Using Naive Bayes to Detect
Spammy Names in Social Networks

David Mandell Freeman
LinkedIn Corporation
2029 Stierlin Ct.
Mountain View, CA 94043 USA
dfreeman@linkedin.com

ABSTRACT

Many social networks are predicated on the assumption that
a member’s online information reflects his or her real iden-
tity. In such networks, members who fill their name fields
with fictitious identities, company names, phone numbers,
or just gibberish are violating the terms of service, pollut-
ing search results, and degrading the value of the site to real
members. Finding and removing these accounts on the basis
of their spammy names can both improve the site experience
for real members and prevent further abusive activity.

In this paper we describe a set of features that can be used
by a Naive Bayes classifier to find accounts whose names do
not represent real people. The model can detect both auto-
mated and human abusers and can be used at registration
time, before other signals such as social graph or clickstream
history are present. We use member data from LinkedIn to
train and validate our model and to choose parameters. Our
best-scoring model achieves AUC 0.85 on a sequestered test
set.

We ran the algorithm on live LinkedIn data for one month
in parallel with our previous name scoring algorithm based
on regular expressions. The false positive rate of our new
algorithm (3.3%) was less than half that of the previous
algorithm (7.0%).

When the algorithm is run on email usernames as well
as user-entered first and last names, it provides an effective
way to catch not only bad human actors but also bots that
have poor name and email generation algorithms.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval — Spam; 1.2.6 [Artificial Intel-
ligence|: Learning

Keywords

Social networks, spam detection, Naive Bayes classifier

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AlSec’13, November 4, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2488-5/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517312.2517314

1. INTRODUCTION

One of the fundamental characteristics of many social net-
works is that a user’s online identity is assumed to be an
accurate reflection of his or her real identity. For exam-
ple, the terms of service of Facebook (13|, LinkedIn [20],
and Google+ [15] all require users to identify themselves by
their real names. However, many users still sign up for these
social networks with fake names. Often these users intend to
engage in abusive activity, such as sending spam messages
or posting malicious links. These users may use automation
to create accounts, in which case fake names are generated
from a predefined dictionary or even as random strings of
characters.

In addition to the dedicated spammers, many users with
no intention of abuse will fill in their personal information
with something other than (or in addition to) their real
name. Some users simply cannot be bothered to take the
time to enter their personal information, and fill in name
fields with strings such as “asdf,” while others may choose
to mask their identities out of privacy concerns. Still others
may use the name fields to enter job titles, phone numbers,
email addresses, or other non-name information, either out
of hopes that this information will be surfaced more eas-
ily in searches or out of misunderstanding of the field labels.
These accounts, even if not actively abusing the site, are still
undesirable, as they may pollute search results and degrade
the value of the site to members who abide by the terms of
service.

Many previous authors have considered the problem of de-
tecting spam and fake accounts in social networks, using sig-
nals such as clickstream patterns [30} 29], message-sending
activity and content [3| |14], and properties of the social
graph (8] |7} |6]. However, to our knowledge none have con-
sidered the problem of detecting fake accounts from name
information only.

An approach using only name data has several appealing
features:

e It can be used to detect both automated and human
abusers and both malicious and non-malicous fakes.

e [t can be used at registration time, when other signals
such as clickstream history and connections graph are
not present.

e [t can detect fakes preemptively rather than waiting
for the first round of abuse to occur.

Furthermore, finding fake names can be used as a comple-
mentary strategy to existing spam-detection methods and

can be used as part of a co-training process |5| to create a
broad model for fake accounts.

1.1 Our contribution

We propose a robust, language-agnostic algorithm for spam
detection in user-entered names and other very small texts.
Specifically, we describe a set of features that can be ex-
tracted from such texts and used in a Naive Bayes classifier
applied to these texts, as well as some algorithmic tweaks
that improve the classifer’s performance. We demonstrate
the effectiveness of our classifier by running the algorithm
on LinkedIn members’ name data, including both a labeled
validation set and unlabeled data from production, and com-
puting several performance metrics. Implementing the algo-
rithm on production data cut the false positive rate by more
than half as compared with LinkedIn’s previous method of
name spam detection. We also show that running the algo-
rithm on email usernames can supplement the name spam
detection by correctly classifying some borderline cases.

1.2 Our Approach

We build our name-spam detection algorithm using a Naive
Bayes classifier. This classifier has a long and successful his-
tory of dealing with the problem of email spam [25] |2| [16]
26, [27, [1]. However, all proposed uses of Naive Bayes for
spam classification use individual words or groups of words
as features. Using individual names as features would not be
an effective means of detecting name spam. For example, if
each name consisted of a single word, the Naive Bayes classi-
fier would be equivalent to determining whether the percent-
age of fake accounts with a given name was above or below
some predetermined threshold. Even more problematically,
a whole-name-based classifier would be powerless to classify
a name it had not seen before; all unique names would have
to share the same classification, a significant problem on a
global social network such as LinkedIn, where more than one
third of all accounts have unique names [18].

Instead of using whole words, we use as our base feature
set n-grams of letters that comprise these words. Specifi-
cally, for various small values of n we extract from an m-
character name the (m — n + 1) substrings of n consecu-
tive characters. For example, with n = 3 the name David
breaks into the three n-grams (Dav, avi, vid). We then aug-
ment the feature set by adding phantom “start-of-word” and
“end-of-word” characters (represented by \~ and \$, respec-
tively) to each name and incorporating these into our n-
grams; under this tranformation the 3-grams for David are
(\"Da, dav, avi, vid,id\$).

