respectively. If these quantities are negligible in λ,
we say A is (strongly) unforgeable against a weak adversary.

2.4 Signatures and Assumptions in Bilinear Groups

Let BGen be an algorithm that takes input 1λ and outputs a tuple G = (p,G1,G2,GT , ê) with the following
properties:

• p is a prime in [2λ, 2λ+1];

• G1,G2,GT are groups of order p in which group operations are efficently computable;

• ê : G1 ×G2 → GT is an efficiently computable, nondegenerate, bilinear map (or “pairing”).

We refer to the tuple G as a bilinear group. We assume that the descriptions of G1 and G2 include explicit
generators. We define the following computational problems in bilinear groups:

• Computational co-Diffie-Hellman (co-CDH): an instance of the co-CDH problem is a tuple (g1, g
α
1 ,

h1, g2, g
α
2 ) for randomly chosen g1

R← G1, g2
R← G2, and α R← Zp. A solution is the element hα1 ∈ G1.

• q-Strong Diffie-Hellman (q-SDH): an instance of the q-SDH problem for q ≥ 1 is a tuple (g1, g
α
1 , g

α2

1 ,

. . . , gα
q

1 , g2, g
α
2 ) for randomly chosen g1

R← G1, g2
R← G2, and α

R← Zp. A solution is a pair
(r, g

1/(α+r)
1 ) ∈ Zp ×G1. (We use the convention 1/0 = 0 so the pair (−α, 1G1) is a valid solution.)

If A is an algorithm that takes an instance of the co-CDH problem, we define co-CDH-Adv[A,G] to be the
probability that A outputs a solution. We say the co-CDH assumption holds for BGen if for all polynomial-
time algorithms A, co-CDH-Adv[A,G] is a negligible function of λ. We define q-SDH-Adv[A,G] and the
q-SDH assumption analogously.

If there is an efficiently computable isomorphism φ : G2 → G1, then our definition is equivalent to that
of [BLS04]; when G1 = G2 we recover the usual CDH problem. We note that an algorithm that solves
co-CDH can solve q-SDH for any q ≥ 1.
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2.4.1 Signatures from co-CDH

The following construction is due originally to Gentry and Silverberg [GS02], who proved security in the
random oracle model under the co-CDH assumption; Boneh and Boyen [BB04] and Waters [Wat05] later
gave variants that are secure in the standard model under the same assumption.

Let G be a bilinear group and let H : {0, 1}λ → G1 be a hash function.1 We define a signature scheme
GS(H) as follows:

GS(H).Setup(1λ): Run BGen(1λ) and let G = (p,G1,G2,GT , ê) be the output. Choose random g1
R← G1,

g2
R← G2, and α R← Zp. The public key is pk = (G, g2, ê(g1, g2)α, H), and the secret key is sk = gα1 .

GS(H).Sign(sk,m): Choose random r
R← Zp, and output σ ← (gr2, g

α
1 ·H(m)r).

GS(H).Verify(pk,m, σ): Write σ = (σ1, σ2) ∈ G2×G1. Output 1 if ê(σ2, g2) = ê(H(m), σ1) · ê(g1, g2)α;
otherwise output 0.

Theorem 2.4 ([GS02]). If the co-CDH assumption holds for BGen and H is modeled as a random oracle,
then GS(H) is unforgeable.

Boneh and Boyen [BB04] showed that by using the hash function HBB(x) = uxv for random (public)
u, v ∈ G1, one can prove “selective” security under co-CDH in the standard model. Waters [Wat05]
constructed a hash function HW which, when used in the GS scheme, allows a proof of full security under
co-CDH in the standard model. The hash function HW takes messages m ∈ {0, 1}λ and is defined as follows:

HW.Setup(G): Choose random u0, u1, . . . , uλ
R← G1, and output hk = {ui}.

HW.Eval(hk,m): Let m[i] be the ith bit of m. Output u0 ·
∏λ
i=1 u

m[i]
i .

Theorem 2.5 ([Wat05]). If the co-CDH assumption holds for BGen, then GS(HW) is unforgeable.

2.4.2 Strongly Unforgeable co-CDH signatures

Boneh, Shen, and Waters [BSW06] showed how to modify the Waters construction to obtain the strong
unforgeability property. We give a variant that is strongly unforgeable against a weak adversary, which is all
we will need to construct homomorphic signatures. We call this variant GS′(H):

GS′(H).Setup(1λ): Run GS(H).Setup(1λ). Output pk, sk, and a collision-resistant hash functionF : {0, 1}∗ →
{0, 1}λ.

GS′(H).Sign(sk,m): Choose random r
R← Zp, and output σ ← (gr2, g

α
1 ·H

(
F (m‖gr2)

)r
).

GS′(H).Verify(pk,m, σ): Write σ = (σ1, σ2) ∈ G2 ×G1. Output GS(H).Verify(pk, F (m‖σ1), σ).

Theorem 2.6 ([BSW06]). If GS(H) is unforgeable, then GS′(H) is strongly unforgeable against a weak
adversary.

We note that this transformation was also applied by Attrapadung and Libert [AL11] to the signatures
derived from the Lewko-Waters IBE [LW10] in order to prevent signatures from being rerandomized.

1H is actually a family of hash functions parametrized by G1; for readability we suppress this dependency in the notation.
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2.4.3 Boneh-Boyen Signatures

Boneh and Boyen [BB08] proposed a different pairing-based signature in the standard model. As compared
with the Waters signatures GS(HW), Boneh-Boyen signatures are shorter and require a smaller public key,
but are secure under an (apparently) stronger assumption, the q-SDH assumption. We give the version that is
secure against a weak adversary, and we denote the scheme BB.

BB.Setup(1λ): Run BGen(1λ) and let G = (p,G1,G2,GT , ê) be the output. Choose random α
R← Zp and

generators g1
R← G1, g2

R← G2. The public key is pk = (G, g1, g2, gα2 ), and the secret key is sk = α.

BB.Sign(sk,m): Given a message m ∈ Zp, output σ = g
1/(α+m)
1 . (We use the convention 1/0 = 0 so

BB.Sign(sk,−α) = 1G1 .)

BB.Verify(pk,m, σ): Output 1 if ê(σ, gm2 · gα2 ) = ê(g1, g2); otherwise output 0.

Theorem 2.7 ([BB08]). If the q-SDH assumption holds for G, then BB is strongly unforgeable against a
weak adversary making at most q signature queries.

2.5 Signatures and Assumptions in RSA Groups

Let RSAGen be an algorithm that takes input 1λ and outputs two primes p, q ∈ [2λ, 2λ+1] with the property
that (p− 1)/2 and (q − 1)/2 are both prime. We let N = pq and we refer to the group Z∗N as an RSA group.
We define the following computational problems in RSA groups:

• (Random-Exponent) RSA Problem: an instance of the RSA problem is a tuple (N, e, g) forN output
by RSAGen, a randomly chosen integer e less than and relatively prime to ϕ(N) = (p − 1)(q − 1),

and a random g
R← Z∗N . A solution is the element g1/e ∈ Z∗N .

• Strong RSA Problem: an instance of the strong RSA problem is a tuple (N, g) for N output by

RSAGen and a random g
R← Z∗N . A solution is a pair (z, e) ∈ Z∗N × Z with e > 1 such that z = g1/e.

If A is an algorithm that takes an instance of the RSA problem, we define RSA-Adv[A, N ] to be the
probability that A outputs a solution. We say the RSA assumption holds for RSAGen if for all polynomial-
time algorithms A, RSA-Adv[A, N ] is a negligible function of λ. We define SRSA-Adv[A, N ] and the
strong RSA assumption analogously.

2.5.1 Gennaro-Halevi-Rabin Signatures

Gennaro, Halevi, and Rabin [GHR99] gave the first “hash-and-sign” signature proved secure without random
oracles, using the strong RSA assumption. We give the version that is secure against a weak adversary. We
also note that the same construction is secure in the random oracle model under the (random-exponent) RSA
assumption.

Let H : {0, 1}λ → Z be a hash function. We define a signature scheme GHR(H) as follows:

GHR(H).Setup(1λ): Run RSAGen(1λ), let (p, q,N = pq) be the output, and let G be the subgroup of

squares in Z∗N . Choose a random g
R← G. The public key is pk = (N, g) and the secret key is

sk = (p, q).

GHR(H).Sign(sk,m): Output σ = g1/H(m).

GHR(H).Verify(pk,m, σ): If σH(m) = g, output 1; otherwise output 0.
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Theorem 2.8 ([GHR99]). If the strong RSA assumption holds for RSAGen and H is a collision-resistant
hash function that outputs odd primes less than 22λ−2, then GHR(H) is strongly unforgeable against a weak
adversary.

Theorem 2.9. If the RSA assumption holds for RSAGen and H is modeled as a random oracle that outputs
odd primes less than 22λ−2, then GHR(H) is strongly unforgeable against a weak adversary.

Gennaro, Halevi, and Rabin [GHR99, §6] show how to construct a hash function in the standard model
that is collision-resistant and outputs odd primes.

2.5.2 Hohenberger-Waters Signatures

Hohenberger and Waters [HW09b] define a hash function HHW under which GHR(H) can be proven secure
under the (random-exponent) RSA assumption in the standard model. Instead of outputting primes as in
the GHR scheme, the HW hash function outputs a product of λ primes, one for each message bit. The hash
function takes messages m ∈ {0, 1}λ and is defined as follows:

HHW.Setup(1λ): Choose a pseudorandom function F : {0, 1}∗ × Z→ {0, 1}2λ−2, a random key K for F ,
and a random value c ∈ {0, 1}λ. Output hk = (F,K, c).

HHW.Eval(hk,m): Define the function G : {0, 1}∗ → {0, 1}2λ−2 by G(z) = FK(z, i(z))⊕ c, where i(z),
called the resolving index for z, is the smallest positive integer such that FK(z, i(z))⊕ c is an odd prime.
Let m(j) denote the first j bits of m, and let ej = G(m(j)). Output

∏λ
i=1 ej .

