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Abstract

Constructing Abelian Varieties for Pairing-Based Cryptography
by

David Stephen Freeman
Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Kenneth A. Ribet and Professor Edward F. Schaefer, Co-chairs

Abelian varieties that have small embedding degree with respect to a large prime-order
subgroup are key ingredients for implementing pairing-based cryptographic systems. Such
“pairing-friendly” abelian varieties are rare and thus require specific constructions.

We begin by giving a single coherent framework that classifies the known constructions
of pairing-friendly ordinary elliptic curves. This abstract framework leads us to discover
several new constructions of such curves. Our most important contribution in this regard
is the construction of elliptic curves of prime order with embedding degree 10, which solves
an open problem posed by Boneh, Lynn, and Shacham. We also describe a procedure for
generating families of pairing-friendly elliptic curves with variable CM discriminant, which
can be used to increase the degree of randomness in cryptosystem parameters.

We then consider higher-dimensional abelian varieties. We provide two algorithms
that, given a CM field K, construct Frobenius elements 7 of pairing-friendly ordinary
abelian varieties with complex multiplication by K. Both algorithms generalize existing
constructions of pairing-friendly ordinary elliptic curves. The first generalizes the method
of Cocks and Pinch, while the second generalizes that of Brezing and Weng and leads to
varieties over smaller fields than the first. Given the output 7 of either algorithm, one can
then use complex multiplication methods to construct explicitly an abelian variety with
Frobenius element 7.

Finally, we turn to the question of the complex multiplication methods used to con-
struct explicit examples of pairing-friendly abelian varieties. We focus on the Chinese

remainder theorem algorithm of Eisentrdger and Lauter for computing Igusa class polyno-



mials of quartic CM fields. One of the steps of this algorithm requires determining whether
endomorphism rings of Jacobians of genus 2 curves over small prime fields are isomorphic to
the ring of integers in a given quartic CM field. We provide an efficient probabilistic algo-
rithm that carries out this computation. Using our algorithm to determine endomorphism
rings, we have implemented a probabilistic version of the full Eisentrager-Lauter algorithm
in MAGMA and used it to compute Igusa class polynomials for several quartic CM fields
K.
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Chapter 1

Introduction

1.1 Pairings in cryptography

The use of abelian varieties in public-key cryptography goes back to the mid-1980s,
when Victor Miller [39] and Neal Koblitz [65] independently proposed using groups of points
on elliptic curves in discrete logarithm-based cryptosystems. The discrete logarithm prob-
lem on elliptic curves has now been studied extensively for more than twenty years, and it
appears that the initial claim that the problem is computationally infeasible is still sound
— to this day, there is no algorithm that solves the problem in less than exponential time.

Higher-dimensional abelian varieties first appeared on the scene when Koblitz [(6]
proposed that the discrete logarithm problem is also infeasible on Jacobians of hyperelliptic
curves over finite fields. The supposed advantage of g-dimensional abelian varieties over
elliptic curves is that one can work over a field that is a factor of g smaller while retaining
the same level of security, thus leading to potential speed advantages. However, it is only
recently that the arithmetic operations on these varieties have been optimized to the point
where, for certain applications, Jacobians of hyperelliptic curves are now competitive with
elliptic curves in terms of performance at a given security level [11].

In the early days of elliptic curve cryptography, supersingular elliptic curves were often
proposed for use in cryptosystems. Supersingular curves F over finite fields F, have the
feature that their number of F,-rational points is easy to count, which was important in
the days before fast point-counting algorithms were developed. However, in 1993 Menezes,
Okamoto, and Vanstone [36] showed that the Weil pairing can be used to reduce the discrete

logarithm problem on a supersingular elliptic curve E over [, to the same problem in the



multiplicative group of some extension field F» with & < 6. Shortly thereafter, Frey and
Riick [43] devised a similar reduction using the Tate pairing, which also applies to higher-
dimensional abelian varieties. Since there exist subexponential-time algorithms for discrete
logarithms in multiplicative groups of finite fields, the discrete logarithm can usually be
computed faster in F;k than in F(F,), and thus these reductions were interpreted as attacks
on the discrete logarithm problem on elliptic curves.

After the publication of the MOV and Frey-Riick attacks, supersingular elliptic curves
were commonly perceived as “weak” and thus unsuitable for cryptography. This attitude
reigned until 2000, when Antoine Joux [60] proposed a one-round protocol for three-party
key agreement using the Weil or Tate pairings on supersingular elliptic curves. Joux’s key
observation was that the curve parameters can be chosen so that the discrete logarithm
problem is still infeasible even after the MOV or Frey-Riick reduction, and that the bilinear
property of the pairing allows one to perform computations in the “target group” IFqu that
previously appeared to require a discrete logarithm.

Joux’s discovery opened the floodgates, and in the next few years many important
cryptosystems were constructed that made use of bilinear maps. The greatest success was
the development of identity-based encryption, which was discovered independently by Sakai,
Ohgishi, and Kasahara [109] and Boneh and Franklin [14], and which solved a problem first
posed by Shamir in 1984 [I14]. Other notable accomplishments include short signature
schemes [17], broadcast encryption with small ciphertexts [15], and applications to private
information retrieval and zero-knowledge proofs [16]. The subject has now expanded to the
point where the First International Conference in Pairing-Based Cryptography was held in
Tokyo in 2007; 86 papers were submitted and 18 were presented at the conference [121].
This work is no longer completely theoretical, either — at least one company, Voltage,
Inc. [1206], has brought pairing-based cryptography to market.

All of the pairing-based cryptographic constructions use the pairing as a “black box”;
that is, they can be implemented using any groups on which there is a nondegenerate bilinear
map, or pairing. While the security proofs of these systems usually make use of assumptions
such as the “bilinear Diffie-Hellman assumption” [14], in the most general sense the security
level of the system is determined by the complexity of the discrete logarithm problems in
the domain (“source group”) and codomain (“target group”) of the pairing.

At present, the only known pairings between groups in which the discrete logarithm

problems are computationally infeasible are the Weil and Tate pairings on abelian varieties



over finite fields, and their variants such as the Eta [7] and Ate [50] pairings. If A is a
abelian variety defined over the field F,; of ¢ elements, these pairings in general take as
input a point P defined over F, and a point () defined over some extension field F ., and
produce as output an element e(P, Q) of the multiplicative group F qu.

For a pairing-based system using A to be secure, the discrete logarithm problems in
A(F,) and F;k must both be infeasible. The best known generic discrete logarithm algorithm
on abelian varieties (in both theory and practice) is the parallelized Pollard rho algorithm
[104, 123]. This algorithm has heuristic running time O(y/r/m), where r is the size of largest
prime-order subgroup of A(F,) and m is the number of processors used. In dimensions g > 3
index calculus methods have been developed that can solve the discrete logarithm problem
in time O(q?>~%/9), where the implied constant depends on g [I, 49, 53, 48]. For fixed
g these methods are still exponential in the field size ¢; however if the size of the group
A(F,) is held constant, index calculus methods are subexponential in the dimension g. Thus
abelian varieties of high dimension are usually considered to be unsuitable for cryptographic
applications.

On the other side of things, the best algorithm for discrete logarithm computation in
finite fields is the index calculus attack (e.g., [99]), which has running time subexponential
in the field size. Thus to achieve the same level of security on both sides of the pairing,
the size ¢* of the extension field must be significantly larger than r. The ratio of these
sizes is computed from three parameters: the embedding degree, which is the degree k of
the extension field required by the pairing; the dimension g of the abelian variety; and a
parameter p, which is defined to be glogg/logr and which roughly measures the size of
the entire group A(F,) relative to the size of the prime-order subgroup that provides input
points to the pairing. The ratio of the number of bits in the extension field size to the
number of bits in the subgroup order is thus given by p- k/g.

There has been much speculation about the exact sizes of r and ¢* required to match
standard sizes of keys for symmetric encryption, using for example the Advanced Encryption
Standard (AES) [74, ]. We outline in Table 1.1 one view of the matter for g = 1 or 2,
distilled by Mike Scott from material taken from various authoritative sources, in particular
[17] and [74]. The listed bit sizes are those matching the security levels of the SKIPJACK,
Triple-DES, AES-Small, AES-Medium, and AES-Large symmetric key encryption schemes.
By a “b-bit security level,” we mean the minimum number of bit operations necessary to

break the system is (conjecturally) 2°. In dimensions g > 3 the subgroup size r should be



Table 1.1: Bit sizes of parameters for one- and two-dimensional abelian varieties and cor-
responding embedding degrees to obtain commonly desired levels of security.