1.3 Missing Features

It may occur that a name we wish to classify contains an
n-gram that does not appear in our training set. There are
two standard approaches to dealing with missing features in
Naive Bayes: to ignore them, or to assign a value to a “miss-
ing feature” feature. We consider both options. To assign a
value to the “missing feature” feature we borrow a technique
from natural language processing:we randomly divide the
training set in two and add up the category counts for fea-
tures that appear in only one half of the set. Contrary to the
results of Kohavi, Becker, and Sommerfield [17], we find that
adding the “missing feature” feature significantly improves
our results. More generally, we can apply the “missing fea-
ture” feature to any feature with fewer than ¢ instances in

the training set, with the optimal value of ¢ determined ex-
perimentally on a validation set.

To improve further our treatment of missing features, we
observe that for an n-gram that does not appear in the train-
ing set it may be the case the the two component (n — 1)-
grams do appear in the training set. In this case we can re-
place the missing n-gram feature with the two (n — 1)-gram
features; if one or both of these features are missing we can
iterate recursively, up to the point where we are consider-
ing 1-grams. We find that this treatment gives a significant
performance boost.

1.4 Experimental Results

We trained our classifier on a representative sample of
60 million LinkedIn accounts, with spam labels provided by
the LinkedIn Security team. After optimizing parameters
on a validation set of approximately 100,000 accounts, we
measured the performance of two different versions of our
classifier on a held-out test set of approximately 100,000
accounts. Both the validation and test sets were designed
to consist of roughly half spam accounts.

We tested two versions of our algorithm: a “full” version
using 5-grams and a “lightweight” version using 3-grams that
uses less than 10% as much memory as the full version. After
optimizing our algorithm’s parameters, for the full algorithm
we obtained an AUC of 0.85 and a max [g-score of 0.92.
For the lightweight version we obtained an AUC of 0.80 and
a max Fy g-score of 0.93. Further statistics can be found
in Section We consider F} g-score instead of the stan-
dard Fi-score because the cost of a false positive (blocking
a good member) is significantly higher than the cost of a
false negative (leaving a fake account alone).

We also used our algorithm to find several hundred false
negatives (i.e., spam accounts that had not been caught) in
our test set.

Finally, we ran our lightweight algorithm on the primary
email addresses associated with accounts in our training and
test sets, and found a noticeable improvement when the
name and email features were combined.

2. MULTINOMIAL NAIVE BAYES

We begin by reviewing the Naive Bayes classifier |12, 23].
The task of this classifier is to approximate an unknown
function f: F — L, where F' = F} X --- X Fy, is the feature
space and L is the label space. In our application L is the
binary set {0,1}. If X = (X1,..., Xm) is a random variable
taking values in F' and Y is a random variable taking values
in L, then f(z) can be estimated by computing p, = p(Y =
y | X = %) and outputting the value of y for which p, is
maximized.

By Bayes’ theorem and the law of total probability we
have

p(Y =y) p(X=Z|Y =y)
>, p(Y =y) p(X=Z|Y =y)
(2.1)
Now suppose we are trying to classify a text document that
is represented as an ordered sequence of words (z1,...,Zm);
i.e., the feature F; represents the word in the ith position.
The multinomial Naive Bayes classifier makes the assump-
tion that each word is generated independently from a multi-

p(Y =y X =17)=

nomial distributionEI Under this assumption, if we let 6.,y
be the probability that the word w appears in class y, then
we have

p(X = (2:2)

|
=
~
|
&
|
—~
™
&
=
>
g
<
NS
2,
. €

where f,, denotes the number of instances of word w in the
vector (z1, ..., Zm) and the products are taken over all words
w in the vocabulary.

If the classification is binary and Y takes values 0 and 1,
then we can divide the numerator and denominator of
by the terms with y = 0 to get
p(Y=1) JR(%)
p(Y=0)

S(@) i=p(Y =1| X =7) = 200
Y=1) z
1+ i(y:o) eR(@)

(2.3)

where

N p(X=F|Y =1)
o) = os ([=1y =)

is the log of the conditional probability ratio for the feature
vector Z. Substituting (2.2) into the formula for R(Z) and
taking logarithms gives

R(Z) = fu-log (Zﬁ) . (2.4)

w

(Observe that in a short document almost all of the f,, will
be equal to zero.)

Performing the classification task now comes down to com-
puting estimates for the values p(Y = y) (the class priors)
and the parameter estimates 6.,. We estimate 6., from
training data as

_ Nw,y +05’w,y
Ny + Zw Qu,y

where N, , indicates the number of instances of word w oc-
curring in class y in the training set and N, is the sum
of the N, over all features. The parameter . is a
smoothing parameter and corresponds to adding au,,, imag-
ined instances of feature w in category y to the training data.
Setting a nonzero smoothing parameter prevents a feature
with examples in only one class from forcing the probabil-
ity estimate s(Z) to be 0 or 1. Standard Laplace smoothing
sets aw,y = 1 for all w and y; other techniques are to set
Qtw,y to be a small real number ¢ independent of w or to
set w,y = 0/Nuw,y. This last method is called interpolated
smoothing by Chen and Goodman [9].

The Naive Bayes algorithm has demonstrated great suc-
cess in classification problems (see e.g., |11} |24, [21]) even
though the value s(Z) of is often highly inaccurate as
an estimate of probability |4} |31) [10]. However, if we inter-
pret s(Z) as a score for the feature vector Z, we can then use
a validation set to choose a cutoff point for classifying that
depends on the relative cost of misclassifying in each class.
(See Section for further discussion.)