Theorem 2.10 ([HW09b]). If the RSA assumption holds for RSAGen, then GHR(HHW) is strongly unforge-
able against a weak adversary.

3 Building Blocks

3.1 Pre-homomorphic Signatures

Our generic conversion applies to “hash-and-sign” signatures with a specific form. Namely, a signature
on a message m with randomness r must have a component gf(m,r), where g is some fixed generator of a
cyclic group G and f is some function that may depend on the secret key. Furthermore, if we are given a
valid signature on m with randomness r, then given x and y there is an efficient algorithm that tests whether
y = xf(m,r).

Definition 3.1. Let S = (KeyGen, Sign,Verify) be a signature scheme. LetM be the space of messages and
R be the space of randomness sampled by the signing algorithm. We say that S is pre-homomorphic if the
following three conditions hold for each key pair (pk, sk) output by KeyGen:

1. There is a finite cyclic group G such that Sign defines a map

Signsk : M×R→ G× {0, 1}∗, (3.1)

whereM is the message space and R is the space of randomness used by Sign. We decompose a
signature σ as (σ1, σ2) with σ1 ∈ G, and we allow the σ2 component to be empty.

2. The public key pk contains a generator g of the group G in (1), and there is an efficiently computable
function fsk : M×R→ Z such that for each signature (σ1, σ2)← Signsk(m, r), we have

σ1 = gfsk(m,r) (3.2)
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3. There is an efficient algorithm Test(pk,m, σ, x, y) that takes input the public key pk, a message
m ∈M, a signature σ = (σ1, σ2), and group elements x, y ∈ G′ for some group G′ of the same order
as G. Suppose Verify(pk,m, σ) = 1. Then the algorithm outputs 1 if and only if logg(σ1) = logx(y);
otherwise, the algorithm outputs 0. (If Verify(pk,m, σ) 6= 1 then the algorithm’s output is unspecified.)

Examples. We now verify that all of the signature schemes discussed in Section 2.3 are pre-homomorphic
according to Definition 3.1. In each case we explicitly identify the groups G and G′, the function fsk, and the
Test algorithm.

• GS(H): we have G = G2 with generator g = g2, and G′ = G1. The signing function is fsk(m, r) = r.
We define GS(H).Test(pk,m, (σ1, σ2), x, y) to output 1 if and only if ê(x, σ1) = ê(y, g2). The
bilinearity and nondegeneracy of ê ensures that the latter is true if and only if logx(y) = logg2(σ1)
(regardless of the output of Verify(pk,m, σ)).

• BB: we have G = G1 with generator g = g1, and G′ = G2. The (deterministic) signing function
is fsk(m) = 1/(α + m) (mod p). We define BB.Test(pk,m, σ, x, y) to output 1 if and only if
ê(σ, x) = ê(g1, y).

• GHR(H): we have G = G′ = squares in Z∗N , with generator g. The (deterministic) signing function is
fsk(m) = 1/H(m) (mod ϕ(N)/4). We define GHR(H).Test(pk,m, σ, x, y) to output 1 if and only
if yH(m) = x. If Verify(pk,m, σ) = 1 then σH(m) = g and therefore logg(σ) = logx(y).

In fact, as a referee pointed out to us, any signature scheme is pre-homomorphic: take G = {1}, fsk = 0,
and let σ2 be the signature. The usefulness of the pre-homomorphic property only becomes apparent when it
is combined with the “samplable” and “extractable” properties discussed in Section 5.2.

3.2 Homomorphic Hashing

A homomorphic hash is a linear function that maps vectors defined over some ring R to elements of some
finite group G. The ring R is interpreted as “exponents” of the group G; the following definition makes this
concept precise.

Definition 3.2. Let G be a finite cyclic group, R be a ring, and φ : R→ Z be an injective function. We say
(R,φ) is a ring of exponents for G if φ(r) mod |G| defines a ring homomorphism from R to Z|G|.

We shall assume from now on that the map φ is understood, in which case we say R itself is a ring of
exponents for G and we identify R with its image under φ. In particular, for g ∈ G and r ∈ R, we interpret
gr to mean gφ(r).

While Definition 3.2 is abstract, it is very concrete in our two principal examples:

• If G is a cyclic group of order p and φ is the map that lifts elements of Fp to integer representatives in
[0, p− 1], then (Fp, φ) is a ring of exponents for G.

• If G is any finite cyclic group and φ is the identity map on Z, then (Z, φ) is a ring of exponents for G.
(In our constructions G will be a cyclic subgroup of Z∗N .)

In both cases our interpretation of gr for r ∈ R agrees with standard usage.
We now define the homomorphic hash used in our conversion. Our definition incorporates, in a single

abstract framework, the homomorphic hash from previous linearly homomorphic signatures using dis-
crete log groups [KFM04, CJL09, BFKW09, AL11] as well as the RSA-based construction of Gennaro et
al. [GKKR10].
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Definition 3.3. Let G be a finite cyclic group and let R be a ring of exponents for G. For any positive
integer n, define the following algorithms:

HomHash.Setup(G, n): Choose random elements h1, . . . , hn
R← G and output hk = (h1, . . . , hn).

HomHash.Eval(hk,v): Given a key hk = (h1, . . . , hn) and a vector v = (v1, . . . , vn) ∈ Rn, output∏n
j=1 h

vj
j .

For a fixed value of hk, we define Hhom : Rn → G by Hhom(v) = HomHash.Eval(hk,v).

We can shorten the description of Hhom by using a hash function O : Z → G to produce the values
h1, . . . , hn. If O is modeled as a random oracle, then in our security proofs we can program O so that we
know the discrete logs of the hi to some base g.

As the name implies, the key property of HomHash is that it is homomorphic: for v,w ∈ Rn and
a, b ∈ R,

Hhom(v)a ·Hhom(w)b =
(∏n

j=1 h
vj
j

)a
·
(∏n

j=1 h
wj
j

)b
=
∏n
j=1 h

avj+bwj
j = Hhom(av + bw).

(In the middle equality we have used the homomorphic property of Definition 3.2.)

3.3 Uniform Sampling

To sample uniformly random elements of G, we raise a generator to a random exponent. The following
definition captures the property this exponent needs to have.

Definition 3.4. Let G be a finite cyclic group and (R,φ) be a ring of exponents for G. We say a distribution
χ on R is G-uniform if:

1. For x R← χ, the distribution of gφ(x) is statistically close2to the uniform distribution on G; and

2. If the order of G is not efficiently computable, then for x R← χ, the distribution of φ(x) mod e is
statistically close to the uniform distribution on Ze for all e ∈ [|G|/16, |G|].

If R = Zp and G is a group of (known) order p, we can take χ to be the uniform distribution on R. If
R = Z and G is the multiplicative group of nonzero squares mod N = pq, we can take χ to be the uniform
distribution on [0, a] for any a � |G|. To obtain a statistical distance of at most 2−m, it suffices to take
a = N · 2m.

3.4 Chameleon Hashing

As defined by Krawczyk and Rabin [KR00], a chameleon hash function is a function C that takes two
inputs: a message m and randomness s. It is collision-resistant and has the additional property that there is a
“trapdoor” that allows collisions to be computed: given m, s,m′, and the trapdoor, one can compute s′ such
that C(m, s) = C(m′, s′). Furthermore, the distribution of s′ conditioned on the values of (m′, C(m′, s′)) is
the same regardless of whether we choose s′ at random (the “forward” direction) or compute it using the
trapdoor (the “backward” direction). Chameleon hashes can be used to turn any weakly unforgeable signature
scheme into an unforgeable one; see [HW09b, Appendix A] for a proof.

2We say two distributions parametrized by an integer n are statistically close if their statistical distance is a negligible function
of n (i.e., smaller than 1/poly(n))
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To show unforgeability of our homomorphic signature scheme (as opposed to weak unforgeability) we
will embed a “homomorphic” chameleon hash function C.3Since the underlying messages are vectors, the
randomness will be an additional vector component s, and we define C(v, s) = Hhom(v) · us for some fixed
(public) u ∈ G. Note that (up to relabeling) this is simply Hhom applied to the (n+ 1)-dimensional vector
(v, s).

Let us a try a first attempt at embedding a “trapdoor” in the homomorphic hash. We can generate hk and
u such that we know discrete logs of the hi and u to some base g; e.g., hi = gβi , u = gη. When G has prime
order p, to evaluate C we can choose a uniformly random s ∈ Zp, and to hit a fixed target C(v, s) = ga we
simply compute s in Zp such that 〈~β,v〉+ ηs = a. Since this s is unique, the distribution of s conditioned
on (v, C(v, s) = ga) is the same in both cases.

However, if G is a group of unknown order then this attempt fails. To begin, we cannot sample s from the
uniform distribution on Z|G|; in addition, we can’t invert in the exponent to compute s. To get around these
obstacles, we choose s from the distribution that the simulator in our security proof needs to sample (see
Section 5.2) and we set η = 1. Specifically, the trapdoor information is β1, . . . , βn and δ1, . . . , δk sampled
from a G-uniform distribution χ (Definition 3.4). To produce a signature on the ith file vector v, the simulator
uses the trapdoor to set s = δi + 〈~β,v〉. Thus in the “forward” direction we compute a random s by sampling
δi and βj from the same distribution χ.

More precisely, s is chosen from the following distribution:

Definition 3.5. Let χ be a G-uniform distribution onR and v ∈ Rn be a vector. Let F : K×{0, 1}λ×Z→ R
be a pseudorandom function whose outputs are indistinguishable from samples from χ. For a fixed key
µ ∈ K, define the distribution Ξτ,v on R as follows:

1. Compute βj ← Fµ(τ, j) for j = 1, . . . , n.

2. Sample δ ← χ.

3. Output δ + 〈~β,v〉.

(The distribution Ξτ,v depends on µ, but we suppress this in the notation for readability.)