Security level | Subgroup size | Extension field size p-k
(in bits) r (in bits) q" (in bits) g=1| g=2
80 160 960 — 1280 6-8 | 12-16
112 224 2200 — 3600 10 — 16 | 20 — 32
128 256 3000 — 5000 12-20 | 24 - 40
192 384 8000 — 10000 20 — 26 | 40 — 52
256 512 14000 — 18000 28 — 36 | 56 — 72

increased to take into account the existence of index calculus attacks, and the embedding
degree k adjusted to take into account both r and g.

As we can see from the table, to achieve varied levels of security it is necessary to
construct curves with varying embedding degree. However, in their paper on the Weil
pairing reduction, Menezes, Okamoto and Vanstone [36] showed that supersingular elliptic
curves always have embedding degree k£ < 6. Rubin and Silverberg [108] generalized this
work to show that for g < 6, supersingular abelian varieties always have embedding degree
k < 7.5¢g. Since these values are at the low end of the security spectrum (as Table 1.1 shows
for the case where g =1 or 2 and p = 1), to obtain efficient performance at higher security
levels we must construct non-supersingular varieties that have larger embedding degrees.
As we will see in Section 1.2.3 below, this is in general a hard problem. We thus have the

following

Motivating Problem. Given positive integers b, k£, and g, construct a g-dimen-
sional abelian variety over a finite field that has a b-bit prime-order subgroup

and embedding degree k.

Any solution to this problem must be feasible for b of cryptographic size, i.e., large
enough so that the discrete logarithm problem in a group whose order is a b-bit prime
number is computationally infeasible. For current technology this means b > 160. By
“construct,” we mean that we wish to describe the given abelian variety explicitly in a
way such that both arithmetic on the abelian variety and pairings can be computed in a
reasonable amount of time with current hardware and software.

The statement of the Motivating Problem refers to the size of the subgroup on the

abelian variety and the embedding degree, but does not address directly the third parameter



needed to compute the security level in the finite field, namely the p-value. In general,
varieties with small p-values are desirable in order to speed up arithmetic on the abelian
variety. For example, an elliptic curve with a 160-bit subgroup and p = 1 is defined over
a 160-bit field, while a curve with a 160-bit subgroup and p = 2 is defined over a 320-
bit field, and group operations and pairings can be computed much more quickly on the
first curve. In addition, the cryptographic elements of a pairing-based protocol (such as
keys and ciphertexts) usually consist of points on the abelian variety and are described in
terms of coordinates in [y, so systems using abelian varieties with smaller p-values require
less bandwidth for the same security level. Thus in our attempts to solve the motivating
problem, we prefer abelian varieties with smaller p-values, with our ultimate goal being

varieties with a prime number of points, which have p =~ 1.

1.2 Pairing-friendly abelian varieties

Before we discuss our contribution to the solution of the Motivating Problem, we give
some relevant background on elliptic curves and abelian varieties and define the technical
terminology we will use throughout this dissertation.

For further background, Silverman [117] provides an excellent exposition of elliptic

curves; information on abelian varieties can be found in the article of Waterhouse and Milne

[129], which focuses on varieties over finite fields, and those of Milne [90, 92], which treat
varieties over arbitrary fields. Lang’s book [72] is a standard reference for basic algebra,
while Hartshorne’s [55] is the same for algebraic geometry.

An abelian variety A is a smooth, projective, absolutely irreducible algebraic variety
with a group structure whose operations are given by algebraic morphisms. An elliptic curve
is a one-dimensional abelian variety, and an abelian surface is a two-dimensional abelian
variety. If A is an abelian variety defined over a field F' (written A/F'), we denote by A(F')
the group of F-rational points of A. If r is an integer, then A[r] denotes the group of all
r-torsion points of A defined over an algebraic closure F' of F. We denote by A(F)[r] the
group of r-torsion points of A defined over F'. If A has dimension ¢ and r is prime to the
characteristic of F, then A[r] = (Z/rZ)9.

A positive-dimensional abelian variety A/F is simple (or F-simple) if it is not isogenous
over F to a product of lower-dimensional abelian varieties. We say that A is absolutely simple

if it not isogenous over F' to a product of lower-dimensional abelian varieties.



1.2.1 Frobenius endomorphism and CM fields

Let F, denote the finite field of g elements. Every abelian variety A defined over F,
has an endomorphism called the Frobenius endomorphism, which is denoted by 7 and which
operates by raising the coordinates of a point to the qth power. The Frobenius endomor-
phism satisfies a monic, integer polynomial hy known as the characteristic polynomial of
Frobenius, which is the characteristic polynomial of the action of 7w on the Tate module T}
for any prime ¢t ¢ [90, §12]. By a theorem of Weil [90, Theorem 19.1], all of the complex
roots of h 4 have absolute value ,/g; a monic, irreducible polynomial in Z[z] with this prop-
erty is called a g- Weil polynomial, and any root is called a g- Weil number. By Honda-Tate
theory [122], g-Weil polynomials are in one-to-one correspondence with isogeny classes of
simple abelian varieties over [F,.

If A is simple, then hy is a power of an irreducible polynomial and we can view
m as an element of a number field K. The field K is either a CM field, which is an
imaginary quadratic extension of a totally real field, or the field Q(,/g) [122]. We call a
CM field K primitive if it contains no proper CM subfields. The full endomorphism algebra
E = Endp(A) ® Q is a central simple algebra over K = Q(7), and by a theorem of Tate
[122] it satisfies

2. dim(A) = [E : K]'?[K : Q). (1.1)

Since A(IF,) is the kernel of the endomorphism 7 — 1, we have
BAF,) = ha(1). (12
If E = K = Q(m), then we also have
#A(F,) = Normg (7 — 1). (1.3)

A g-dimensional abelian variety A defined over a field F' of characteristic p is ordinary
if dimg, A[p] = g, or equivalently, if the middle coefficient of h 4 is prime to p. We say that A
is supersingular if A is F-isogenous to a product of supersingular elliptic curves. Silverman
[117, Theorem 3.1] characterizes supersingular elliptic curves, while Galbraith [, Theorem
1] gives several equivalent conditions for an abelian variety to be supersingular. We call
a g-Weil number 7 ordinary or supersingular if the corresponding abelian variety (in the
sense of Honda-Tate theory [122]) is the same. If g > 2 then there are g-dimensional abelian

varieties that are neither ordinary nor supersingular.



If A is ordinary and simple then the endomorphism ring End(A) is commutative. It
then follows from (1.1) that £ = K = Q(7) and K has degree 2g, where g = dim A. In
this case, End(A) is an order O in the ring of integers of K (denoted O ). We take the
statement A has complex multiplication by K or CM by K to mean that End(4) @ Q = K,
and we take the statement A has CM by O to mean that End(A) = O C Og. We will
discuss the theory of complex multiplication further in Chapter 4.

In the case of elliptic curves, we will often work with the trace of the Frobenius en-
domorphism, which is defined to be the integer ¢ = 7 + 7. Equation (1.2) then tells us
that

#E[Fq) =q+1—t. (1.4)

The trace satisfies the Hasse bound [t| < 2,/q [117, §5.1], which leads to upper and lower

bounds on the number of [F -rational points of E:

q—2/q+1<#EF,) <q+2/q+1.

If E/F, is an elliptic curve with trace t, then ¢ is relatively prime to ¢ if and only if E is

ordinary.

1.2.2 Curves and Jacobians

Throughout this dissertation, a curve will refer to a smooth, projective, absolutely
irreducible algebraic variety of dimension one. We will often describe curves by equations
in two variables, possibly with a singularity at infinity, such as C : 4% = f(x). In this case
we take the curve C to be the normalization of the projective closure of the affine plane
curve defined by this equation. The genus of a curve C' is the dimension of the space of
regular differentials on C.

A hyperelliptic curve over a field F is a curve C/F of genus g > 2 for which there exists
a two-to-one map, defined over F', from C' to the projective line P'. If the characteristic of
F'is not 2, any hyperelliptic curve of genus g can be represented by an affine model of the
form y? = f(x), where f is a polynomial in F[z] of degree 2g + 1 or 2g + 2 with no multiple
roots. All curves of genus 2 are hyperelliptic (see [55, Exercise IV.1.7]).

If C is a curve over F, the Jacobian of C, denoted Jac(C), is a principally polarized
abelian variety over F' of dimension g, where g is the genus of C. The group Jac(C)(F) is

isomorphic to the group Pic’(C) given by linear equivalence classes of degree-zero divisors



on C, the base extension of C to F. (For more information on Jacobians, see [91].) We will
denote by O the trivial divisor class, which is the identity in the group Jac(C)(F). When
we say that a curve C has complex multiplication by a field K or an order O, we mean that
Jac(C) has this property.