Implementation of the algorithm, once a suitable training
set has been obtained, is straightforward. As long as the
number of features in the training set is no more than a few

Oy (2.5)

"We choose this model over others such as multivariate
Bernoulli and multivariate Gauss [22] because results from
the literature |26} 21] suggest that this model typically per-
forms best on text classification.

million, the data required for classifying new instances can
be kept in main memory on an ordinary PC or run on a
distributed system such as Hadoop. Thus once the data is
loaded, the algorithm can quickly classify many instances.
We observe that computing R(&) rather than e(®) speeds
up computation and eliminates underflow errors caused by
multiplying together many small values.

3. THE BASIC ALGORITHM
3.1 N-grams of Letters

In typical email spam classifiers using Naive Bayes (e.g., [25]
26, |1]) the features w consist of words or phrases in a docu-
ment, with separation indicated by whitespace characters or
punctuation. For short texts such as names these features
are clearly inadequate — most names will only have two
features! Thus instead of entire words, we use n-grams of
letters as our main features. Formally, we have the following:

Definition 3.1. Let W = cica---cm be an m-character
string. We define n-grams(W) to be the (m —n + 1) sub-
strings of n consecutive characters in W :

n-grams(W) = (cic2 -~ Cn,C2C3 " Cpg1y .- -y
Cm—n+1Cm—n+2 """ Cm) .

For example, with n = 3 the name “David” breaks into
the three n-grams (Dav, avi, vid).

Our choice of overlapping n-grams as features blatantly
violates the Naive Bayes assumption that the features used
in classification are independent. However, as observed by
numerous previous authors (e.g. |[10]), the classifier may still
have good performance despite the dependencies among fea-
tures; see Section [5.2] for further discussion.

Since names on LinkedIn consist of distinct first name and
last name fields (neither of which is allowed to be empty),
we have a choice in labeling our features: we can consider an
n-gram coming from a first name to be either identical to or
distinct from an n-gram coming from a last name. We con-
sidered both approaches in our initial trials and came to the
conclusion that using distinct labels for first and last name
n-grams performs best for all values of n. (See Figure)

3.2 Dataset and Metrics

We trained our classifier on a sample of roughly 60 million
LinkedIn accounts that were either (a) in good standing as
of June 14, 2013 or (b) had been flagged by the LinkedIn
Security team as fake and/or abusive at some point before
that date. We labeled accounts in (a) as good and those in
(b) as spam. We sampled accounts not in our training set
to create a validation/test set of roughly 200,000 accounts.
Since the incidence of spam accounts in our data set is very
low, we biased our validation set to contain roughly equal
numbers of spam and non-spam accounts. This bias allows
us both to test the robustness of our algorithm to variations
in the types of names on spam accounts and to speed up our
testing process.

We began with of a preprocessing step that computed
tables of n-gram frequencies from raw name data for n =
1,...,5. Our algorithms are fully Unicode-aware, which al-
lows us to classify international names but leads to a large
number of n-grams. To reduce memory usage, we ignored
n-grams that had only a single instance in the training set.
Table |1} shows the number of distinct n-grams for each value

first /last distinct first /last combined
n | n-grams | memory | n-grams | memory
1 15,598 25 MB 8,235 24 MB
2 136,952 52 MB 86,224 45 MB
3 321,273 | 110 MB 252,626 | 108 MB
4| 1,177,675 | 354 MB 799,985 | 335 MB
5 | 3,252,407 | 974 MB | 2,289,191 | 803 MB

Table 1: Number of distinct n-grams in our training set
for n = 1,...,5 and amount of memory required to store
the tables in our Python implementation. Data on the left
considers the sets of n-grams from first and last names in-
dependently, while data on the right considers the sets cu-
mulatively.

of n and the corresponding amount of memory required to
store the table of tuples (w, log(0w1/0w0)) for all n-grams w.

3.3 Initial results

In our experiments we use the probability estimate s(Z) of
to assign to each test case a real-number score between
0 and 1. When comparing different models we use area under
the ROC curve (AUC) as our primary metric to compare
the outcomes of two trials. We favor this metric because it
does not require us to make a decision on a threshold for
spam labeling and/or the relative weights of false positives
and false negatives. In addition, AUC is insensitive to bias
in our validation set. Specifically, since our validation set is
constructed as a sample of some fraction z of spam accounts
and a different fraction y of non-spam accounts, changing the
values of z and y should have no impact on the expected
value of AUC.

In testing variants and parameters, we use a validation
set of 97,611 accounts (48,461 spam and 49,150 not spam).
Figure [I] shows results for our initial scoring, with values
of n ranging from 1 to 5. We ran the classifier using two
different feature sets: one where first name and last name
n-gram data are combined, and one where they are distinct.
We see that using distinct features is superior for all values
of n. All subsequent tests were conducted using distinct
features.

It appears from the data that increasing n improves the
classification only up to a certain point — the results for
n = 5 are worse than those for n = 4. We conjecture that
the number of 5-grams that appear in the validation set
but not in the training set offsets the improvement from
increased granularity. See Section [£.2] for further discussion
and ways to ameliorate the situation.

We also considered various smoothing parameters: Laplace
smoothing a.,,;, = J and interpolated smoothing a..,, =
0/Nw,y, each for § € (0.01,0.1,1,10,100). To our surprise,
and contrary to the results of Kohavi, Becker, and Som-
merfield [17], we found that a constant o,y = 0.1 performs
best in our experiments, slightly outperforming interpolated
smoothing with ¢ = 10 (see Figure . We use this smooth-
ing parameter for all subsequent experiments.