Since our simulator only needs to evaluate the chameleon hash for one file, it does not need to reuse
the values of δ, so we can choose a new uniform δ each time. Note that if R is finite and χ is the uniform
distribution on R, then Ξτ,v is the uniform distribution on R. In particular, the distribution does not depend
on the PRF F , so we have recovered our “first attempt” above.

4 A Generic Conversion

Let S = (S.KeyGen,S.Sign,S.Verify) be a pre-homomorphic signature scheme. Define a homomorphic
signature scheme HomSig(S) as follows:

HomSig(S).Setup(1λ, k, n): On input a security parameter λ, a maximum data set size k, and a dimension n,
do the following:

1. Compute (pkS , skS)← S.KeyGen(1λ). Let G,G′ be the groups in Definition 3.1 and let R be a
ring of exponents for G.
(In our instantitaions, we use R = Fp if G has order p, and R = Z if G ⊂ Z∗N .)

3One might ask why we do not give a generic conversion from weakly secure homomorphic signatures. The reason is that we are
turning the homomorphic hash function that is already in the weakly secure signature into a chameleon hash, rather than adding a
new chameleon hash function on top of the homomorphic hash.
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2. If the order of G is efficiently computable from pkS , set B1 = B2 = |G|.
Otherwise, choose B1, B2 such that kB1B2 < |G|/32. (We assume that a lower bound on |G| can
be efficiently computed.)

3. Compute hk← HomHash.Setup(G′, n).

4. Choose random t1, . . . , tk, u
R← G′.

5. Choose a pseudorandom function Ψ : K × {0, 1}λ → R, where R is the space of randomness

sampled by S.Sign, and choose a random key κ R← K.4

6. Choose a pseudorandom function F : K′ × {0, 1}λ × Z→ R, and choose a random key µ R← K′.
7. Output the public key pk = (pkS , hk, {ti}ki=1, u,R,B1, B2) and the secret key sk = (skS ,Ψ, κ, F, µ, pk).

• The message space isM = {v ∈ Rn : ‖v‖ ≤ B1}, where we define ‖v‖ = maxj{|vj |}. (Recall
that we are identifying R with a subset of Z as remarked after Definition 3.2. If |G| is efficiently
computable, thenM is all of Rn.)

• We represent an R-linear function f : Rn → R as a k-tuple of elements of R; specifically, the function
f(v1, . . . ,vk) =

∑
civi is represented by the vector (c1, . . . , ck) ∈ Rk. We define ‖f‖ = maxi{|ci|}.

• The set of admissible functions F is all R-linear functions on k-tuples of vectors in Rn with ‖f‖ ≤ B2.
(Note that when R = Z|G| this is all R-linear functions from (Rn)k to R.)

• We use Hhom(v) to denote HomHash.Eval(hk,v).

HomSig(S).Sign(sk, τ,v, i): On input a secret key sk, a tag τ ∈ {0, 1}λ, a vector v ∈ Rn, and an index
i ∈ {1, . . . , k}, do the following:

1. Compute r ← Ψκ(τ).

2. Compute (σ1, σ2)← S.Sign(skS , τ, r).

3. Using the PRF F , choose s← Ξτ,v (Definition 3.5).

If |G| is known, this is equivalent to choosing s R← Z|G|.

4. Compute σ3 ←
(
ti ·Hhom(v) · us

)fsk(τ,r), where fsk is the function in Definition 3.1 (2).

5. Output σ = (σ1, σ2, σ3, s).

HomSig(S).Verify(pk, τ,w, σ, f): On input a public key pk, a tag τ ∈ {0, 1}λ, a vector w ∈ Rn, a signature
σ = (σ1, σ2, σ3, s), and a function f = (c1, . . . , ck), do the following:

1. Compute ζ1 ← S.Verify(pkS , τ, (σ1, σ2)).

2. Let x ← (
∏k
i=1 t

ci
i ) · Hhom(w) · us and compute ζ2 ← Test

(
pkS , τ, (σ1, σ2), x, σ3

)
, where

Test is the algorithm from Definition 3.1 (3).

3. If ‖w‖ ≤ kB1B2, set ζ3 = 1; otherwise set ζ3 = 0.

4. If ζ1 = ζ2 = ζ3 = 1, output 1; otherwise output 0.

HomSig(S).Eval(pk, τ, f, ~σ): On input a public key pk, a tag τ ∈ {0, 1}λ, a function f = (c1, . . . , ck), and
a vector of signatures ~σ = (σ(1), . . . , σ(k)) where σ(i) = (σ

(i)
1 , σ

(i)
2 , σ

(i)
3 , s(i)), do the following:

1. Compute σ′3 ←
∏k
i=1

(
σ
(i)
3

)ci , s′ ←
∑k

i=1 cis
(i).

4If S.Sign is deterministic, then we do not need the PRF Ψ.
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2. Output σ′ = (σ
(1)
1 , σ

(1)
2 , σ′3, s

′).

Lemma 4.1. The homomorphic signature scheme HomSig(S) satisfies the correctness properties of Defini-
tion 2.1.

Proof. Let τ ∈ {0, 1}λ be a tag, v ∈ Rn be a vector with ‖v‖ ≤ B1, and i ∈ {1, . . . , k} be an index.
Suppose σ = (σ1, σ2, σ3, s)← Sign(sk, τ,m, i). Note that the function πi corresponds to the unit vector ei
with a 1 in the ith place and 0 elsewhere. First, since (σ1, σ2)← S.Sign(τ, r), the correctness of S implies
that ζ1 = 1. Next, we compute

ζ2 ← Test
(
pkS , τ, (σ1, σ2), x, σ3

)
,

where x = ti · Hhom(v) · us. By construction, we have σ3 = xfsk(τ,r). The form of the Sign algorithm
(Definition 3.1 (2)) then implies that logg(σ1) = fsk(τ, r). Since S.Verify(pkS , τ, (σ1, σ2)) = 1, the
correctness property of Test implies that ζ2 = 1. The condition ‖v‖ ≤ B implies ζ3 = 1. It follows that
Verify(pk, τ,v, σ, πi) = 1.

Now let τ ∈ {0, 1}λ be a tag, v1, . . . ,vk ∈ Rn be a tuple of vectors with ‖vi‖ ≤ B1, and f1, . . . , fk, g
be linear functions represented as vectors in Rk, with g = (c1, . . . , ck). Suppose ~σ = (σ(1), . . . , σ(k))

is a vector of signatures with σ(i) = (σ
(i)
1 , σ

(i)
2 , σ

(i)
3 , s(i)) for i = 1, . . . , k, produced by applying Eval

iteratively zero or more times to the output of Sign(sk, τ,vi, i). Suppose Verify(pk, τ,wi, σi, fi) = 1 for
i = 1, . . . , k and some w1, . . . ,wk ∈ Rn. Let σ′ = (σ′1, σ

′
2, σ
′
3, s
′) ← HomSig(S).Eval(pk, τ, f, ~σ), let

y = g(~w) =
∑k

i=1 ciwi, and let f ′ = g ◦ ~f =
∑k

i=1 cifi. We must show that

Verify
(
pk, τ,y, σ′, f ′

)
= 1. (4.1)

First, since the σ′1 = σ
(1)
1 and σ′2 = σ

(1)
2 , the fact that σ(1) verifies implies that ζ1 = 1. Next, represent

the functions fi as (di1, . . . , dik), and arrange the dij in a matrix D ∈ Rk×k. Then the function f ′ = g ◦ ~f is
represented by (c1, . . . , ck) ·D ∈ Rk, and the x computed in Step (2) of Verify is given by

x =

( k∏
j=1

t
∑
i cidij

j

)
·Hhom(y) · us′ ,

Using the homomorphic property of Hhom and the fact that s′ =
∑
cis

(i), we can rewrite this as

x =
k∏
i=1

(( k∏
j=1

t
dij
j

)
·Hhom(vi) · us

(i)

)ci
=

k∏
i=1

xcii , (4.2)

where xi is the value computed to verify σ(i) for the function fi.
Now the fact that all of the σ(i) are produced using the Sign and Eval algorithms with tag τ implies that

σ
(i)
1 = σ

(j)
1 for all i, j, and therefore σ(i)1 = ge for some integer e independent of i. Since all of the σ(i)

verify, it must hold that σ(i)3 = xei for all i. Since σ′3 =
∏k
i=1(σ

(i)
3 )ci by construction, it follows from (4.2)

that σ′3 = xe, and therefore ζ2 = 1.
Finally, since ‖y‖ ≤ k · ‖f‖ · maxi({‖vi‖}) ≤ kB1B2, we have ζ3 = 1. We conclude that (4.1)

holds.
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5 Security

Recall that an adversary can break a homomorphic signature scheme by computing any of three types of
forgeries in Definition 2.2: a Type 1 forgery consists of a valid signature on a message-function pair belonging
to a file the adversary has not queried to the challenger, while a Type 2 forgery consists of a valid signature
on a message-function pair belonging to a file the adversary has queried to the challenger, but for which the
message is not equal to the function applied to the queried messages. A Type 3 forgery consists of a valid
signature on a message-function pair belonging to a file the adversary has queried to the challenger, but for
which the adversary has not queried enough messages for the function to be well-defined on the input data
set.

By Proposition 2.3, a Type 3 forgery in a linearly homomorphic scheme implies a Type 2 forgery. In our
security analysis we consider the remaining two types separately. We further split Type 2 into two subtypes.
In a Type 2 forgery for HomSig(S), the adversary outputs a forged signature (σ∗1, σ

∗
2, σ
∗
3, s
∗) and a tag τ∗

equal to one of the tags τ` returned from a previous query. By our construction of Eval, any signature derived
from the queried signatures corresponding to τ` will have the same σ1 and σ2 components as in the queried
signatures. This motivates the following definition:

• Type 2a: The pair (σ∗1, σ
∗
2) output by the adversary is not equal to (σ1, σ2) ← S.Sign(skS , τ

∗, r∗)
computed by the challenger. (Here r∗ = Ψκ(τ∗).)