If C is a genus 1 curve given by a Weierstrass equation of the form y? = f(z) with
deg f = 3, we denote by O the single point at infinity in the projective closure of this affine
curve. We then have an isomorphism of varieties C' — Jac(C') given by ¢ : P — [P — O)].

We will identify C' with Jac(C') by this isomorphism, and call C' an elliptic curve.

1.2.3 Pairings and embedding degrees

Let A be an abelian variety defined over a field F', and let r be a positive integer
relatively prime to char F'. Let u, be the group of rth roots of unity in an algebraic closure

of F'. The Weil pairing is a nondegenerate, bilinear, Galois-equivariant map

Cweitr  Alr] X Alr] — pir,
where A is the dual of A. (If A is principally polarized, as is the case when A is a Jacobian,
then A = A.) For definitions of the Weil pairing and proofs of its properties, see [117, §3.8]
for elliptic curves and [90, §16] for general abelian varieties.
If F' is a finite field, the Tate pairing is a nondegenerate, bilinear, Galois-equivariant
map

Ctater : A(F)[r] x A(F)/rA(F) — F*/(F*)".

If i, C F, then the target group F*/(F*)" is isomorphic to p,; otherwise it is isomorphic

to us for some s | r. For a definition of the Tate pairing and proofs of its properties, see

[33].
From these descriptions it is apparent that if F' is finite, then to obtain Weil or Tate

pairing values of order r we must work over a field containing the rth roots of unity.

Definition 1.2.1. Let A be an abelian variety defined over a field F', and let r be a positive
integer relatively prime to char(F'). We say that A has embedding degree k with respect to
r if

1. A has a F-rational point of order r, and

2. [F(u) : F] = k.



If C is a curve, then we say that C' has embedding degree k with respect to r if and only if
the Jacobian of C' does.

We often ignore r when stating the embedding degree, as it is usually clear from the
context.

The embedding degree gets its name because we can use a pairing to embed a cyclic
subgroup of A(F) of order r into the multiplicative group of the degree-k extension of F'.
The Menezes-Okamoto-Vanstone attack on the discrete logarithm problem on supersingular
elliptic curves [36] makes use of such an embedding. If A is a g-dimensional abelian variety
defined over F, with ¢ = p% and m is the multiplicative order of p modulo r, then the
quantity m/dg is a good measure of the security of cryptosystems based on A [58]. If Fy is
a prime field (i.e., d = 1) then this quantity is equal to k/g.

For constructive applications of pairings, the embedding degree of A needs to be
small enough so that the pairing is easy to compute, but large enough so that the discrete
logarithm in quk is computationally infeasible. Balasubramanian and Koblitz [5] showed
that for a random elliptic curve E over a random field F, and a prime r =~ ¢, the probability
that E has embedding degree less than log? ¢ with respect to r is vanishingly small, and
in general the embedding degree can be expected to be around r. Luca, Mireles, and
Shparlinski [79] have obtained similar results for fixed values of ¢, and we expect analogous
results to hold in higher dimensions. We conclude that if r is around 2'%° (the smallest value
currently acceptable for security in implementations) pairings on a random abelian variety
will take values in a field of roughly 2160 bits, so the computation is completely hopeless.

To avoid the Pohlig-Hellman attack [103], the points on A used in cryptographic
protocols should have prime order. Thus we wish to construct abelian varieties over finite
fields that have points of large prime order r and small embedding degree with respect to
r. Such varieties are (informally) called “pairing-friendly.”

Constructions of pairing-friendly abelian varieties make substantial use of the theory
of cyclotomic polynomials and cyclotomic fields. We recall a few basic facts here; for a
deeper discussion, see Lidl and Niederreiter’s book [77]. For every positive integer k, we let
(% denote a primitive kth root of unity in Q, i.e., an algebraic number such that (¢;)* =1
and (¢x)! # 1 for any positive £ < k. The minimal polynomial of ¢}, over Q is called the kth

cyclotomic polynomial and is denoted ®(x). These polynomials have integer coefficients
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and can be defined recursively by setting ®;(z) = z — 1 and using the formula
ab =1 =] ®a(2) (1.5)
d|k
for k > 1. The degree of ®x(x) is denoted ¢(k) and is also called Euler’s phi function; it

gives the number of positive integers less than or equal to k that are relatively prime to k.

Lemma 1.2.2. Let A be an abelian variety over a finite field F, with an Fy-rational point

of order r. If r is relatively prime to q then the following conditions are equivalent:

1. A has embedding degree k with respect to r.
2. k is the smallest integer such that r divides ¢* — 1.

3. k is the multiplicative order of ¢ modulo .
Furthermore, if v is a prime not dividing k then these conditions are equivalent to
4. ®r(q) =0 (mod r), where ®y, is the kth cyclotomic polynomial.

Proof. The equivalence of (1) and (2) follows from the fact that the multiplicative group of
a finite field is cyclic, and the equivalence of (2) and (3) follows trivially from the definitions.

Now suppose r is prime and (2) holds, so 7 | ¢* —1 but 7 { ¢* — 1 for any 1 < i < k. By
(1.5) and since 7 is prime, this means r | ®;(q). Conversely, if (4) holds, then (1.5) implies
that | ¢* — 1. It remains to show that 7 { ¢ — 1 for any 1 <4 < k. We follow Menezes’
proof [35, Lemma 6.3]. Let f(z) = 2¥ — 1 and F = Z/rZ. Then F is a field. Since r { k, we
have ged(f(z), f/(z)) = 1 in F[z]. Thus, f has only single roots in F. Using (1.5) and the
fact that ¢ is a root of @ (z) over F, we obtain ®4(¢) #0 (mod r) for any d | k, 1 < d < k.
Therefore,  { ¢¢ — 1 for any d | k, 1 < d < k. Finally, we note that r { ¢’ — 1 for any positive

i that does not divide k, since in this case we would have r | ¢8d(F) — 1. O

We can also give a characterization of the embedding degree in terms of the Frobenius

endomorphism 7.

Corollary 1.2.3. Let A/F, be a simple abelian variety with Frobenius endomorphism m,
and suppose that K = Q(m) equals End(A) ® Q. Let k be a positive integer, @y, the kth

cyclotomic polynomial, and r a square-free integer not dividing kq. If

Normgg(r—1) = 0 (mod r),
(I’k(ﬂ'f) 0

(mod ),
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then A has embedding degree k with respect to r.

Proof. Since r is square-free, the first condition tells us that A(F,) has a cyclic subgroup
of order r, while the second tells us that condition (4) of Lemma 1.2.2 holds for each prime

dividing r. O

We also observe that in the case of an elliptic curve E/F, with trace of Frobenius ¢
and a cyclic subgroup of order r, the formula for the number of points (1.4) implies that

g=t—1 (mod r), and thus we can rephrase Lemma 1.2.2 in terms of ¢t — 1:

Corollary 1.2.4. Let E be an elliptic curve over a finite field Fy with trace of Frobenius t
and an F,-rational point of order r. If r is relatively prime to q then the following conditions

are equivalent:
1. E has embedding degree k with respect to r.
2. k is the smallest integer such that v divides (t — 1)* — 1.
3. k is the multiplicative order of t — 1 modulo r.
Furthermore, if r is a prime not dividing k then these conditions are equivalent to
4. Pp(t—1) =0 (mod r), where @y, is the kth cyclotomic polynomial. O

For implementation purposes, the subgroup of prime order r should be close as possible
to the full group A(F,), with the “ideal” case being that r is actually the full group order.
Since this ideal is difficult to achieve in practice, we define a parameter p that represents how
close to this ideal a given g-dimensional abelian variety is. Using the fact that #A(F,) ~ ¢9
[90, Theorem 19.1], we can approximate the ratio of the size (in bits) of this group order to
the size (in bits) of the subgroup order r by the parameter

_ glogg
logr ~

(1.6)

We can interpret the p-value of an abelian variety as the ratio of the abelian variety’s
required bandwidth to its security level. As we discussed in Section 1.1, abelian varieties
with p-values close to 1 usually provide the best performance in implementations. However,
such varieties are often limited to specific, small embedding degrees k, and thus to achieve
comparable security levels in A[r| and Fqu it is not uncommon to use varieties with larger

p-values.
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1.2.4 Complex multiplication methods

From the discussion above, we see that the problem of constructing a pairing-friendly
abelian variety essentially reduces to determining a ¢-Weil number 7 and a subgroup size
r that have the relationship specified by Corollary 1.2.3, and then constructing an explicit
abelian variety over IF, with Frobenius element 7. The bulk of this dissertation is dedicated
to solving the first problem. The latter task is achieved by complex multiplication methods,
or CM methods, which we now discuss.