AUC for basic algorithm

\
|

AUC
0.74
J J
D

o first+last name n-grams combined
A first+last name n-grams distinct

T T T T 1
3 4 5

N
N

Length of n-grams

Figure 1: AUC for basic algorithm, with first and last name
features distinct or combined.

AUC for various smoothing parameters

S | o =001 A A
IS A 9=01 X
- + o=1 ¥
s e B
S g i £
< 37 8////
o | @—/’O\\
e —— Laplace smoothing ki
o | — interpolated smoothing
o
T T T
3 4 5

Length of n-grams

Figure 2: AUC for basic algorithm with various smoothing
parameters. We omit the plots for n = 1 and n = 2 since
all parameters perform approximately the same. We omit
the plots for § = 100 since the results are significantly worse
than those plotted.

AUC for algorithm with initial/terminal clusters

AUC
|
D\

0.74
|
N\

O basic algorithm
A with initial/terminal clusters

0.70
|
3

T T T T T
1 2 3 4 5

Length of n-grams

Figure 3: AUC for basic algorithm, with and without ini-
tial and terminal clusters.

4. IMPROVING THE FEATURE SET

4.1 Initial and terminal clusters

To augment the feature set, we observe that certain n-
grams may be more or less likely to correspond to fake ac-
counts if they start or end a name. For example, in our
training set the proportion if spam accounts with the 2-gram
zz appearing at the start of a name is 13 times the propor-
tion of spam accounts with zz appearing anywhere in the
name. We thus augment the feature set by adding phantom
“start-of-word” and “end-of-word” characters to each name
before splitting it into n-grams.

Formally, we add two new symbols \~ and \$ to our dic-
tionary of letters. For an m-character name W = cica2 - - cm
we set co =\", cma1 =\$, W’ = coc1 -+ - CmCma1, and com-
pute n-grams(W') using the definition of . (Clearly
this only adds information if n > 1.) With these phantom
characters added, the name David breaks into 3-grams as
(\"Da, dav, avi, vid,id\$).

We recomputed our training data with initial and terminal
clusters; the results appear in Figure [J] The magnitude
of the improvement increases with n., and for n = 5 the
improvement is large enough to make n = 5 better than
n =4 (AUC 0.843 for n =5 vs. 0.836 for n = 4).

4.2 Including missing features

It may happen that a name in our validation set contains
an n-gram w that does not appear in our training set. There
are two standard ways of dealing with this occurrence [17]:
either ignore the feature w entirely (which is equivalent to
assuming that 6,0 = 6.1, i.e., the probabilities of w ap-
pearing in each class are identical), or estimate values for
Owy. Until this point we have chosen the former; we now
investigate the latter.

Intuitively, we expect an n-gram that is so rare as to not
appear in our training set to be more likely to belong to a
spammer than an n-gram selected at random. Indeed, this is
what the data from the validation set show: the proportion
of missing features that belong to spam accounts ranges be-
tween 76% and 87% as n varies. The data also supports our
hypothesis that the reason n = 5 does not outperform n = 4
is that many more features are missing (8.8% vs. 3.0%), and

Missing features as a percentage of all features

10

O good accounts
B spam accounts

pct

o —

1 2 3 4 5

length of n-grams

Figure 4: Proportion of missing features in validation set,
broken down by spam label.

thus were ignored in our initial analysis. The proportions of
missing features for each n can be seen in Figure

To estimate parameters for missing features, we take the
approach of considering all missing features (for a fixed value
of n) as a single n-gram . We compute 63, by splitting
the data in half and labeling n-grams that appear only in
one half as “missing.” More precisely, we do the following:

Algorithm 4.1. Input: a set x of training samples W,
labeled with classes y, and a fixed integer n. Output: pa-
rameter estimates for missing values.

1. Randomly assign each training sample W € x to one
of two sets, A or B, each with probability 1/2.

2. Define g(A) = Uy ¢ 4 n-grams(W) and
9(B) = Uy ¢p n-grams(W).

3. For each class y, define

Nu";,y = Z Nw,y + Z Nw,y

weg(A) weg(B)
wég(B) wgg(A)

4. Compute 04y using (2.5).

When we include this “missing feature” feature, the AUC
values for n < 4 do not change noticeably, but the AUC for
n =5 increases from 0.843 to 0.849.

4.3 Recursively iterating the classifier

The above method incorporates a “one-size-fits-all” ap-
proach to estimating parameters for missing features. We
can do better by observing that even if a given n-gram is
not in our training set, the two component (n — 1)-grams
may appear in the training set. If one or both of these
(n — 1)-grams are missing, we can go to (n — 2)-grams, and
so on. We thus propose the following recursive definition for
estimating the parameter 6.y:

Definition 4.2. Let w be a character string of length n. Let
Osy be a parameter estimate for missing values of 1-grams
(as computed by Algorithm [{.1 wth n = 1), and let o,y be

a smoothing parameter. We define 0.y as follows:

Nw Y + aw Y .
—_ if Ny,y > 0,
Ny + Zw Qo y d Y
Oy = H 0wy if Nuy =0 andn >1,
w’€(n—1)-grams(w)
Ony if Nuy =0 andn =1,

We observe that under this formulation, if two consecu-
tive n-grams are missing, then the overlapping (n — 1)-gram
appears twice in the product 6,,. At the extreme, if a par-
ticular character does not appear in the training set, the
“missing feature” parameter 0y, is incorporated 2"~ ! times
in the product 6.y.