• Type 2b: The pair (σ∗1, σ
∗
2) output by the adversary is equal to (σ1, σ2) ← S.Sign(skS , τ

∗, r∗) com-
puted by the challenger.

5.1 Type 1, 2a Forgeries

We show that Type 1 forgery in our homomorphic scheme HomSig(S) leads to a forgery of the underlying
signature scheme S; i.e., a valid signature on a previously unseen message. In addition, a Type 2a forgery
leads to a strong forgery of the underlying signature scheme, i.e., a new valid signature on a previously
queried message. Since the underlying scheme S is used to sign random messages chosen by the challenger,
we only require that S be unforgeable against a weak adversary.

Theorem 5.1. If S is strongly unforgeable against a weak adversary and Ψ is a secure PRF, then HomSig(S)
is secure against Type 1 and Type 2a forgeries.

Specifically, let A be an adversary that attacks the homomorphic signature scheme and outputs a Type 1
forgery, a Type 2a forgery, or ⊥. Then there is an adversary B that attacks S, an adversary B′ that attacks
the PRF Ψ, and a negligible value of ε such that

HomSig-Adv[A,HomSig(S)] ≤ Sigs,w-Adv[B,S] + PRF-Adv[B′,Ψ] + ε.

Proof. Our algorithm B will play the role of the (weak) adversary in the unforgeability game for S and that
of the challenger in the unforgeability game for HomSig(S). The algorithm works as follows:

Setup:

1. Choose random tags τ1, . . . , τq
R← {0, 1}λ. Send the set of queries T = {τ1, . . . , τq} to the

challenger for S, and receive pkS and signatures (σ
(`)
1 , σ

(`)
2 ) ← S.Sign(skS , τ`) for each ` in

1, . . . , q.

2. Let G,G′, R,B1, B2 be as in HomSig(S).Setup, let g be the generator for G defined by pkS , and
let χ be a G′-uniform distribution on R.
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3. For i = 1, . . . , k, choose γi
R← χ and set ti = gγi .

4. For j = 1, . . . , n, choose αj
R← χ and set hj = gαj . Let ~α = (α1, . . . , αn) and hk = (h1, . . . , hn).

5. Choose δ R← χ and set u = gδ.

6. Initialize an empty array A and counters c` = 1 for ` = 1, . . . , q.

7. Send A the public key pk = (pkS , hk, {ti}ki=1, u,R,B1, B2).

Queries: When A makes a query for filename F ∈ {0, 1}∗ and vector v ∈ Rn, do the following:

1. If F is not in the array A, append F to A. Let ` be the index of F in A and let i = c`. If c` = 1,
send the tag τ` to the adversary.

2. Let (σ1, σ2) be the signature on τ` obtained from the S challenger.

3. Choose s R← Ξτ`,v.

4. Compute σ3 = σ
γi+〈~α,v〉+δs
1 and send the signature σ(`,i) = (σ1, σ2, σ3, s) to the adversary.

5. Set c` ← c` + 1.

Forgery: When A outputs a forgery (τ∗,w∗, f∗, σ∗) with σ∗ = (σ∗1, σ
∗
2, σ
∗
3, s
∗), output τ∗ and (σ∗1, σ

∗
2).

We analyze the simulation using a series of games. Let Wi be the event that A wins the unforgeability
game in Game i.

Game 0. This is the real unforgeability game, where A interacts with a challenger for HomSig(S), and
therefore Pr[W0] = HomSig-Adv[A,HomSig(S)].

Game 1. This is the same as Game 0, except we choose tags τ` and compute signatures (σ`1, σ
`
2) at the

beginning of the game, instead of at the time signatures are requested. We implement the arrays F and A as
described above, and when the adversary makes a query on the `th file, we look up and return the appropriate
values. This change is purely conceptual, so Pr[W1] = Pr[W0].

Game 2. This is the same as Game 1, except we choose ti, hj , u as described above instead of as random
elements of G′. Since χ is a G-uniform distribution, the values of ti, hj , and u are statistically close to
uniform in G′. It follows that Pr[W2] ≥ Pr[W1]− ε for some negligible ε

Game 3. To compute a signature on vector v with tag τ` and counter i, we compute the σ3 component as
σ3 = σ

γi+〈~α,v〉+δs
1 . It follows that

σ3 = (gfsk(τ`,r`))γi+〈~α,v〉+δs =
(
ti ·Hhom(v) · us

)fsk(τ`,r`)
for r` = Ψκ(τ`), and therefore this change is only conceptual. (Note that this value of r` is also used to
compute σ1 and σ2. Thus Pr[W3] = Pr[W2].

Game 4. We replace the PRF Ψκ (used to produce the randomness r for S.Sign) with a truly random
function. (In particular, if two of the τ` values are equal then we output the same r for both.) Since this
replacement is the only difference between Games 3 and 4, there is a PRF adversary B′ that satisfies

PRF-Adv[Ψ,B′] = |Pr[W4]− Pr[W3]| ≥ HomSig-Adv[A,HomSig(S)]− ε− Pr[W4]. (5.1)

19



Observe that in Game 4, the adversary A is interacting with our simulator B. If the event W4 occurs, then
HomSig(S).Verify(pk, τ∗,m∗, σ∗, f) = 1. In particular, this means that S.Verify(pkS , τ

∗, (σ∗1, σ
∗
2)) = 1. If

A outputs a Type 1 forgery, then τ∗ 6= τ` for all `, and thus B’s output wins the unforgeability game for S . If
A outputs a Type 2a forgery, then τ∗ = τ` for some `, but (σ∗1, σ

∗
2) is not the signature on τ` received from

the S challenger; thus B’s output also wins the unforgeability game in this case.
We conclude that Sigs,w-Adv[B,S] = Pr[W4], and the theorem follows from (5.1).

Note that since the signatures are deterministic (due to the use of the PRF Ψ), a collision in tags τ` does
not help the adversary produce a Type 1 or Type 2a forgery. In addition, it was pointed out to us by a referee
that the proof of Theorem 5.1 holds for arbitrary signature schemes S, with the trivial pre-homomorphic
structure that sets fsk = 0 and puts the signature in the σ2 component. Thus Type 1 and 2a forgeries do not
exploit the homomorphic properties of the system.

5.2 Type 2b Forgeries

We now consider Type 2b forgeries. In this case we do not have a black-box reduction to the underlying
signature scheme. However, we do not have to prove each instance separately, as we can abstract out
properties of the underlying scheme’s security proof — or more specifically, of the simulator used in the
reduction — that allow our reduction to go through. These properties are captured in the following definition:

Definition 5.2. Let S be a pre-homomorphic signature scheme and P be a computational problem. We say
that S is δ-simulatable and γ-extractable for P if there is a simulator Sim that takes an instance I of P ,
interacts with a signature adversaryA that makes at most q message queries, and has the following properties:

1. The probability that Sim aborts is at most 1− δ.

2. Conditioned on Sim not aborting, the public key pkS produced by Sim is statistically indistinguishable
from a real public key for S.

3. Conditioned on Sim not aborting and for any public key pkS , the signatures produced by Sim are
statistically indistinguishable from real signatures produced by S.

4. Let (σ
(`)
1 , σ

(`)
2 ) be the signature produced by Sim on the `th message query, and let ω` = logg(σ

(`)
1 ).

(If Sim simulates signatures perfectly, then ω` = fsk(m`, r`) for implicit randomness r`.) Then Sim
can efficiently compute generators x and y of G′ such that

• Sim can efficiently compute xω` for all `;

• Sim can efficiently compute yω` for all ` 6= `∗, where `∗ is a value in 1, . . . , q randomly chosen
by Sim.

5. For y and `∗ as above, there is an efficient algorithm Extract that given an integer b, a value z = yb·ω`∗ ,
and the internal state of Sim, outputs either ⊥ or a solution to the instance I of P . Furthermore, if the
distribution of b is G-uniform, then the probability (over the instances of P and the random coins of
Sim) that Extract outputs ⊥ is at most 1− γ.

We say that S is computationally δ-simulatable and γ-extractable if properties (2) and (3) hold only in a
computational sense; i.e., if no efficient adversary can distinguish the public key and signatures produced by
S from the real public key and signatures.
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Theorem 5.3. Suppose S is a δ-simulatable, γ-extractable pre-homomorphic signature scheme for δ, γ ≥
1/ poly(λ). If there is no efficient algorithm to solve problem P in the group G and Ψ and F are secure
PRFs, then HomSig(S) is secure against Type 2b forgeries.

Specifically, let A be an adversary that attacks the homomorphic signature scheme while making at most
q = poly(λ) queries and outputs a Type 2b forgery or ⊥. Then there is an adversary B that solves P , an
adversary B′ that attacks the PRF Ψ, an adversary B′′ that attacks the PRF F , and a negligible value of ε,
such that

HomSig-Adv[A,HomSig(S)] ≤ q

γδ
· P-Adv[B,G] + PRF-Adv[B′,Ψ] + PRF-Adv[B′′, F ] +

q2

2λ
+ ε.

Proof. We describe an algorithm B that takes an instance I of problem P and interacts with an adversary A
in the unforgeability game for HomSig(S). The algorithm works as follows:

Setup: B does the following:

1. Run Sim on instance I to generate a (simulated) public key pkS and elements x, y ∈ G′ and
`∗ ∈ {1, . . . , q} as in Definition 5.2; abort if Sim aborts.

2. Let R,B1, B2 be as in HomSig(S).Setup and let χ be a G′-uniform distribution on R.

3. For j = 1, . . . , n, choose αj , βj
R← χ and set hj ← xαjy−βj . Let ~α, ~β be the vectors of αj and βj ,

respectively, and let hk = (h1, . . . , hn).

4. For i = 1, . . . , k, choose γi, δi
R← χ and set ti ← xγiy−δi . Let ~γ, ~δ be the vectors of γi, δi,

respectively.

5. Choose η R← χ and set u = xηy.

6. Choose random tags τ1, . . . , τ`
R← {0, 1}λ, and abort if τi = τj for i 6= j. Initialize an empty array

A and counters c` = 1 for ` = 1, . . . , q.