The key idea underlying CM methods is the following: by the Serre-Tate theory of
canonical liftings [78], every ordinary abelian variety A over F, is the reduction modulo a
suitable prime p over ¢ of an abelian variety Ay over Q with End(Ap) = End(A). Further-
more, if A is a simple, principally polarized abelian variety of dimension g < 3, then Ay is
the Jacobian of a genus g curve Cy/Q.

At present, CM methods have only been developed in dimension g < 3. In these cases,

we have the following:

Proposition 1.2.5. Let 7 be an ordinary q- Weil number, and suppose that the number field
K = Q(n) is a primitive CM field of degree 2g with g < 3. Then there is a genus g curve
C/F, such that End(Jac(C)) = Ok, the ring of integers of K, and either

1. C is elliptic or hyperelliptic and Jac(C) has Frobenius element 7, or
2. C is a smooth plane quartic and Jac(C) has Frobenius element m or —m.

Proof. The result is well-known for ¢ = 1, so we consider the cases g = 2 or 3. Let A be the
isogeny class of abelian varieties over [F, with Frobenius element 7. Since K is primitive and
7 is ordinary, it follows from the Honda-Tate theorem [122, Théoreme 1] that any abelian
variety A € A is absolutely simple.

Suppose there is an A € A that is principally polarized and has endomorphism ring
isomorphic to Og. Then by theorems of Weil (for ¢ = 2) and Oort and Ueno (for g = 3)
[100], A is Fq—isomorphic to the Jacobian of a genus g curve C. If C is hyperelliptic, then
there is a hyperelliptic curve C/F, such that Jac(C) is F-isomorphic to A (see e.g. [73,
Appendix, §7]), proving statement (1). If C is not hyperelliptic then there is a curve C/F,
such that Jac(C') is Fy-isomorphic to either A or its quadratic twist A’ (again, see e.g. [73,

Appendix, §7]). Any nonhyperelliptic curve of genus 2 or 3 is a smooth plane quartic, so
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statement (2) now follows from the facts that End(A’) = End(A) and A’ has Frobenius
element —r.

It remains to show that there is an A € A that is principally polarized and has
endomorphism ring isomorphic to Og. Let Ky be the maximal totally real subfield of K.
By the work of Howe [59, Propositions 5.7 and 10.1], it suffices to show that there is a finite
prime p of Ky that ramifies in K. For g = 2, a variation of Howe’s proof of [59, Lemma
12.1] shows that if there is no finite prime p of Ky that ramifies in K, then K contains an
imaginary quadratic subfield, contradicting the assumption that K is primitive. For g = 3,

the result follows directly from [59, Corollary 10.3]. O

Proposition 1.2.5 has as an immediate consequence that given a primitive CM field K
and an ordinary Weil number m € Ok, we can solve the construction problem by compiling
the finite list of Q-isomorphism classes of curves in characteristic zero whose Jacobians have
CM by Og. From representatives of this list, we obtain a list C of curves over F, whose
Jacobians have CM by Ok by reducing at some fixed prime p over q. Changing the choice
of the prime p amounts to taking the reduction at p of conjugate curves, which also have
Jacobians with CM by Og.

For every curve C' € C, we compute the set of its twists, i.e., all the curves up to [Fy-
isomorphism that become isomorphic to C over F,. If C is elliptic or hyperelliptic (which
is always the case when g < 2), then there is at least one twist C’ of a curve C' € C whose
Jacobian has the specified Frobenius element 7. This curve can be selected from the list
of twists using the fact that # Jac(C)(F;) = Normg g(m — 1). (Note that while efficient
point-counting algorithms do not exist for varieties of dimension g > 1, if ¢ > ¢g we can
determine probabilistically whether an abelian variety over I, has a given order by choosing
a few random points, multiplying by the expected order, and seeing if the result is always
the identity.) If C' is not hyperelliptic, then it may happen that we can only find a curve C’
such that Jac(C’) has Frobenius element —; in this case the desired abelian variety is the
quadratic twist of Jac(C"), which cannot be described as the Jacobian of a curve over Fy.

It now remains only to construct the list of curves over Q with CM by Of.

In genus 1, where we are dealing with elliptic curves, the problem has been studied
extensively. The j-invariants of elliptic curves over Q with CM by the ring of integers O of
a quadratic imaginary field K are the roots of the Hilbert class polynomial of K, which is a

monic, square-free polynomial with integer coefficients. There are three different approaches
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to computing the Hilbert class polynomial: a complex-analytic algorithm [3, 35], a Chinese
remainder theorem algorithm [23, 2], and a p-adic algorithm [29, 20]. The best running
time for these algorithms is O(h%), where hg is the class number of K [35, 20]. Since

the degree of the Hilbert class polynomial is hx and the bit size of the coefficients grows
roughly linearly in hg, this running time is essentially the best possible. At present, the
largest class number for which the elliptic curve CM method is feasible is hy = 10° [35].

Analogous methods exist for constructing genus 2 curves over Q with CM by the ring
of integers O of a given quartic CM field K. In this case, the solutions rely on computing
the curves’ absolute Igusa invariants via the computation of the Igusa class polynomials
for K, which lie in Q[z]. (A precise definition of the Igusa class polynomials appears on
page 96.) Again there are three different approaches to computing the class polynomials:
a complex-analytic algorithm [119, , , 27], a Chinese remainder theorem algorithm
[31], and a p-adic algorithm [51]. These algorithms are less extensively developed than their
elliptic curve analogues; at present they can handle only very small quartic CM fields, and
there is no running time analysis for any of them. We discuss the genus 2 CM method in
more detail in Chapter 5, focusing on the Chinese remainder approach.

In genus 3, the invariant theory and the corresponding theory of class polynomials
have been developed only in two special cases. The first, due to Weng [130], is the case
of hyperelliptic curves with CM by a degree-6 field K containing Q(¢). The second, due
to Koike and Weng [70], is the case of Picard curves (curves of the form y3 = f(z) with
deg f = 4) with CM by a degree-6 field K containing Q(¢3). In both cases the class
polynomials are computed via a complex-analytic algorithm, and the algorithms are again
limited to very small CM fields K.

In each of these cases the correspondence between curves and absolute invariants
commutes with reduction at p. It follows that we can find the invariants of curves C'/F,
that have CM by Ok by computing roots of the class polynomials in F,. (See [34, Theorem
2], reproduced as Theorem 5.1.2 below, for a precise statement of this result in the case
g = 2.) An explicit equation for the curve C' can then be computed from the invariants
using well-known formulas for g = 1, using Mestre’s algorithm [38] for g = 2, and using the
appropriate algorithms in the two tractable cases with g = 3 [130, 70]. The requirement
that Jac(C') be ordinary is essential, and ensures that p = char(F,) does not divide the
denominator of any coefficient of the class polynomial; see [54, Section 4] for further details

in the case g = 2.
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Explicit CM theory has not been developed for dimensions g > 4, save for a few specific
examples. Moreover, “most” principally polarized abelian varieties of dimension g > 4 are
not Jacobians, as the moduli space of Jacobians has dimension 3¢g — 3, while the moduli
space of abelian varieties has dimension g(g + 1)/2. For implementation purposes we prefer
Jacobians or even hyperelliptic Jacobians, as these are the only abelian varieties on which
group operations and pairings can be computed efficiently over finite fields of cryptographic

size.

1.2.5 Algorithms

Many of the results in this dissertation are presented in the form of algorithms. We
define an algorithm to be a sequence of computations that can be implemented on a Turing
machine and is guaranteed to terminate after a finite amount of time. A probabilistic
algorithm is an algorithm that has access to an external source of input from which truly
random bits can be generated. When we say that a probabilistic algorithm terminates in a

finite amount of time, we mean that for any valid input the expected running time

/0 TP,

where P(t) is the probability of terminating at time ¢, is finite.

Our definition does not take into account whether an algorithm produces correct out-
put; an algorithm’s proof of correctness is separate from its statement. When we say that
a probabilistic algorithm is correct, we mean that for any valid input it produces correct
output with probability greater than 1/2. We also make no a priori claims about the run-
ning time of our algorithms. Indeed, showing that our algorithms can run in polynomial
time with negligible error probability will often be an essential part of our discussion.

In general we will not distinguish between probabilistic and deterministic algorithms.
Indeed, some of our algorithms contain steps such as “choose element x from set Y that
can be implemented either deterministically or probabilistically. Obviously, any algorithm

that makes explicit reference to randomness in its description will be probabilistic.

1.2.6 Miscellaneous notation

We denote by Z the ring of integers, and by Q, R, and C the fields of rational, real,
and complex numbers respectively. If F is a field we denote by F an algebraic closure of F.