When we use the formula of Definition to compute
the parameters 6., for our classifier, the results for n < 4
change negligibly, but the AUC for n = 5 improves from
0.849 to 0.854.

5. EVALUATING PERFORMANCE
5.1 Results on Test Set

We ran our algorithm on a sequestered test set of 97,965
accounts, of which 48,726 were labeled as spam and 49,239
were labeled as good. We tried two different sets of param-
eters: a “full” version using 5-grams that is informed by the
above discussion, and a “lightweight” version using 3-grams
that is designed to be faster and use less memory. In light
of the above discussion we used the following parameters:

Full Version Lightweight Version

n 5 3

Qu,y 0.1 0.1

initial /terminal yes yes

missing n-grams | (n — 1)-grams fixed estimate
(Definition [£.2) | (Algorithm [4.1)

AUC 0.852 0.803

Figure [5] gives histograms of scores for the two runs. As
expected for the Naive Bayes classifier, scores cluster very
close to 0 or 1. We see by comparing the histograms that
scores computed by the lightweight algorithm are weighted
more towards the high end than those computed by the full
algorithm. For example, we have the following statistics for
scores below 0.05 and above 0.95 (the leftmost and rightmost
bars in the histograms, respectively):

Score+Label Full
score < 0.05, spam | 16191 (33%) | 12525 (26%)
score < 0.05, good 928 (1.9%) 433 (0.9%)
score > 0.95, spam | 19259 (40%) | 25844 (53%)
score > 0.95, good | 44966 (91%) | 45753 (93%)

Lightweight

(The percentages indicate the proportion of all samples
with that label appearing in the given histogram bucket.)
As a result, the lightweight version finds fewer false positive
spam names and more false negatives.

Precision and Recall.
In our setup, for a given score cutoff ¢, the precision func-
tion prec(c) denotes the fraction of correct labels out of all

Histogram of scores for "full" algorithm

80000
|

O good accounts
O spam accounts

Frequency
20000 40000 60000
1

o J
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Score
Histogram of scores for "lightweight" algorithm
o
o
S -
o
© O good accounts

O spam accounts

Frequency
20000 40000 60000
1

L -

[T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

0
L

Score

Figure 5: Histograms of scores for full and lightweight mod-
els, broken down by spam label.

Precision-recall plots for name scoring algorithm

o |
[
2
© |
s °
0
o
2
o
~
g
— Full algorithm
—— Lightweight algorithm
©
2 -
© |
=] T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 6: Precision—recall curves for full and lightweight
models. Solid lines indicate original test set; dashed lines
indicate test set corrected for mislabeled samples.

accounts labeled as spam by our classifier, while the recall
function rec(c) denotes the fraction of correct labels out of
all spam accounts. The solid lines in Figure[f] give precision—
recall curves for the two versions of our algorithm when run
against the sequestered test set. We observe that the algo-
rithms perform similarly at the low end, where most sam-
ples are spam. The full algorithm differentiates itself in the
middle of the range: as recall increases above 0.35 (corre-
sponding to a score cutoff of about 0.1 for the full algorithm
and 0.5 for the lightweight algorithm), the precision of the
lightweight algorithm declines much more quickly than that
of the full algorithm.

F-score.

When trying to detect spammy names, it is typically the
case that that the cost of a false positive in spam detection
(blocking a good user) is significantly higher than the cost
of a false negative (leaving a fake account alone). A good
user who is blocked represents lost engagement with the site
— and potentially lost revenue — while a bad user who is
not blocked based on a spammy name may be later caught
and blocked based on some other signal. Furthermore, false
positives are magnified by the fact that the vast majority of
users are not spammers.

Thus to determine a reasonable score cutoff for our clas-
sifier, we consider an F-score that weights precision more
heavily than recall. Specifically, given a parameter 8 that
indicates the ratio of importance of recall to importance of
precision, we compute

1 1\
Fy = 1+p5° :
max fa c?[%ﬁ](+5) (52 prec(c) + rec(c))

(See |28, Ch. 7].) We computed max Fj scores for § =
1,1/2,1/4,...,1/64 for the full and lightweight algorithms
and obtained the following results:

Full algorithm
B | max Fg-score | score cutoff | precision | recall

1 0.769 0.999 0.727 0.817
2-1 0.803 0.966 0.862 0.629
272 0.876 0.646 0.921 0.490
273 0.921 0.127 0.943 0.370
24 0.954 3.49¢-05 0.966 0.230
275 0.975 8.89¢-11 0.980 0.155
2-6 0.975 1.21e-08 0.976 0.179

Lightweight algorithm
B | max Fg-score | score cutoff | precision | recall

1 0.729 0.999 0.643 0.842
271 0.745 0.966 0.849 0.499
272 0.862 0.670 0.936 0.380
273 0.928 0.147 0.961 0.291
2% 0.964 1.19e-02 0.978 0.201
275 0.978 5.75e-05 0.983 0.163
276 0.981 6.34e-05 0.983 0.164

We see from these computations that if precision is weighted
much higher than recall (8 < 1/8), the two algorithms per-
form roughly identically. As recall gains in weight, we see
the full algorithm begin to outperform the lightweight ver-
sion.