7. Send A the public key pk = (pkS , hk, {ti}ki=1, u,R,B1, B2).

Queries: When A makes a query for filename F ∈ {0, 1}∗ and a vector v ∈ Rn, B does the following:

1. If F is not in the array A, append F to A. Let ` be the index of F in A and let i = c`. If c` = 1,
send the tag τ` to the adversary.

2. Run Sim to produce (simulated) S signatures (σ
(`)
1 , σ

(`)
2 ) on the message τ`, using (perhaps implicit)

randomness r`; abort if Sim aborts.

3. If ` 6= `∗, choose s(`,i) R← Ξ`,v (Definition 3.5).
If ` = `∗, set s(`,i) = δi + 〈~β,v〉

4. Compute the third component of Sign(sk, τ`,v, i) as

σ
(`,i)
3 ← (ti ·Hhom(vi) · us)ω` =

(
xγi+〈~α,vi〉+ηs

(`,i)
ys

(`,i)−δi−〈~β,vi〉
)ω`

Property 4 of Definition 5.2 implies that we can efficiently compute this value for all `. (Note that
when ` = `∗, there is no y term due to our choice of s.)

5. Send the signature σ(`,i) = (σ
(`)
1 , σ

(`)
2 , σ

(`,i)
3 , s(`,i)) to the adversary.

6. Set c` ← c` + 1.

Forgery: When A outputs a Type 2b forgery (τ∗,w∗, σ∗, f∗) with f∗ represented by c = (c1, . . . , ck) and
σ∗ = (σ∗1, σ

∗
2, σ
∗
3, s
∗), B does the following:
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1. If τ∗ 6= τ`∗ , abort.

2. Let v1, . . . ,vk be the vectors queried with tag τ∗. Compute

a = 〈~γ, c〉+ 〈~α,w∗〉+ ηs∗,

b = −〈~δ, c〉 − 〈~β,w∗〉+ s∗

z = σ∗3/x
a·ω`∗ .

Property 4 of Definition 5.2 implies that we can efficiently compute z.

3. Run Extract(b, z,Sim) and output the result.

We analyze the simulation using a series of games. Let Wi be the event that A wins the unforgeability
game in Game i.

Game 0. This is the real unforgeability game, where A interacts with a challenger for HomSig(S), and
thus Pr[W0] = HomSig-Adv[A,HomSig].

Game 1. Instead of choosing ti, hj , and u uniformly at random from G′, we compute them as in Steps
(3)–(5) of the public key generation prodecure above. Since χ is a G′-uniform distribution on R, the values
of ti and hj , and u are statistically close to uniform in G′. It follows that

Pr[W1] ≥ Pr[W0]− ε1 (5.2)

for some negligible ε1.

Game 2. We replace the PRF Ψκ (used to produce the randomness r` for S.Sign) with a truly random
function, taking care to use the same value of r` for each vector signed with tag τ`. Since this replacement is
the only difference between Game 1 and Game 2, there is a PRF adversary B′ that satisfies

Pr[W2] ≥ Pr[W1]− PRF-Adv[Ψ,B′]. (5.3)

Game 3. We abort and raise an event τ -coll if two of the tags τ`, τ ′` chosen by the challenger are equal. By
a birthday bound, we have

Pr[W3] ≥ Pr[W2 ∧ ¬τ -coll] ≥ Pr[W2]−
q2

2λ
(5.4)

Game 4. We now use Sim to produce the public key pkS and to compute S signatures on the τ`. If Sim
aborts, we abort and raise an event Sim-abort. By Properties (1)–(3) of Definition 5.2, we have

Pr[W4] = Pr[W3 ∧ ¬Sim-abort] ≥ δ · Pr[W3]− ε4 (5.5)

for some negligible ε4.

Game 5. We now abort and raise an event wrong-` if τ∗ 6= τ`∗ , where `∗ is the value guessed by Sim. Since
the adversary’s view is independent of `∗, we have

Pr[W5] ≥ Pr[W4 ∧ ¬wrong-`] =
1

q
· Pr[W4]. (5.6)
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Game 6. This is identical to Game 5, except instead of choosing s(`
∗,i) from Ξ`∗,v as in the real game,

we choose s(`
∗,i) from the distribution Ξ′`∗,v obtained by replacing the PRF F in Definition 3.5 with a truly

random function. It follows that there is a PRF adversary B′′ that satisfies

Pr[W6] ≥ Pr[W5]− PRF-Adv[F,B′′]. (5.7)

Game 7. Finally, instead of choosing s(`
∗,i) from Ξ′`∗,i as in Game 6, we set s(`

∗,i) = δi + 〈~β,vi〉, where
vi is the ith vector from the `∗th file. Observe that from the adversary’s point of view the variables αj , γi are
defined only mod |G|. Since for each choice of the variables βj , δi there is a unique setting of αj , γi mod |G|
consistent with the adversary’s view, these two ways of choosing s(`

∗,i) are equivalent, and thus

Pr[W7] = Pr[W6] (5.8)

Observe that in this game A is interacting with our simulator B.

Let W8 be the event that B outputs a solution to the instance I of problem P , so Pr[W8] = P-Adv[B,G].
We wish to calculate the probability of W8 conditioned on W7 occuring; i.e., conditioned on A winning
the unforgeability game when interacting with B. To simplify notation, in the following analysis we let
τ = τ∗ = τ`∗ be the tag in question and ω = ω`∗ .

DefineX =
(∏k

i=1 t
ci
i

)
·Hhom(w∗)·us∗ . SinceW7 occurs we have HomSig(S).Verify(pk, τ,w∗, σ∗, f) =

1, and therefore both S.Verify(pkS , τ, (σ
∗
1, σ
∗
2)) = 1 and Test(pkS , τ, (σ

∗
1, σ
∗
2), X, σ∗3) = 1. Property (3) of

Definition 3.1 now implies that σ∗3 = Xω.
By the homomorphic property of HomHash (3.2), we have

z =


(∏k

i=1 t
ci
i

)
·Hhom(w∗) · us∗

xa

ω

=

(
x〈~γ,c〉+〈~α,w

∗〉+ηs∗y−〈
~δ,c〉−〈~β,w∗〉+s∗

x〈~γ,c〉+〈~α,w∗〉+ηs∗

)ω
= yb·ω.

Now under the assumption that b is G′-uniform, property (5) of Definition 5.2 implies that B outputs a
solution to the instance I of problem P with probability at least γ. If this is the case, then

Pr[W8] ≥ γ · Pr[W7]. (5.9)

Compiling the results from equations (5.2)–(5.9) proves the theorem.
It remains only to show that b is G′-uniform. Recall that s(`

∗,i) = δi + 〈~β,vi〉, where vi is the ith vector
queried with tag τ , and let ŝ =

∑k
i=1 cis

(`∗,i) = 〈~δ, c〉 + 〈~β,
∑
civi〉, and observe that the value of ŝ is

known to the adversary. Let y =
∑
civi −w∗ ∈ Rn; then b = 〈~β,y〉+ s∗ − ŝ. Since the property of being

G′-uniform is invariant under translation by a scalar, it suffices to show that

1. y 6= 0 mod |G|, and

2. the vector ~β comes from a distribution statistically close to χn even when conditioned on the adversary’s
view.

If both (1) and (2) hold, then the value b = 〈~β,y〉 + s∗ − ŝ is statistically close to uniform mod |G′|.
Furthermore, if |G| is not efficiently computable, then the same argument shows that b is statistically close to
uniform mod e for all e ∈ (|G|/16, |G|].
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To prove condition (1), we observe that since A outputs a Type 2 forgery, we have y 6= 0 in Rn. If
R = Z|G| then clearly y is nonzero mod |G|, while if R = Z then ‖w∗‖ and ‖

∑
civi‖ are both less than

kB1B2. In the latter case, our choice of B1 and B2 implies ‖y‖ ≤ |G|/16, and therefore y is also nonzero
mod |G|.

To prove condition (2), we first note that since the variables αj , γi appear only in the exponent, from
the adversary’s viewpoint they are only defined mod |G|. The uniformity property of χ means that we can
replace αj , γi with uniform samples from Z|G| with only negligible effect on the adversary’s view. Now let
~β∗ be any fixed value of ~β. The value of ~β∗ and the values of s(`

∗,i) determine a unique value of ~δ, which
comes from the distribution χk by construction. The values of hj determine a unique value of ~α mod |G|.
Finally, the value of ~δ determines a unique value of ~γ mod |G|.

We conclude that for each possible value of ~β, there is a unique assignment to the other variables mod |G|
that is consistent with the adversary’s view. Thus the adversary obtains no information about ~β, so it follows
that ~β comes from a distribution statistically close to χn even when conditioned on the adversary’s view.

6 Instantiations

We now show that for each of the signature schemes described in Section 2.3, there exists a simulator that
has the properties enumerated in Definition 5.2. Given this result, it follows from Theorems 5.1 and 5.3 and
a straightforward hybrid argument that the homomorphic signature scheme HomSig instantiated with each
signature scheme is secure.

We begin with the Gentry-Silverberg co-CDH signatures, in the strongly unforgeable version proposed
by Boneh, Shen, and Waters. This example is unique in that the simulator SimGS that we describe is not the
simulator used in the security proof of the signature scheme. In the security proofs for GS-type signatures,
the solution to the co-CDH challenge is implicitly used as the secret key in the simulation. In our simulation,
on the other hand, the solution is used only in the conversion to a homomorphic scheme.

We now define the simulator SimGS′(H), which takes an instance (g1, g
α
1 , h1, g2, g

α
2 ) of the co-CDH

problem and interacts with a weak signature adversary.

Setup: Choose a random β ← Zp and let sk = gβ2 . Define the hash functionH so that logg1(H(F (mi‖gri2 )) =
di is known to the simulator for all mi. Specifically, if H is a random oracle then we simply program
H(m) with gdi for random di; if H is the Waters hash function HW (see page 10) then we choose uj =
g
aj
1 for random aj , and then di =

∑
aj · F (mi‖gri2 )[j]. The public key is pk = (G, g2, ê(g1, g2)β, H).