Unless otherwise stated, all fields are assumed to be separable.
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The “big-O” notation f(z) = O(g(x)) means that there exist positive constants C
and N such that for any z > N, |f(x)| < C'lg(z)|. If g(x) > 1 for = sufficiently large, the
“soft-O” notation f(z) = O(g(z)) means that there is some positive integer k such that
f(z) = O(g(x)log® g(x)). Note that f(z) = O(g(x)) implies that f(z) = O(g(x)'*¢) for

any € > 0. Analogous definitions hold for functions of several variables.

1.3 Scope of this dissertation

In this dissertation we present several new contributions to the solution of the Moti-
vating Problem of page 4. We focus on the case where the abelian variety in question is
ordinary, as supersingular varieties of low dimension have already been classified by Rubin
and Silverberg and been shown to have bounded embedding degree k£ in any dimension g,
and varieties of intermediate type are poorly understood in the context of pairing-friendly
abelian varieties.

In Chapter 2 we give an abstract and general framework that classifies the known
constructions of pairing-friendly ordinary elliptic curves. Our framework allows the practi-
tioner to quickly determine the various attributes of any such construction, making it easy
to select a construction for any specified set of performance and security requirements.

More importantly, our framework leads us to discover new constructions of pairing-
friendly ordinary elliptic curves. We describe these new constructions in Chapter 3. Our
most important contribution in this regard is the construction of elliptic curves of prime
order with embedding degree 10, which solves an open problem posed by Boneh, Lynn,
and Shacham [17]. We also describe a procedure for generating families of pairing-friendly
elliptic curves with variable CM discriminant, which will be useful for those who desire the
maximum possible degree of randomness in cryptosystem parameters.

In Chapter 4 we study higher-dimensional abelian varieties. We provide two algorithms
that, given a CM field K, construct Frobenius elements 7 of pairing-friendly ordinary abelian
varieties with CM by K. Both algorithms generalize existing constructions of pairing-
friendly ordinary elliptic curves. The first method generalizes the construction of Cocks
and Pinch [25] and works for (nearly) arbitrary subgroup sizes r. The second generalizes

the method of Brezing and Weng [19] and leads to varieties with better p-values than the

TThere is one discussion in the literature of such intermediate varieties, due to Hitt [57], which gives
existence results for pairing-friendly abelian surfaces of intermediate type in characteristic 2. Explicit con-
struction of pairing-friendly varieties of this type remains an entirely open problem.
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first. Given the output 7 of either algorithm, one can then use complex multiplication
methods to construct explicitly an abelian variety with Frobenius element 7.

Finally, in Chapter 5 we turn to the question of the CM methods used to construct
explicit examples of pairing-friendly abelian varieties. We focus on implementation aspects
of Eisentriger and Lauter’s Chinese remainder theorem algorithm [34] for computing Igusa
class polynomials of quartic CM fields. One of the steps of this algorithm requires deter-
mining whether endomorphism rings of Jacobians of genus 2 curves over small prime fields
are isomorphic to the full ring of integers in a given quartic CM field. Our contribution is
to provide an efficient probabilistic algorithm that carries out this computation. Using our
algorithm to determine endomorphism rings, we have implemented a probabilistic version
of the full Eisentriager-Lauter CRT algorithm in MAGMA [18] and used it to compute Igusa
class polynomials for several quartic CM fields K with small discriminant. We find that
in practice the running time of the CRT algorithm is dominated not by the endomorphism

ring computation but rather by the need to compute p? curves for many small primes p.
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Chapter 2

A Taxonomy of Pairing-Friendly
Elliptic Curves

2.1 Introduction

During the time that pairing-based cryptography has been studied in earnest, numer-
ous researchers have worked on the Motivating Problem of page 4 in the case of elliptic
curves, i.e., g = 1, and there now exist many methods for constructing pairing-friendly el-
liptic curves. In this chapter we gather these constructions into a single coherent framework.
A diagram outlining our classification is given in Figure 2.1.

Our framework will aid the practitioner by allowing him or her to select elliptic curves
for any desired combination of performance and security requirements. More importantly,
by determining the abstract properties that make the existing constructions work, we can
use these properties to produce new constructions that improve on the known ones. These
new constructions appear in Chapter 3.

The designers of the first pairing-based protocols proposed the use of supersingular
elliptic curves [11]; we discuss these curves in Section 2.2.2. However, supersingular curves
are limited to embedding degree k = 2 for prime fields and k¥ < 6 in general [30], so for
higher embedding degrees we must turn to ordinary curves.

There are a large number of constructions of ordinary elliptic curves with prescribed
embedding degree. All of these constructions are based on the complex multiplication (CM)

method of curve construction (see Section 1.2.4), and all construct curves over prime fields.
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Figure 2.1: Classification of pairing-friendly elliptic curves

Pairing-friendly
elliptic curves

— T~

Families Curves not
of curves in families
\
Supersmgular Cocks-Pinch DEM curves
curves (§2.2.2)  curves (§2.3.1) (§2.3.2)
Sparse Complete
families familes
(§2.4) (§2.5)
N
MNT & GMV Cyclotomic nggi?ilsc Scott-Barreto
curves families (§2.5.1) (52.5.2) families (§2.5.3)

The highest-level distinction we make in our framework is between methods that con-
struct individual curves and those that construct families of curves. The former type are
methods that give integers ¢ and r such that there is an elliptic curve £ over F, with a
subgroup of order r and embedding degree k with respect to r. The latter type are methods
that give polynomials ¢(x) and r(z) such that if g(z¢) is prime for some value of xg, there
is an elliptic curve E over Fy, ) with a subgroup of order r(zo) and embedding degree k
with respect to r(zp). Families of curves have the advantage that the sizes of the finite field
and the prime-order subgroup can be varied simply by specifying z.

There are two constructions in the literature that produce ordinary elliptic curves with
small embedding degree that are not given in terms of families: the method of Cocks and
Pinch [25] and that of Dupont, Enge, and Morain [32]. In Section 2.3 we describe these two
methods and discuss their merits and drawbacks.

The remaining constructions of ordinary elliptic curves with small embedding degree
fall into the category of families of curves. Here we make another distinction. The construc-
tion of such curves depends on our being able to find integers z, y satisfying an equation of

the form
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for some fixed positive integer D and polynomials ¢(x) and ¢(z). The parameter D is the
“CM discriminant” (which we often call simply the “discriminant”), which we will define
formally in Section 2.2. In some cases, this equation will only have solutions for some set of
(z,y) that grows exponentially; we call such families sparse. In others, this equation may
be satisfied for any z, i.e., we can write y as a polynomial in x and the equation gives an
equality of polynomials; we call such families complete.

Sparse families, discussed in Section 2.4, are primarily based on the ideas of Miyaji,
Nakabayashi, and Takano [93]. These families give most of the known constructions of
curves of prime order, but are limited to small embedding degrees k. Complete families,
discussed in Section 2.5, exist for arbitrary k but usually give curves with p > 1. All
of the constructions of complete families can be viewed as choosing a polynomial 7(x)
parametrizing the pairing-friendly subgroup size and computing polynomials in Q[x] that
map to certain elements of the number field K = Q[z]/(r(x)). We can further classify the
complete families according to properties of the number field K. We briefly list the families

and the corresponding type of number field.

e Cyclotomic families (§2.5.1): K is a cyclotomic field, r is a cyclotomic polynomial,

and K contains v/—D for some small D. Constructions given in [3, 19].

e “Sporadic” families (§2.5.2): K is a (perhaps trivial) extension of a cyclotomic field, r
is not a cyclotomic polynomial, and K contains v/ —D for some small D. Constructions

given in [9, 62].

e Scott-Barreto families (§2.5.3): K is a (perhaps trivial) extension of a cyclotomic field,

and K contains no /—D for any small D. Constructions given in [113].

Much of the material in this chapter is joint work with Michael Scott of Dublin City
University (Ireland) and Edlyn Teske of the University of Waterloo (Canada). A more

comprehensive exposition of these topics appears in [11].

2.2 How to generate pairing-friendly elliptic curves

In this section we discuss the common properties of the various constructions of pairing-
friendly elliptic curves. As we saw in Section 1.2.3, it is unlikely that a “random” elliptic
curve over a finite field will have small embedding degree with respect to a large prime-

order subgroup, and thus construction of curves with these properties requires specialized
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algorithms. All such algorithms currently in the literature follow essentially the same high-

level structure:

1. Fix k, and compute integers t,r, ¢ such that there is an elliptic curve E/F, that has

trace t, a subgroup of prime order r, and embedding degree k.