5.2 Relative Feature Weights

In general, all it takes is one spammy n-gram to make a
name spammy; for example, we would consider the name
“XXXDavid” to be spam even though the substring “David”
looks good. Thus for our classifier to perform well, bad
features should be weighted more heavily than good features.

Our analysis suggests that this property holds intrinsically
for our data set, and we believe it results from the nature
of our training data. Specifically, the “spam” labels in our
training set consist of all accounts that have been flagged as
spam, not just those that have spammy names. Thus it is
far more likely for a “good” n-gram such as Dav to be found
on a spam account than it is for a “spammy” n-gram such
as XXX to be found on a good account. In terms of the
parameters that comprise the score s(Z), the absolute value
of log(fx x x1/0x xx0) will tend to be much larger than the
absolute value of log(0pavi/0Davo). As a result, even one
spammy n-gram will not be counterbalanced by any number
of good n-grams.

To evaluate this concept quantitatively, we bucketed scores
produced by our lightweight algorithm by | R(Z)| (see (2.4])
and computed the following quantities:

e percentage of samples in a bucket with a “very bad”
feature, defined as an n-gram w for which
10g(9w1/6‘w0) < -1,

e percentage of samples in a bucket with a “very good”
feature, defined as an n-gram w for which
log(Gwl/@wo) > 1.

The results appear in Figure [7] We see that as scores ap-
proach the middle from the extremes, the rate of very bad
features stays high while the rate of very good features starts
to decline sooner. For example, when |R(Z)| = 5, 75% of
samples have a “very good” feature with log(6w1/6wo) > 1.
On the other hand, when | R(Z)| = —5, 94% of samples have
a “very bad” feature with log(0y1/60w0) < —1. We conclude
that the “very bad” features contribute more to the ultimate
score than the “very good” features.

Percentage of samples with at least one very good/very bad feature

e
©
@
[}
@
[=%
£ o |
w o
k] good feature
% —— bad feature
T <
8 o 7
@
o
N
o
T T T T T
-10 -5 0 5 10

floor(log(R(x)))

Figure 7: Percentage of samples with at least one very
good or very bad feature, bucketed by |log R(Z)].

5.3 False Positives

We manually reviewed all 928 names in our test set that
were labeled “good” but were given a score of 0.05 or less by
our full algorithm. We found that a majority of these sam-
ples (552, or 59%) were in fact spammy names that had not
been labeled as such. Labeling these alleged false postives
samples correctly significantly improves precision at the low
end of the score spectrum. The dashed lines in Figure |§|
show precision—recall plots for the test set with the labels
corrected.

Of the manually-reviewed false positives that we determed
not to be spammy names, we observed a few patterns that
repeated:

e Mixed-language names. For example, a Chinese person
may enter his or her name in Chinese characters and
English transliteration. While LinkedIn does support
names in multiple languages [19], users may not be
aware of this feature or may want both languages to
show simultaneously.

e Users interchanging the first and last name fields. Since
our algorithm uses different features for first and last
names, a name that looks good when entered in the
correct fields may come up as spam when the fields
are interchanged.

e Users entering readable names with extra accents and/or
unusual characters. For example, a user might enter
“David” as “Oar16.” We speculate that these users are
attempting to maintain a legitimate presence on the
site while making it more difficult to search for their
names.

e Users entering non-name information in the name fields,
such as degrees, professional credentials, or military
ranks.

In Section [7] we discuss some possible approaches to filtering
out false positives in these categories.

5.4 False Negatives

Recall that the “spam” accounts in our training and test
sets consist of accounts that had been flagged as fraudulent
and/or abusive for any reason, not just having a spammy
name. Many of the spam accounts on LinkedIn have names
that do not appear spammy, so we would not expect our
classifier to detect these accounts. The histograms of Fig-
ure [5| support this assertion: while more than 90% of good
accounts have scores greater than 0.95, either 40% (full algo-
rithm) or 53% (lightweight algorithm) of the spam accounts
in our test set have scores above that point and would thus
be labeled as false negatives.

To further support this assertion, we manually reviewed
a sample of 100 accounts in our test set that were labeled
as spam but were given scores above 0.646 by the full algo-
rithm and above 0.670 by the lightweight algorithm. (These
cutoffs were chosen to maximize F}/4-score as discussed in
Section) Only seven of these accounts had names that
were spammy in our judgment.

If we extrapolate this 93% false negative rate in our la-
beling of high-scoring accounts to the entire validation set
above the cutoffs, then at these cutoffs we obtain recall 0.93
for the full algorithm and 0.90 for the lightweight algorithm
(compared with 0.49 and 0.38, respectively, using the initial
labels).

5.5 Running on Live Data

We implemented the lightweight version of our algorithm
in Python and trained it on a subset of the dataset dis-
cussed in Section [3:2] Using Hadoop streaming, we ran the
algorithm daily on new LinkedIn registrations throughout
the month of May 2013. The lowest-scoring accounts were
flagged as spam and sent to the Trust and Safety team for
appropriate action. We ran our new algorithm in parallel
with LinkedIn’s previous name-spam detection procedure,
which was based upon regular expressions.

As of early July, 3.3% of the accounts labeled as spam by
our new algorithm had had this label removed, while 7.0%
of the accounts labeled as spam by the old algorithm had
had their spam labels removed. LinkedIn deemed the new
algorithm so effective that the old algorithm was retired by
mid-June.