Signatures: Given messages m1, . . . ,mq queried by the adversary, pick a random `∗ ∈ 1, . . . , q. For ` 6= `∗,

compute the signature on message m` as usual. For ` = `∗, compute σ(`
∗) =

(
gα2 , g

β
1 · (g

α
1 )d`∗

)
.

Proposition 6.1. If H is either a random oracle or HW, then SimGS′(H) is 1-simulatable and (1 − 1/p)-
extractable for the co-CDH problem.

Proof. We check the conditions of Definition 5.2, using the simulator SimGS.

1. SimGS never aborts.

2. The only change to the public key is in defining the hash function H; the simulated H is indistinguish-
able from the real H in both cases.

3. Clearly signatures produced by SimGS are identical to real signatures for ` 6= `∗. Since (gα1 )d`∗ =
H(m`∗)

α, the signature σ(`
∗) is identical to a real signature computed with randomness r`∗ = α. Since

α is random in Zp and does not appear anywhere else in the adversary’s view, this signature also is
distributed identically to a real signature.
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4. Let x = g1 and y = h1. For ` 6= `∗ we have ω` = r`, the randomness chosen by the simulator to
compute the signature component σ(`)1 = gr`2 , while we have ω` = α. Since ω`r` is known to the
simulator for all ` 6= `∗, clearly the simulator can compute xω` and yω` for all ` 6= `∗. Furthermore,
since ω`∗ = α, the simulator also knows xω`∗ = gα1 .

5. Given an integer b and the element z = yb·ω`∗ = hb·α1 , we define Extract to output z1/b, or ⊥ if
b = 0 mod p. Thus for uniform b in Zp, Extract outputs a solution to the co-CDH problem with
probability 1− 1/p.

We note that the challenge element h1 is not used to construct simulated signatures — it is only used to
simulate the σ3 component of homomorphic signatures. Combining the results of Theorems 2.4, 2.5, 2.6, 5.1,
and 5.3 gives the following:

Corollary 6.2. If the co-CDH assumption holds for BGen, then HomSig(GS′(H)) is unforgeable if either
H = HW is the Waters hash function, or H is modeled as a random oracle.

The system HomSig(GS′(H)) authenticates vectors defined over Zp. Signatures consist of two elements
of G, one element of G′, and one element of Zp.

Boneh-Boyen signatures The simulator we describe is essentially the same one used in the proof of
security against a weak adversary [BB08, Sec. 4.3]. Let SimBB take an instance (g1, g

α
1 , g

α2

1 , . . . , gα
q

1 , g2, g
α
2 )

of the q-SDH problem and interact with a weak signature adversary.

Setup: Given distinct messages m1, . . . ,mq ∈ Zp queried by the adversary, form the polynomial P (t) =∏q
i=1(t + mi) ∈ Zp[t]. Since P (t) has degree at most q, we can use the q-SDH instance to compute

x = g
P (α)
1 . We output the public key pk = (G, x, g2, gα2 ); the (implicit) secret key is α.

Signatures: Let P`(t) =
∏
i 6=`(t+mi). The signature on m` is σ(`) = x1/(α+m`) = g

P`(α)
1 , which can be

computed from the q-SDH challenge.

Proposition 6.3. SimBB is 1-simulatable and (1− 1/p)-extractable for the q-SDH problem.

Proof. We check the conditions of Definition 5.2.

1. SimBB never aborts.

2. Since g1 is uniformly random in G1, the simulated public key is distributed identically to the real
public key.

3. It is clear that signatures produced by SimBB are identical to real signatures.

4. Let P (t) and P`(t) be as above. Let x = g
P (α)
1 and y = g

P`∗ (α)
1 . We have σ(`) = x1/α+m` , so

ω` = 1/(α+m`) and the simulator can compute xω` for all ` and yω` for all ` 6= `∗.

5. Using polynomial division, we can write P`∗(t)/(t+m`∗) = Q(t) + c/(t+m`∗) for some polynomial
Q ∈ Zp[t] of degree at most q − 2 and c ∈ Zp. Since the messages mi are distinct, we have c 6= 0.
Given an integer b and the element

z = yb·ω`∗ = g
b·P ∗(α)/(α+m`∗ )
1 = g

b·(Q(α)+c/(α+m`∗ ))
1 ,
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we define Extract to output m`∗ ,

(
z1/b

g
Q(α)
1

)1/c
 ,

or ⊥ if b = 0 mod p. Thus for uniform b in Zp, Extract outputs a solution to the q-SDH problem with
probability 1− 1/p.

Combining the results of Theorems 2.7, 5.1, and 5.3 gives the following:

Corollary 6.4. If the q-SDH assumption holds for BGen, then HomSig(BB) is unforgeable (in the standard
model).

The system HomSig(BB) authenticates vectors defined over Zp. Signatures consist of one element of G,
one element of G′, and one element of Zp.

Gennaro-Halevi-Rabin Signatures. As with Boneh-Boyen signatures, the simulator we describe is essen-
tially the same one used in the proof of security against a weak adversary (without random oracles). Let
SimGHR(H) take an instance (N, g) of the strong RSA problem and interact with a weak signature adversary.
Assume H is a hash function that outputs odd primes in [22λ−4, 22λ−2]. (In our earlier description we had no
lower bound on the output of H , but this condition is easy to add with minimal additional computational
cost.)

Setup: Given distinct messages m1, . . . ,mq ∈ {0, 1}λ queried by the adversary, form the integer E =∏q
i=1H(mi) and compute x = g2E mod N . Abort if H(mi) = H(mj) for some i 6= j or if H(mi) |

ϕ(N) for some i; otherwise output the public key pk = (N, x). The (implicit) secret key is the
factorization of N .

Signatures: Let E` =
∏
i 6=`H(mi). The signature on m` is σ(`) = x1/H(m`) = g2E` .

Proposition 6.5. Suppose the hash function H is ε1-collision-resistant (i.e., the probability of a an efficient
adversary finding a collision in H is at most ε1) and the probability of an efficient adversary factoring N is at
most ε2. Then there is a negligible η such that SimGHR(H) is (1−ε1−ε2)-simulatable and (1−η)-extractable
for the strong RSA problem.

Proof. We check the conditions of Definition 5.2.

1. There are two abort conditions: SimGHR(H) aborts if either A finds a collision in the hash function H
or if A finds a value of m such that H(m) | ϕ(N). The former event occurs with probability at most
ε1, while the latter occurs with probability at most ε2. (If p̂ is an odd factor of ϕ(N), then 2p̂+ 1 is a
factor of N .)

2. If SimGHR(H) doesn’t abort, then g is uniformly random in Z∗N and H(mi) is prime to ϕ(N) for all i,
so x is a uniformly random square in Z∗N .

3. It is clear that signatures produced by SimGS are identical to real signatures.

4. Let E and E` be as above. Let x = g2E and y = g2E`∗ . Since σ(`) = x1/H(m`), we have ω` =
1/H(m`). Thus the simulator can compute xω` for all ` and yω` for all ` 6= `∗.
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5. Let e∗ = H(m`∗). Given an integer b and the element

z = yb·ω`∗ = g2b·E`∗/e
∗
,

we observe that ze
∗

= g2bE`∗ . Using Shamir’s trick (see Lemma A.1), if gcd(e∗, 2bE`∗) = 1 then we
can compute g1/e

∗ ∈ Z∗N .

If Sim does not abort, then all of the factors of E`∗ are distinct from e∗, so gcd(e∗, 2bE`∗) = 1 if
and only if e∗ divides b. Since φ(N) is not efficiently computable (otherwise we could factor N ), the
assumption that b is G-uniform implies that b mod e is uniform for all e ∈ [ϕ(N)/26, ϕ(N)/4]. Since
22λ < ϕ(N) < 22λ+2 with overwhelming probability, e∗ satisfies this condition and thus b mod e∗ is
statistically close to uniform. Therefore the probability that e∗ divides b is (statistically close to) 1/e∗,
which is negligible.

Essentially the same simulator works for the RSA problem when H is a random oracle; the main
difference is that we abort if the challenge exponent e∗ is not a prime in [22λ−4, 22λ−2]; it follows from
explicit bounds on the prime number function π(x) (see Theorem A.2) that this happens with probability less
than 1/50λ. Given the challenge e, we choose a random `∗ and program H(m`∗) = e∗; we program the other
values of H(m`) with random primes. The rest of the analysis proceeds as above; for a polynomial number
of queries the probability of a collision in the hash function is negligible in λ. We obtain the following:

Proposition 6.6. Suppose the hash function H is modeled as a random oracle. Then there is a negligible η
such that SimGHR(H) is 1/50λ-simulatable and (1− η)-extractable for the RSA problem.

For the Hohenberger-Waters version of GHR signatures we modify SimGHR as follows: we pick a random
c′ and find some i, j such that i is the smallest positive integer such FK(m

(j)
`∗ , i)⊕ c

′ is an odd prime e0. We
abort if either e∗ or e0 is not in [22λ−4, 22λ−2]; otherwise we define the public value c = c′ ⊕ e0 ⊕ e∗. The
value E in the simulator is now the product of all primes produced in the computation of the HHW(mi), and
E` is the product of all such primes except for those produced in the computation of HHW(m`). We abort
if there is a collision among these primes, which still happens with negligible probability. We obtain the
following:

Proposition 6.7. There is a negligible η such that SimGHR(HHW) is 1/(50λ)2-simulatable and (1 − η)-
extractable for the RSA problem.

Combining the results of Theorems 2.8, 2.9, 2.10, 5.1, and 5.3 gives the following:

Corollary 6.8. If the strong RSA assumption holds for RSAGen and H is a collision-resistant hash function
that outputs primes in [22λ−4, 22λ−2], then HomSig(GHR(H)) is unforgeable (in the standard model).