2. Use the complex multiplication method to find the equation of the curve E over F,.

The difficult part of such algorithms is finding ¢, r, ¢ as in Step (1) while ensuring that
Step (2) remains feasible.

We now specialize to the case where E is ordinary; a discussion of supersingular curves
can be found in Section 2.2.2. An ordinary elliptic curve with the properties described in

Step (1) exists if and only if the following conditions hold:
1. g is prime or a prime power.
2. ris prime.
3. t is relatively prime to q.
4. r divides g+ 1 —t.
5. r divides ®x(q), where ® is the kth cyclotomic polynomial.

6. 4q — t2 = Dy? for some square-free positive integer D and some integer y.

Condition (1) ensures that there is a finite field with ¢ elements. Since the proportion
of prime powers to primes is virtually zero, we will in general take ¢ to be a prime number.
Condition (6) implies that t < 2,/g; together with condition (3) this implies that there exists
an ordinary elliptic curve E defined over F, with #E(F;) = ¢ +1 —t (cf. [128, Theorem
4.1]). Conditions (2) and (4) combine to tell us that E(FF,) has a subgroup of prime order 7.
By Lemma 1.2.2, condition (5) is equivalent to E having embedding degree k with respect
to r.

We now know that if such t,r,¢ can be constructed, then there exists an ordinary
elliptic curve E//IF, with embedding degree k and an order-r subgroup. The characteristic
polynomial of Frobenius for E is 2% —tz+¢, and thus condition (6) implies that End(E)®Q =
Q(v/—D). By Proposition 1.2.5, we may assume that End(E) is isomorphic to the ring of
integers of K = Q(v/—D). We may thus compute the j-invariant of E as a root of the
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Hilbert class polynomial for Ok, modulo a prime over ¢. If the class number hx of K is
sufficiently small then this class polynomial can be constructed in a reasonable amount of
time; in practice we can take hx < 107 [35].

The equation in condition (6) is called the CM equation. We call the integer D the
CM discriminant of E/Fg; it is defined to be the square-free part of the nonnegative integer
4q — t2. (Other authors may define the CM discriminant to be negative, or to be the
discriminant of the quadratic imaginary field Q(v/—D).) If we use condition (4) to write

q+ 1 —t = hr for some positive integer h, then the CM equation is equivalent to
Dy? = 4hr — (t — 2)°. (2.1)

We call h the cofactor of the pairing-friendly curve.

2.2.1 Families of pairing-friendly curves

For applications, we would like to be able to construct curves of specified bit size.
To this end, we describe “families” of pairing-friendly curves for which the curve param-
eters t,r,q are given as polynomials ¢(z),r(z),¢(z) in terms of a parameter x. The idea
of parametrizing ¢,7, ¢ as polynomials has been used by several different authors in their
constructions, including Miyaji, Nakabayashi, and Takano [93]; Barreto, Lynn, and Scott
[3]; Scott and Barreto [113]; and Brezing and Weng [19]. Our definition of a family of
pairing-friendly curves is a formalization of ideas implicit in these works. The definition
provides a concise description of many existing constructions and gives us a framework that
we can use to discover previously unknown pairing-friendly curves.

Since the values of ¢(z) and r(z) will be the sizes of a field and a group in which we
wish to do cryptography, respectively, the polynomials we construct will need to have the
property that for many values of x, ¢(z) is a prime power (which in general we will take to
be a prime) and r(z) is prime or a small cofactor times a prime. However, one drawback
to the description of ¢ and r as polynomials is that very little is known about prime values
of polynomials. For example, it is not even known that 2% + 1 takes an infinite number of
prime values. Thus when describing the polynomials that we wish to take prime values, we
must impose conditions that make it likely that they will do so.

Our definition is motivated by the following fact: if f(x) € Z[z], then a famous
conjecture of Buniakowski and Schinzel (see [72, p. 323]) says that a non-constant f(x)

takes an infinite number of prime values if and only if f has positive leading coefficient, f is
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irreducible, and ged({f(z) : € Z}) = 1. Furthermore, a conjecture of Bateman and Horn
[10] vastly generalizes the prime number theorem to give the expected density of such prime
values. For our purposes we must also consider polynomials with rational coefficients; our

definition incorporates the natural generalization of these conjectures to such polynomials.

Definition 2.2.1. Let f(z) be a polynomial with rational coefficients. We say f represents

primes if the following conditions are satisfied:
1. f(x) is non-constant.
2. f(x) has positive leading coefficient.
3. f(z) is irreducible.

4. f(x) € Z for some x € Z (equivalently, for an infinite number of x € Z).

Ut

ged({f(z) r 2, f(z) € Z}) = 1.

For future reference, we note that if there is some x such that f(z) = +1, then
conditions (4) and (5) are both satisfied. We need one more definition before we can define

families of pairing-friendly curves.

Definition 2.2.2. A polynomial f(z) € Q[z] is integer-valued if f(z) € Z for every x € Z.
For example, f(z) = 3(2® + z + 2) is integer-valued and represents primes.

Definition 2.2.3. Let t(z), ¢(x),r(z) € Q[z] be nonzero polynomials.

(i) For a given positive integer k and positive square-free integer D, the triple (¢,7r,q)
represents a family of elliptic curves with embedding degree k and discriminant D if
the following conditions are satisfied:

1. g(x) = p(z)? for some d > 1 and p(x) that represents primes.

2. r(z) is non-constant, irreducible, and integer-valued, and has positive leading

coefficient.
3. r(z) divides ¢q(z) + 1 — t(z).
4. r(x) divides @y (t(x) — 1), where @y is the kth cyclotomic polynomial.

5. The equation Dy? = 4q(x) — t(x)? has infinitely many integer solutions (,y).
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If these conditions are satisfied, we often simply call (¢,7,q) a family.
(ii) We say that a family (¢,7,¢q) is ordinary if ged(t(x), ¢(x)) = 1.

(iii) We say that a family (¢,7,¢q) is complete if for every integer x there is some integer y
that satisfies the equation Dy? = 4q(x) — t(x)?; otherwise we say that the family is

sparse.

(iv) We say that (¢,r,q) represents a potential family of curves if conditions (2)—(5) of (i)
are satisfied; in this case ¢(z) may or may not be a power of a p(x) that represents

primes.

Part (i) of Definition 2.2.3 is designed so that if (¢,r,q) represents a family of curves
with embedding degree k, and (zg, o) is a solution to the equation of condition (5) such
that p(zo) is prime, then there exists an elliptic curve E/F,,) with a subgroup of order
r(x) and embedding degree k. If the class number of Q(v/—D) is less than 10° then E can
be constructed via the CM method. In practice we will usually have d = 1 in condition (1),
so q(z) will represent primes and the curves we construct will be defined over prime fields.

For cryptographic applications, we also need r(xg) to be prime or very nearly prime;
the conditions (2) on r(z) suggest that this will often be the case. We can then use the

following algorithm to search for an xy with the desired properties.

Algorithm 2.2.4.

Input: polynomials ¢(x) and r(z) € Q[z] satisfying conditions (1) and (2) of Definition
2.2.3 (i), respectively, and a positive integer .

Output: positive integers xo and h such that g(xg) is prime and r(zg) is h times a

prime.
1. Compute integers a,b such that g(ax + b) is integer-valued and represents primes.
2. Set h «— ged({g(ax + b)r(az +b) : x € Z}).
3. Set r(x) « r(x)/h.
4. Set x1 «— yo.
5. Repeat x1 < x1 + 1 until ¢(az; + b) and 7(ax; + b) are prime integers.

6. Set xg < ax1 + b. Return h and xg.
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The input yo is the starting point for the search, and should be chosen so that r(yo)/h
is at least the minimum size desired for security. Since h does not depend on the input y,,

if the h output by the algorithm is too large we can try again with a larger yq.

Proposition 2.2.5. Suppose the q(z) and r(x) input into Algorithm 2.2.} have degrees
dy and dg respectively. If the Bateman-Horn conjecture [10] is true, then the expected
running time of the algorithm is O(dids(log adyo)?), where § is the smallest integer such
that 0q(z) € Zlz] and o = max{q(z)r(x) : |x| < 6/2}.

Proof. We first show that integers a,b as in Step (1) always exist. Write ¢(z) = q(x)/0;
then g(z) € Z[z]. Write the factorization of § as

0= H p°r.

p prime

Since g(x) represents primes, for each p there exists a b, such that ¢(b,) is an integer not

divisible by p, and thus p® divides g(b,) exactly. Let a and b be integers such that

a= Hpef’ﬂ, b=b, (modp®™) forallp]s.
plé
Then g(az + b) is integer-valued and is nonzero mod p for every p dividing 6. For every p
not dividing 4, ax + b ranges through all residue classes mod p, so there is some residue
class of x mod p for which p does not divide g(az + b). Thus there is no prime p dividing
q(ax + b) for all z, which is equivalent to g(ax + b) representing primes.
Let h be as in Step (2). Since ¢(ax + b) and r(ax + b) are integer-valued and g(ax + b)

represents primes, there is some c¢ such that

ged ({glaz +b) iz =cmod h}) = 1,
ged ({r(az +b): 2 =cmod h}) = h.