6. SCORING EMAIL ADDRESSES

Our algorithm can be applied to detect spam not only in
names but also in other short strings. In particular, email
usernames are particularly relevant for this kind of scor-
ing. While there is nothing about an email address that
violates terms of service or degrades the value of a social
network, there are still email addresses that are “spammier”
than others. For example, a real user’s email address will
often look like a name or a word in some language, while a
user who just wants to get past a registration screen may
sign up with “asdf@asdf.com,” and a bot generating a series
of accounts may sign up with email addresses consisting of
random strings of characters at some email provider.

We experimented with email data by incorporating it in
our algorithm in two ways: running the algorithm on email
usernames alone, and running the algorithm on email user-
names along with first and last names. (That is, we added
n-grams for email username to the feature set that included
n-grams for first and last names.) For the latter input data,

Precision-recall plots for name/email scores

o
=] kx
[<2]
2
«©
§ o7
2
O
2
o~
o
—— Names only
Emails only
© 4 —— Names and emails
o
w
2
T T T T T T
0.0 0.2 04 0.6 0.8 1.0

Recall

Figure 8: Precision—recall curves for algorithm on email
usernames, first/last name, and all three feature sets.

the max F}g-score is 0.936 (precision 0.966, recall 0.312),
at score cutoff 0.013. Precision-recall curves appear in Fig-
ure §

By itself, our algorithm applied to email usernames is not
too helpful in finding spammers. Precision drops off very
quickly, and even at the very low end we have worse results
than our name scoring algorithm: of the 6,149 accounts with
email scores less than 0.05, we find 5,788 spam accounts and
361 good accounts. Correcting for the mislabeled accounts
we found in Section [5.3] shifts only 28 labels from good to
spam.

However, we find that our results improve when we use
email scoring to supplement name scoring; the email fea-
tures provide a sort of “tiebreaker” for scores that are other-
wise borderline. In particular, adding email data improves
results in the middle of the precision—recall range. Further
work is needed to assess the magnitude of this effect and
to investigate other ways of combining email scoring with
name scoring.

7. CONCLUSIONS AND FURTHER WORK

We have presented a Naive Bayes classifier that detects
spammy names based on the n-grams (substrings of n char-
acters) appearing in that name, and discussed techniques for
improving and optimizing the algorithm. We tested “full”
and “lightweight” versions of the algorithm on data from
LinkedIn and showed that both were effective at catching
spam names at high precision levels. The lightweight ver-
sion becomes less effective more quickly than the full version
as the score cutoff increases.

One important direction for further work is to reduce the
algorithm’s false positive rate. In Section we discussed
some categories of false positives returned by the algorithm;
here we present some possible approaches to detecting and
eliminating them.

e Mixed-language names: if multiple languages are de-
tected, one could try to parse each name field into lan-
guage blocks and score each block separately. If the
name field contains a real name in each language then
both scores will be high.

e Switching name fields: one could try to score the first
name as a last name and vice versa. If the name is
actually spam then both permutations should score
badly, while if the name is legitimate but the fields
are switched the scores of the permuted names should
be high. The relative weighting of the permuted scores
vs. the original scores would have to be determined ex-
perimentally; we don’t want to negate the advantage
gained by scoring first and last names independently

(cf. Figurel[T).

e Unusual characters: one could try scoring a “reduced”
name obtained by mapping Unicode characters to ASCII
strings. Again we would want to ensure that this score
was appropriately weighted so as to not negate the ad-
vantage of scoring on the entire Unicode alphabet.

e Non-name information: one could try to detect appro-
priate non-name information such as degrees or quali-
fications (as opposed to irrelevant information such as
company names or job titles) by matching to a list. A
better approach would be to have a separate field for
such information, so the name field could be reserved
for the name only.

Another direction for further work is to strengthen the
adversarial model. Specifically, we have trained our classi-
fier under the assumption that the distribution of spammy
names is constant over time, while in practice it is likely that
malicious spammers will change their name patterns when
they find themselves getting blocked due to our classifica-
tion. We expect that if this adaptation occurs at a signifi-
cant scale, then the offenders will be caught LinkedIn’s other
spam-detection systems and the name-spam model can then
be retrained using the most recent data. To investigate these
effects we plan to retrain the model at regular intervals and
track the success rate of each iteration.

Acknowledgments.

The author thanks John DeNero for fruitful discussions
and Sam Shah, Vicente Silveira, and the anonymous referees
for helpful feedback on initial versions of this paper.

8. REFERENCES

[1] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos,
and C. D. Spyropoulos. An experimental comparison
of Naive Bayesian and keyword-based anti-spam
filtering with personal e-mail messages. In Proceedings
of the 23rd annual international ACM SIGIR
conference on Research and development in
information retrieval, SIGIR ’00, pages 160-167, New
York, NY, USA, 2000. ACM.

[2] I. Androutsopoulos, G. Paliouras, V. Karkaletsis,
G. Sakkis, C. D. Spyropoulos, and P. Stamatopoulos.
Learning to filter spam e-mail: A comparison of a
naive Bayesian and a memory-based approach. In
Proceedings of the Workshop "Machine Learning and
Textual Information Access”, European Conference on
Principles and Practice of Knowledge Discovery in
Databases (PKDD), pages 1-13, 2000.

[3] F. Benevenuto, G. Magno, T. Rodrigues, and
V. Almeida. Detecting spammers on Twitter. In
CEAS 2010 - Seventh annual Collaboration, Electronic
messaging, AntiAbuse and Spam Conference, 2010.