If the RSA assumption holds for RSAGen, then HomSig(GHR(H)) is unforgeable if either H = HHW

is the Hohenberger-Waters hash function, or H is modeled as a random oracle that outputs primes in
[22λ−4, 22λ−2].

The system HomSig(GHR(H)) authenticates vectors over Z of bounded length. Signatures consist of two
elements of ZN and one integer of size at most N2n · 280. These are about twice as large as the strong-RSA
signatures of Catalano, Fiore, and Warinschi [CFW11a], which consist of one element of ZN and one integer
of size at most N · 280. However, our signatures are unforgeable against an adaptive per-message attack,
while the security proof of the scheme in [CFW11a] requires the adversary to submit all vectors for a file at
once.
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7 Further Directions

We have described a general framework for converting signature schemes with certain properties to linearly
homomorphic signatures. Security of the converted scheme is based on the same assumption as the underlying
scheme. The security model we use allows a stronger adversary than in prior constructions. We gave
instantiations based on the schemes of Waters, Boneh-Boyen, Gennaro-Halevi-Rabin, and Hohenberger-
Waters.

One direction for further work is to improve the efficiency of our schemes, especially on the RSA side.
The fact that we require a “homomorphic chameleon hash in the exponent” dictates that we append a very
large integer to vectors over Z signed with our RSA systems. We would like to remove this requirement,
ideally proving security without a chameleon hash. Catalano, Fiore, and Warinschi [CFW11b] have recently
made significant progress in this direction, proposing more efficient linearly homomorphic signatures based
on q-SDH and strong RSA. It is an open problem to extend these results to weaker assumptions (co-CDH and
RSA) and to the security model with our stronger adversary.

Another direction is to strengthen the adversary in our model even further. At present we require that tags
τ used to identify files be chosen at random by the challenger. Allowing the adversary to choose tags — or
even to use simple counters or filenames — would improve the efficiency of the system in practice. While
randomly chosen tags seem to be a requirement for proofs in the random oracle model (the hash of the tag
must be computed at signing time, so the tag must be unpredictable to the adversary), their presence in this
work serves only to allow us to use an underlying signature that is secure against a weak adversary. Using a
weakly secure underlying signature is more efficient and allows for simpler analysis of our construction, but
it would be worthwhile to investigate the tradeoff between tag choice and efficiency.

Finally, our framework does not incorporate any homomorphic signature schemes based on lattice
assumptions [BF11a, BF11b], and indeed at present there exist no such systems secure in the standard model.
An adaptation of our work to lattice-based signatures would not only give us new linearly homomorphic
systems but may also give systems with a larger class of admissible functions, such as the polynomial scheme
of [BF11b]. In addition, perhaps the insights gained by adapting our framework to lattices would allow us
to move closer to a fully homomorphic signature scheme — one that could authenticate any function on
computed data.
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A Useful Facts From Number Theory

Shamir showed that it is easy to compute y1/a mod N given yb/a:

Lemma A.1 ([Sha83]). Given x, y ∈ ZN together with a, b ∈ Z such that xa = yb and gcd(a, b) = 1, there
is an efficient algorithm for computing z ∈ ZN such that za = y.

The algorithm is to use Euclid’s algorithm to compute f, g ∈ Z such that af + bg = 1, and then compute
z = xgyf .

For our RSA proofs we need estimates on the density of prime numbers.

Theorem A.2 ([RS62]). For any positive x, let π(x) be the number of primes less than or equal to x. Then
for x ≥ 17,

x

log x
< π(x) <

1.26x

log x
,

where log is the natural logarithm.

B Lewko-Waters Signatures in our Framework

In this section we show that the signature scheme derived from the Lewko-Waters identity-based encryption
scheme [LW10] has the properties necessary for applying our generic framework. The resulting linearly
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homomorphic signature scheme is almost identical to that of Attrapadung and Libert [AL11]. However, our
proof in Section 5 shows that the scheme is secure against an adversary that can adaptively query vectors; the
proof of Attrapadung and Libert only holds against an adversary that queries entire files at once.

B.1 Composite-Order Bilinear Groups.

The Lewko-Waters construction uses bilinear groups whose order is a product N of three primes. Formally,
let CGen be an algorithm that takes input 1λ and outputs a tuple G = (N,G,GT , ê) with the following
properties:

• N = p1p2p3 is a product of three distinct primes pi ∈ [2λ, 2λ+1];

• G,GT are groups of order N in which group operations are efficently computable;

• ê : G×G→ GT is an efficiently computable, nondegenerate, bilinear map (or “pairing”).

We refer to the tuple G as a bilinear group of composite order. We assume that the description of G includes
explicit generators g1, g2, g3 of the three prime-order subgroups. These generators satisfy the following
“orthogonality property”: for i 6= j, we have ê(gi, gj) = 1. For any t dividing N , we denote by Gt the cyclic
subgroup of G of order t.

We define the following computational assumptions in bilinear groups of composite order:

• Assumption 1: An instance of the Assumption 1 problem is a tuple (g,X3, T ), where g R← Gp1 ,

X2
R← Gp2 , and either T = T1

R← Gp1p2 or T = T2
R← Gp2 . A solution is the integer i ∈ {1, 2} such

that T = Ti.

• Assumption 2: An instance of the Assumption 2 problem is a tuple (g,X1X2, X3, Y2Y3, T ), where

g,X1
R← Gp1 , X2, Y2

R← Gp2 , X3, Y3
R← Gp3 , and either T = T1

R← G or T = T2
R← Gp1p3 . A

solution is the integer i ∈ {1, 2} such that T = Ti.

• Assumption 3: An instance of the Assumption 3 problem is a tuple (g, gαX2, X3, g
sY2, Z2), where

g
R← Gp1 , X2, Y2, Z2

R← Gp2 , X3
R← Gp3 , and α, s R← ZN . A solution is the element e(g, g)αs ∈ GT .

If A is an algorithm that takes an instance of Assumption i, we define Asmp(i)-Adv[A,G] to be the
probability that A outputs a solution. We say that Assumption i holds for CGen if for all polynomial-time
algorithms A, Asmp(i)-Adv[A,G] is a negligible function of λ.

Note that Lewko and Waters use the decisional version of Assumption 3 in their IBE scheme; for
signatures we use the computational version (as do Attrapadung and Libert).

B.2 Lewko-Waters Signatures.

We now give the Lewko-Waters signature scheme and its security theorem. The signature scheme is similar
in form to the Gentry-Silverberg scheme discussed in Section 2.4.

LW.Setup(1λ): Run CGen(1λ) and let G = (N,G,GT , ê) be the output. Choose random u, g, h
R← Gp1 ,

v
R← gp3 and α R← Zp. The public key is pk = (G, g, h, u, v, e(g, g)α), and the secret key is sk = α.

LW.Sign(sk,m): Given a messagem ∈ ZN , choose random r, t, t′
R← ZN , and output σ ←

(
grvt, gα(umh)rvt

′)
.

LW.Verify(pk,m, σ): Write σ = (σ1, σ2) ∈ G2. Output 1 if ê(σ2, g) = ê(umh, σ1) · ê(g, g)α; otherwise
output 0.
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Theorem B.1 ([LW10]). If Assumptions 1, 2, and 3 hold for CGen, then LW is unforgeable.

In the original Lewko-Waters proposal the element v ∈ Gp3 is part of the secret key. However, we observe
that publishing v has no effect on the system’s security. In particular, all of the simulators in the hybrid games
of the security proof are given a random element of Gp3 , which the simulators can use as the element v.

The transformation of Boneh, Shen, and Waters [BSW06] allows us to convert the LW scheme into a
scheme LW′ that is strongly unforgeable against a weak adversary. Briefly, we pick a collision-resistant hash
function F and replace the exponent r in the second component with F (m‖grvt). We omit the details.

B.3 Applying our Framework

The pre-homomorphic property. We first show that the Lewko-Waters signatures are pre-homomorphic
according to Definition 3.1:

1. LW.Sign defines a function Signsk : ZN × Z3
N → G2

p1p3 .

2. Let r, t, t′ be the randomness chosen by the Sign algorithm. Compute a, b such that ap1 + bp3 = 1.
Let fsk : ZN × Z3

N → Z be given by

fsk(m, (r, t, t
′)) = rbp3 + tap1. (B.1)

Since g and v have order p1 and p3, respectively, we have

(gv)fsk(m,(r,t,t
′)) = grbp3vtap1 = grvt,

which is the first component of the signature.

3. The Test function is evaluated by computing a pairing: given (pk,m, σ, x, y) with x, y ∈ Gp1p3 , output
1 if and only if ê(x, σ1) = ê(gv, y). The bilinearity and nondegeneracy of ê ensure that the latter holds
if and only if logx(y) = loggv(σ1).

Since the group involved in the signing algorithm is cyclic of (known) order N , the vectors signed using
the derived linearly homomorphic scheme will be defined over the ring R = ZN . The distribution χ used for
sampling in signatures is the uniform distribution on ZN .

In the simulations used in the security proof, signatures will be elements of the full group G rather than
the subgroup Gp1p3 . In this case we want Test to act on inputs from G as if it was given inputs from the
subgroup Gp1p3 .

Formally, we extend the requirements on Test as follows: let G be the group from Definition 3.1 and
suppose for simplicity that G′ = G. Let H be a group containing G and let π : H → G be a surjective
homomorphism. Then we say that Test is compatible with (H, π) if

• Test satisfies Definition 3.1 (3) for inputs σ1, x, y ∈ G.

• When inputs σ1 and y are in H, Test(pk,m, (σ1, σ2), x, y) = Test(pk,m, (π(σ1), σ2), x, π(y)).

To apply this construction to the Lewko-Waters scheme we let G = Gp1p3 and H = G. If π : G→ Gp1p3
is the surjective homorphism that maps Gp2 to 1 and is the identity on Gp1p3 , then Test is compatible with
(G, π). In particular, since g and x are in Gp1p3 , the pairing is oblivious to the Gp2 components of σ1 and y.
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The simulatable property. We now demonstrate a simulator SimLW for the Lewko-Waters scheme (in its
strongly unforgeable version) that satisfies (a generalization of) Definition 5.2. The simulator takes an instance
(g, gαX2, X3, g

sY2, Z2) of the Assumption 3 problem and interacts with a weak signature adversary.