It follows that the values of the polynomials g(ahx + ac+0b) and 7(ahx + ac+b) are integers
with no common divisor. The Bateman-Horn conjecture implies that we should expect to
test roughly dyda(log ahyg)? values of z1 before we find one for which g(az; + b) is prime

and r(az +b) is h times a prime. Since loga = O(logd) and h < «, the result follows. [

Proposition 2.2.5 shows that heuristically, the expected number of executions of Step

(5) is linear in the degrees of ¢ and r, and quadratic in the number of bits in yy. We note
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(and find in practice) that the a computed in Step (1) can be smaller than the a produced
in the proof of the proposition, and that there may be multiple valid choices of b for a given
a. In addition, the « of the statement is usually a gross overestimate.

Condition (3) of Definition 2.2.3 (i) ensures that for a given value zg for which ¢(zo)
is prime, r(zo) divides #E(F;(,,)). If in fact r(xo) = q(xo) + 1 —t(x0), then for values of =
for which r(zo) and g(zo) are both prime, #E(F,) will be prime. This is the “ideal” case,
but it is difficult to achieve in practice. We therefore extend our definition of the parameter
p (1.6) to indicate how close to this ideal a given family of curves is.

Recall that the p-value of a g-dimensional abelian variety over IF, with respect to a
subgroup of order r is p = glogq/logr. If ¢ = g(z) and r = r(z) are parametrized as
polynomials, then for large x the p-value approaches gdegq/degr. This analysis leads to

the following definition of p-value for a family of elliptic curves:

Definition 2.2.6. Let ¢(z),r(x),q(z) € Q[x], and suppose (¢,r,q) represents a family of
elliptic curves with embedding degree k. The p-value of the family represented by (t,r,q),
denoted p(t,r,q), is

_logg(z) _ degq(x)
t,rq) = 1 - '
p(t,rq) = lim logr(z)  degr(z)

The Hasse bound |#E(F,) —q+ 1| < 2,/q implies that p(t,r,q) is always at least

1. (For individual curves, p(E) > 1 — %i%gf.) If (t,r,q) represents curves of prime order,
then degr = degq and p = 1. Note, however, that the converse may not be true: if
p(t,r,q) = 1, then we may find that for any curve E in this family #FE(F,) = hr(z) where
h is a constant-size cofactor. (For examples of such families, see [16, §3].)

We conclude this section by demonstrating some properties of p for ordinary elliptic

curves with embedding degree 1 or 2.

Proposition 2.2.7. Suppose (t,r,q) represents a family of ordinary elliptic curves with

embedding degree k < 2 and discriminant D.
1. If k =1, then p(t,r,q) > 2 if either of the following conditions holds:

(a) degt(z) > 1, or

(b) there are an infinite number of integer solutions (z,y) to the CM equation (2.1)

for which r(x) is square free and relatively prime to D.

2. If k=2, then p(t,r,q) > 2.
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Proof. Since r(z) divides @y (t(x)—1) and deg @y, = 1, if Py (t(x)—1) # 0 then we must have
degt(x) > degr(zx). Thus by the Hasse bound p(t,r,q) > 2. It remains to consider the cases
k=1,t(r) =2and k =2, t(r) = 0. If {(x) = 0 then the family of curves is not ordinary,
a contradiction. Now suppose k = 1 and ¢(z) = 2; then the CM equation (2.1) becomes
Dy? = 4h(z)r(x). The hypothesis (1b) implies that there are an infinite number of = for
which h(z) > r(x), and therefore deg h(z) > degr(z). Since degq(z) = deg h(x) +degr(z),
we conclude that p > 2. d

Remark 2.2.8. Let E/F, be an ordinary elliptic curve that has embedding degree k < 2
with respect to r, and let D be the CM discriminant of E. Using the same reasoning as in

the proof of Proposition 2.2.7, one can show that if either
1. k=1, r is square free, and ged(r, D) =1, or
2. k=2, and g and r are prime,

then p(E) > 2(1 —¢), with e — 0 as r — oo.

2.2.2 Supersingular curves

Recall that an elliptic curve E/F, with #E(F;) = ¢+ 1—1 is supersingular if and only
if ged(t,q) > 1. Supersingular curves have embedding degrees k € {1,2,3,4,6} [30], and
furthermore £ = 2 is the only possible embedding degree over prime fields F, with ¢ > 5.
By the Hasse bound, group orders of supersingular curves are of the form ¢ + 1 — ¢ with
t?2 € {0,q,2q,3q,4q}.

The only known general method to construct supersingular curves is reduction of CM
curves in characteristic zero. In particular, the CM curves y?> = 23 + ax and y? = 23 + b
defined over Q reduce to supersingular curves over I, for all primes p = 3 (mod 4) and
p =2 (mod 3) respectively. These two curves will suffice for most applications; Algorithm
2.2.11 gives an explicit procedure for constructing a supersingular curve over any given
prime field.

For fields of characteristic 2 and 3, representatives for each [F -isomorphism class of
supersingular curves have been determined by Menezes and Vanstone [¢7] and Morain [97],
respectively. Supersingular curves with & = 4 or 6 exist only in characteristic 2 and 3,
respectively, and Menezes [34] has characterized prime-order supersingular curves in these

cases. Thus we limit our discussion in this section to curves with k < 3.
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Remark 2.2.9. Supersingular curves are commonly perceived as “weak” curves, and thus

as not desirable for cryptographic applications. However, Koblitz and Menezes [68] argue:

There is no known reason why a nonsupersingular curve with small embedding
degree k would have any security advantage over a supersingular curve with the
same embedding degree.

On the other hand, as opposed to ordinary curves with embedding degree k > 1,
supersingular curves have the added advantage that they have distortion maps (in the

sense of Verheul [125]), which is a desirable feature in some pairing-based applications [24].

Embedding degree k£ =1

Supersingular curves with embedding degree k = 1 exist only over finite fields F,
where ¢ = p® with s even. Then we can write ¢ — 1 = (/g +1)(y/g—1),s0 r | ¢ — 1 if
r|(yg+1)orr|(y/q—1). For a supersingular curve with & = 1 over F,, this requires
#E(F;) = q £2,/q+ 1, that is, t = +2,/g [45], and we see that such curves must have
p=2.

To construct supersingular curves with embedding degree 1, we let ¢’ = /g and let
E/F, be a curve with trace zero, i.e., #E(Fy) = ¢'+1. Then the characteristic polynomial
of the ¢’-power Frobenius endomorphism is 22 + ¢/, which factors as (z + iv/q')(z — iv/q).
The Weil conjectures [117, Theorem V.2.2] then tell us that the characteristic polynomial
of the g-power Frobenius map is (z — ¢')?, so #E(F,) = (¢ — 1) = ¢ — 2,/ + 1. Thus
even though F/Fy has embedding degree 2, if we consider E as a curve over I, then E has
embedding degree 1 with respect to r.

We will see in Section 2.2.2 how to construct a trace-zero curve over F, with an order-
r subgroup for arbitrary r. Since we may take logq’'/logr arbitrarily close to 1 for such
curves, the p-value for E/F, with embedding degree 1 can be made arbitrarily close to 2,
and we see from the discussion above that this is the best possible p-value. If for some
reason we want our curve to have g +2,/q + 1 points, we may simply take a quadratic twist
(over Fy) of the curve with ¢ — 2,/q + 1 points.

We conclude that in any case where a supersingular curve E/F, with k& = 1 and
p(E) = po is desired, we may obtain an entirely equivalent setup by choosing a supersingular

curve E'/F 5 with k =2 and p(E') = po/2.
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Embedding degree k = 2

The case of embedding degree 2 offers the most flexibility; in fact, we can construct
curves over prime fields with arbitrary subgroup size and p-value. For embedding degree
k = 2 we require r | ¢+ 1. This is certainly the case if t = 0, and such supersingular curves
can be defined over both prime and non-prime fields.

Construction of supersingular curves in characteristic greater than 3 makes use of the

following theorem:

Theorem 2.2.10 ([71, Theorem 13.12]). Let L be a number field, and E/L be an elliptic
curve with complex multiplication. Suppose End(E) ® Q = Q(v/—D). Let p | p be a prime

of L where E has good reduction. Then the reduction of E mod p is supersingular if and

only if p does not split in Q(/—D), i.e., (%) £1.