[4]

[10]

[11]

P. N. Bennett. Assessing the calibration of Naive
Bayes posterior estimates. Technical report, DTIC
Document, 2000. Available at http:
//www.dtic.mil/dtic/tr/fulltext/u2/a385120.pdf.
A. Blum and T. M. Mitchell. Combining labeled and
unlabeled data with co-training. In COLT, pages
92-100, 1998.

G. Brown, T. Howe, M. Thbe, A. Prakash, and

K. Borders. Social networks and context-aware spam.
In Proceedings of the 2008 ACM conference on
Computer supported cooperative work, CSCW ’08,
pages 403-412; New York, NY, USA, 2008. ACM.

Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro.
Aiding the detection of fake accounts in large scale
social online services. In NDSI, 2012.

Q. Cao and X. Yang. Sybilfence: Improving
social-graph-based sybil defenses with user negative
feedback. Duke CS Technical Report: CS-TR-2012-05,
available at http://arxiv.org/abs/1304.3819, 2013.
S. F. Chen and J. Goodman. An empirical study of
smoothing techniques for language modeling. In
Proceedings of the 34th annual meeting on Association
for Computational Linguistics, ACL ’96, pages
310-318, Stroudsburg, PA, USA, 1996. Association for
Computational Linguistics.

P. Domingos and M. Pazzani. Beyond independence:
Conditions for the optimality of the simple Bayesian
classifier. In Machine Learning, pages 105-112.
Morgan Kaufmann, 1996.

P. Domingos and M. Pazzani. On the optimality of the
simple Bayesian classifier under zero-one loss. Machine
learning, 29(2-3):103-130, 1997.

R. Duda and P. E. Hart. Pattern classification and
scene analysis. Wiley and Sons, Inc., 1973.

Facebook Inc. Statement of rights and responsibilities.
http://www.facebook.com/legal/terms, accessed 17
Jul 2013.

H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y.
Zhao. Detecting and characterizing social spam
campaigns. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, IMC
"10, pages 35-47, New York, NY, USA, 2010. ACM.
Google Inc. User content and conduct policy. http:
//www.google.com/intl/en/+/policy/content.html,
accessed 17 Jul 2013.

J. Hovold. Naive Bayes spam filtering using
word-position-based attributes. In CEAS, 2005.

(17]

(18]

(19]

20]

(21]

(22]

23]
(24]

25]

[26]

27]

(28]

29]

30]

(31]

R. Kohavi, B. Becker, and D. Sommerfield. Improving
simple Bayes. In Proceedings of the European
Conference on Machine Learning, 1997.

LinkedIn Corporation. Internal data, accurate as of 1
Jun 2013.

LinkedIn Corporation. Creating or deleting a profile in
another language. http://help.linkedin.com/app/
answers/detail/a_id/1717) accessed 22 July 2013.
LinkedIn Corporation. User agreement.
http://www.linkedin.com/legal/user-agreement,
accessed 17 Jul 2013.

A. McCallum and K. Nigam. A comparison of event
models for Naive Bayes text classification. In
Proceedings of AAAI 1998.

V. Metsis, I. Androutsopoulos, and G. Paliouras.
Spam filtering with Naive Bayes — which Naive
Bayes? In CEAS, 2006.

T. Mitchell. Machine Learning. McGraw-Hill, 1997.

I. Rish. An empirical study of the Naive Bayes
classifier. In IJCAI 2001 workshop on empirical
methods in artificial intelligence, volume 3, pages
41-46, 2001.

M. Sahami, S. Dumais, D. Heckerman, and

E. Horvitz. A Bayesian approach to filtering junk
e-mail. In Learning for Text Categorization: Papers
from the AAAI Workshop, Madison Wisconsin,
volume Technical Report WS-98-05, pages 55-62.
AAAT Press, 1998.

K.-M. Schneider. A comparison of event models for
Naive Bayes anti-spam e-mail filtering. In FACL,
pages 307-314, 2003.

A. K. Seewald. An evaluation of Naive Bayes variants
in content-based learning for spam filtering. Intelligent
Data Analysis, 11(5):497-524, 2007.

C. J. van Rijsbergen. Information Retrieval.
Butterworth-Heinemann, 2nd edition, 1979.

G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng,
and B. Y. Zhao. You are how you click: Clickstream
analysis for sybil detection. In Proceedings of The 22nd
USENIX Security Symposium, pages 241-256, 2013.
C. M. Zhang and V. Paxson. Detecting and analyzing
automated activity on Twitter. In PAM, pages
102-111, 2011.

H. Zhang. The optimality of Naive Bayes. In FLAIRS
Conference, pages 562—567, 2004.

http://www.dtic.mil/dtic/tr/fulltext/u2/a385120.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a385120.pdf
http://arxiv.org/abs/1304.3819
http://www.facebook.com/legal/terms
http://www.google.com/intl/en/+/policy/content.html
http://www.google.com/intl/en/+/policy/content.html
http://help.linkedin.com/app/answers/detail/a_id/1717
http://help.linkedin.com/app/answers/detail/a_id/1717
http://www.linkedin.com/legal/user-agreement

	Introduction
	Our contribution
	Our Approach
	Missing Features
	Experimental Results

	Multinomial Naive Bayes
	The Basic Algorithm
	N-grams of Letters
	Dataset and Metrics
	Initial results

	Improving the Feature Set
	Initial and terminal clusters
	Including missing features
	Recursively iterating the classifier

	Evaluating Performance
	Results on Test Set
	Relative Feature Weights
	False Positives
	False Negatives
	Running on Live Data

	Scoring Email Addresses
	Conclusions and Further Work
	References