Setup: Choose random a, b, β
R← ZN and set u = ga, h = gb, v = X3. Let F be a collision-resistant hash

function. Output the public key (G, g, h, u, v, ê(g, g)β, F ). The secret key is β.

Signatures: Given messages m1, . . . ,mq queried by the adversary, pick a random `∗ ∈ 1, . . . , q. For ` 6= `∗,
compute the signature on m` using the real Sign algorithm with randomness r`, t`, t′`. For ` = `∗, choose

random t∗, t′∗, µ
R← ZN and compute

σ(`
∗) =

(
gαX2v

t∗ , gβ · (gαX2)
aF (m`∗‖gαX2vt

∗
)+bZµ2 v

t′∗
)
.

We now wish to show that SimLW satisfies Definition 5.2. As above, we must modify the definition
slightly to allow for inputs in a larger group H. Specifically, we replace conditions (4) and (5) of Definition 5.2
with the following:

4’. Let (σ
(`)
1 , σ

(`)
2 ) be the signature produced by Sim on the `th message query, and let ω` = logg(π(σ1)

(`)).
Then Sim can efficiently compute elements x and y in H such that

• π(x) and π(y) generate G.

• For all `, Sim can efficiently compute an element X` ∈ H such that π(X`) = π(xω`).

• Let `∗ ∈ {1, . . . , q} be randomly chosen by Sim. For all ` 6= `∗, Sim can efficiently compute an
element Y` ∈ H such that π(Y`) = π(yω`).

5’. Condition (5) holds under the weaker requirement that π(z) = π(yb·ω`∗ ).

As before, in our application we have G = Gp1p3 and H = G, and the map π projects away from the Gp2
component. The revised condition (4’) simply says that condition (4) holds modulo Gp2 .

Proposition B.2. LW′(H) is computationally 1-simulatable and (1− 3
2λ

)-extractable for the Assumption 3
problem.

Proof. We check the conditions of Definition 5.2 (with revised conditions (4’) and (5’)), using the simulator
SimLW.

1. SimLW never aborts.

2. The simulated public key is distributed identically to the real public key.

3. Clearly for ` 6= `∗, the simulated signature on m` is distributed identically to a real signature. By
[LW10, Lemmas 5–7], if Assumptions 1 and 2 hold then the signature on m`∗ is computationally
indistinguishable from a real signature.

4’. Let x = gv and y = gsY2v. Then the simulator can compute xω` = gr`vt` and yω` = (gsY2)
r`vt` for

all ` 6= `∗ (recall the definition of fsk in (B.1)). Furthermore, since we implicitly set r`∗ = α in the
`∗th signature, we have xω`∗ = gαvt

∗
. Thus if we set X`∗ = gαX2v

t∗ , then π(X`∗) = π(gαvt
∗
).

5’. Suppose we are given an integer b and an element z with π(z) = π(yb·ω`∗ ) = gbsvbt
∗
. Then we

have z = gbsR2v
bt∗ for some R2 ∈ Gp2 . We define Extract to output ê(z, g)1/b, or ⊥ if b is not

invertible mod N . Since e(z, g) = e(g, g)bs, if b is uniform in ZN then Extract outputs a solution to
the Assumption 3 problem with probability at least 1− 3

2λ
.
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Combining the results of Theorems B.1, 5.1, and 5.3 gives the following:

Corollary B.3. If Assumptions 1, 2, and 3 hold for CGen, then HomSig(LW′) is unforgeable.

The system HomSig(LW′) authenticates vectors defined over ZN . Signatures consist of three elements of
G and one element of ZN . The triple of elements is essentially the same as an Attrapadung-Libert signature
(with σ3 not rerandomized in Gp3); the additional element of ZN is a chameleon hash that allows us to prove
security against our stronger adversary.

C Privacy

A linearly homomorphic signature scheme is private if given signatures on data m1, . . . ,mk ∈M, a derived
signature on m′ = f(m1, . . . ,mk) produced by Eval does not leak any information about the underlying mi

beyond what is revealed by the derived message m′ and the function f . While this privacy property ensures
that the original data is hidden, we are not hiding the fact that derivation took place.

The formal definition of this property was proposed by Boneh and Freeman [BF11a], building on a
definition of Brzuska et al. [BFF+09]. The motivating concept is that given signatures on messages derived
from one of two different files, even an attacker who knows the secret key cannot determine which file
contains the original data. This property is called weak context hiding; the “weak” refers to the fact that the
original signatures on the file are not made public, and distinguishes this property from the stronger notion
proposed by Ahn et al. [ABC+12].5

Definition C.1. A homomorphic signature scheme S = (Setup,Sign,Verify,Eval) is weakly context hiding
if for all k, the advantage of any probabilistic, polynomial-time adversary A in the following game is
negligible in the security parameter n:

Setup: The challenger runs Setup(1n, k) to obtain (pk, sk) and gives pk and sk to A. The public key defines
a message spaceM, a signature space Σ, and a set F of admissible functions f : Mk →M.

Challenge: A outputs (~m∗0, ~m
∗
1, f1, . . . , fs) with ~m∗0, ~m

∗
1 ∈ Mk. The functions f1, . . . , fs are in F and

satisfy
fi
(
~m∗0
)

= fi
(
~m∗1
)

for all i = 1, . . . , s.

In response, the challenger generates a random bit b ∈ {0, 1} and a random tag τ ∈ {0, 1}n. It signs the
messages in ~m∗b using the tag τ and obtains a vector ~σ of k signatures. Next, for i = 1, . . . , s the challenger
computes a signature σi := Eval(pk, τ, fi, ~σ) on fi(~m∗b). It sends the tag τ and the signatures σ1, . . . , σs to
A. Note that the functions f1, . . . , fs can be output adaptively after ~m∗0, ~m

∗
1 are output.

Output: A outputs a bit b′.

The adversary A wins the game if b = b′. The advantage of A is the probability that A wins the game.

It follows from the definition that an adversary that wins the weak context hiding game can determine
whether whether the challenge signatures were derived from signatures on ~m∗0 or from signatures on ~m∗1.

5The context-hiding properties proposed in [ABC+12] require that a derived signature be indistinguishable from a “fresh”
signature on the same message (i.e., one produced by Sign). This notion is unrealizable in our context since the Verify algorithm
takes as input the function f , which already reveals whether the signature is fresh or derived — a signature is produced by Sign if
and only if its associated function is one of the projections πi.
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C.1 Achieving Privacy in Bilinear Group Schemes

Recall from Section 4 that signatures in our linearly homomorphic schemes are of the form σ = (σ1, σ2, σ3, s),
where (σ1, σ2) is a signature on the tag τ using the underlying ordinary signature, σ3 = Hhom(v) · us is a
homomorphic hash of the vector v being signed, and s is randomness for a chameleon hash. The components
σ1, σ2 are the same for all signatures associated with a given file and thus cannot help the adversary win
the context-hiding game. Furthermore, we note that if we remove the chameleon hash (i.e., set s = 0), then
the σ3 component is unique for each vector v, regardless of whether v was input to Sign or computed as a
linear combination of other vectors. We conclude that the only information that can be useful to an adversary
playing the context-hiding game is the value of s. However, when |G| is known, s is uniform in Z|G|, so the
value of s reveals nothing about the underlying messages.

We make these ideas precise in the following privacy theorem for our bilinear group systems.

Theorem C.2. Suppose |G| is known. Then HomSig(S) is weakly context hiding.

Proof. Let v1, . . . ,vk ∈ Rn be one of the two sets of vectors sent by the adversary, and let w =
f(v1, . . . ,vk) =

∑
civi for some f = (c1, . . . , ck) ∈ F . Suppose the challenger signs the vectors

vi using the tag τ and obtains a vector ~σ of k signatures. Next the challenger computes a signature
σ := Eval(pk, τ, f, ~σ) on w. As discussed above, this signature is of the form (σ1, σ2, σ3, s), where the σ1
and σ2 components are the same for all signatures associated with τ and σ3 = Hhom(w) · us. Since |G| is
known, the distribution Ξτ,v is the uniform distribution on Z|G|. Thus in the adversary’s view the value of s
is uniformly distributed in Z|G| and independent of f and the vectors v1, . . . ,vk. Thus the distribution of σ
is identical for all sets of vectors v1, . . . ,vk and functions f such that f(v1, . . . ,vk) = w.

Unfortunately, the above argument does not apply when G is a group of unknown order and R = Z. In
this case we choose the s component of signatures uniformly from some fixed interval of positive integers,
so when we combine signatures the resulting value of s reveals information about the linear combination
computed.

We make this observation precise by exhibiting an attack on the context-hiding property. Consider the
system with n = 1 and k = 2, so data sets consist of pairs of integers. Suppose the attacker submits the two
data sets ~v∗0 = (0, 0), ~v∗1 = (−1, 1) and the function f = (1, 1); so f(~v∗0) = f(~v∗1) = 0. Suppose further that
the distribution χ used in sampling s satisfies χ = −χ. When signing the first data set (0, 0) the values of
sj come from the distribution χ, since βj · 0 = 0 for j = 1, 2. However, when signing the second data set
(−1, 1) the values of sj come from χ ± Fµ(τ, j) for j = 1, 2, which is computationally indistinguishable
from χ± χ under the assumption that F is a PRF. Furthermore, χ− χ = χ+ χ by our assumption on χ.

We conclude that for the file ~v∗0 the value of s in the derived signature on 0 is distributed as χ+ χ, which
has variance 2 · Var(χ); while for the file ~v∗1 the value of s in the derived signature on 0 is distributed as
χ+ χ+ χ+ χ, which has variance 4 ·Var(χ). It follows that the attacker can distinguish the two cases with
non-negligible probability.
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