Given a subgroup size r, if we choose any even h such that ¢ = hr — 1 is prime, then

we have the following algorithm (combining the constructions of Koblitz and Menezes |

)

§7) and Broker [21, §3.4]) for constructing a curve over F, with embedding degree 2 with

respect to r.

Algorithm 2.2.11.
Input: a prime ¢ > 5.

Output: a supersingular elliptic curve E/F,.
1. If ¢ = 3 (mod 4), return y* = z* + ax for any a € F*.
2. If g=5 (mod 6), return y? = 23 + b for any b € Fy.
3. If g=1 (mod 12), do the following:

(
(

a) Let D be the smallest prime such that D = 3 (mod 4) and (%) = —1.

)
b) Compute the Hilbert class polynomial Hp of Q(v/—D).
(c) Compute a root j € F, of Hp (mod gq).

)

(d) Let m = j/(1728 — j), and return y* = 2° + 3mc*z + 2mc® for any c € FX. [0

The condition D = 3 (mod 4) in Step (3a) guarantees that the Hilbert class polynomial
Hp has a root in Fy [21, §3.4]. Note that this construction allows us to choose r and h

almost completely arbitrarily, so we may make our choices so that r has low Hamming
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weight or some other special form. In particular, Boneh, Goh, and Nissim [1(] observe that
we may choose r to be a large composite number such as an RSA modulus; curves with
such group orders are used in some recent pairing-based protocols.

We see from Theorem 2.2.10 that the popular supersingular curves y? = 2% + ax and
y? = 2340b are simply special cases of the general construction method, for the two equations
define CM curves over Q with CM discriminant 1 and 3, respectively. However, these two
cases have the additional nice property that the distortion maps are easy to compute, as
both curves have automorphisms defined over Fy2. Koblitz and Menezes [65] give explicit

determinations of the distortion maps in both cases.

Embedding degree k£ =3

A supersingular curve over F, of prime order has embedding degree k = 3 if and only

if ¢ = p® with s even, and ¢ = £,/g [93]. In characteristic p > 3, the only such curves are
those of the form

y* =2+,
where 7 is a non-cube in F* [95]. If we specialize to the case ¢ = p? where p = 2 (mod 3)

is a large prime, then we have #E(sz) = p? £ p + 1. If the sign of the middle term is
positive (i.e., t = —p), then for certain p = 3z — 1 we may find curves of prime order, since
r(z) = (3z — 1)2 + (3x — 1) + 1 represents primes in the sense of Definition 2.2.1. In the
case where t = p we find that #E(F,) must be a multiple of 3 and can be equal to 3 times
a prime.

We can recast these results in our language of “families” (Definition 2.2.3). Depending

on the sign of ¢t we have one of

tx)=—=3z+1, r(x)=922-3z+1, q(z)=3z—-1)%
t(x)= 3z—-1, r(x)= 922 — 9z + 3, q(z)=3z— 1)2'

Since 4q(x) —t(z)? = 3(3z — 1)?, the triple (¢, 7, q) represents a family of elliptic curves with
embedding degree 3 and discriminant 3. The p-value for this family is 1; in particular, if
7(r) and 3z — 1 are prime then we may construct a curve over F,(,y with embedding degree
3 and prime order.

Since arithmetic in FFp2 for suitably chosen p can be as fast as arithmetic in F,, with

p' ~ p?, this is a good method for generating useful curves with embedding degree 3 and
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small p-value. Note that particularly fast F,. arithmetic results when optimal extension

fields [1] are used; Duan, Cui and Chan [31] give sample families and curves for this setup.

2.3 Generating ordinary elliptic curves with arbitrary em-

bedding degree

We begin our survey of methods for constructing pairing-friendly ordinary elliptic
curves with the two most general methods in the literature, the Cocks-Pinch method and
the Dupont-Enge-Morain method. Both methods can be used to construct curves with
arbitrary embedding degree; however, both methods produce curves with p ~ 2, which may
not be suitable for certain applications. Neither method produces families of curves in the
sense of Definition 2.2.3, but we will see in Section 2.5 that the Cocks-Pinch method does
generalize to produce families with p < 2. Furthermore, the Cocks-Pinch method has the
advantage that it can produce curves with prime-order subgroups of nearly arbitrary size.
The subgroups of Dupont-Enge-Morain curves, on the other hand, must have an order r
that divides a value of a certain polynomial, which results in the value of r being more

difficult to specify precisely.

2.3.1 The Cocks-Pinch method

In an unpublished manuscript [25], Cocks and Pinch gave a procedure for constructing
pairing-friendly curves with arbitrary embedding degree k. The Cocks-Pinch method fixes
a subgroup size 7 and a CM discriminant D and computes ¢ such that the CM equation

must be satisfied.

Theorem 2.3.1 ([25]). Fiz a positive integer k and a positive square-free integer D. Execute

the following steps.

1. Let r be an odd prime such that k| r —1 and (%) =1

2. Let z be a kth root of unity in (Z/rZ)*. (Such a z exists because k | r — 1.) Let
t'=z+1.

3. Lety = (t' —2)/v/—D (mod 7).

4. Let t be the unique lift of t' to (0,r], and let y be the unique lift of y' to (0,7]. Let
q = (* + Dy*) /4.
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If q is an integer and prime, then there ewists an elliptic curve E over Fy with an order-r
subgroup and embedding degree k. If the class number of Q(/—D) is less than 10° then E

can be constructed via the CM method.

The key feature of this algorithm is that y is constructed so that Dy? + (t — 2)? is
divisible by r. With ¢ chosen such that the CM equation 4¢q — t> = Dy? is satisfied, this
yields 4(¢+ 1 —¢) =0 mod r. Lastly, the choice of ¢ ensures that ®4(t —1) =0 mod 7.

We observe that there is no reason to believe a priori that we can find a t or y that
is much smaller than r, and thus in general we find that ¢ ~ r?. We conclude that the
curves produced by this method tend to have p-values around 2. However, these curves are
easy to generate, and in particular we can take r to be (nearly) arbitrary, so r can have low
Hamming weight or other desirable features.

The Cocks-Pinch method is important not only because it is the most flexible algorithm
for constructing ordinary pairing-friendly curves, but also because it can be generalized to
produce families of elliptic curves with p < 2 (Section 2.5) and higher-dimensional pairing-

friendly abelian varieties (Chapter 4).

Remark 2.3.2. In Step (4) we could in fact choose ¢t and y to be any integers congruent
to ¢’ and 3’ modulo r. In particular, if we wish to generate a curve with a given p-value

po > 2, we could add to ¢ and y an integer divisible by 7 and of size roughly r#0/2.

Remark 2.3.3. Rubin and Silverberg [107] have observed that the Cocks-Pinch method
can be used to construct curves with embedding degree k£ with respect to » when r is a
large composite number, such as an RSA modulus. As in the case where r is prime, these
curves have p-value around 2.

2.3.2 The Dupont-Enge-Morain method

Whereas the Cocks-Pinch method fixes an r and then computes ¢ and ¢ such that the
CM equation is satisfied, the approach of Dupont, Enge, and Morain [32] is to compute ¢

and r simultaneously using resultants. The theory of resultants is discussed in [72, §IV.8].
Theorem 2.3.4 ([32]). Fix a positive integer k, and execute the following steps.

1. Compute the resultant

R(a) = Resy(Pp(z — 1),a + (z — 2)?).
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2. Choose a such that a = Dy? with D square-free, and let r be the largest prime factor
of R(a).

3. Compute g(x) = ged(®p(x — 1),a + (v — 2)?) in F,[x].

4. Let t' € F,. be a root of the polynomial g. If there is no such root, go to Step (2) and

choose a different a.
5. Let t be the unique lift of t' to (0,7]. Let ¢ = (t* + a)/4.

If q is an integer and prime, then there exists an elliptic curve E over Fy with an order-r
subgroup and embedding degree k. If the class number of Q(/—D) is less than 10° then E

can be constructed via the CM method.

The key idea of the Dupont-Enge-Morain method is to use the following property of
resultants [72, Corollary IV.8.4]: if f(x) and g(x) are polynomials over a field K, then
Res;(f(x),g(z)) = 0 if and only if f(z) and g(z) have a common root in K. If we consider
®p(x — 1) and a + (z — 2)? to be polynomials in the two variables a,z, then the resultant
R is a single-variable polynomial in a of degree ¢(k). If we fix a and take r to be a prime
factor of R(a), then R(a) =0 (mod r), and thus ®(z — 1) and a+ (z —2)? have a common
factor g(x) when considered as polynomials mod r, i.e., in F,[z]. In practice we find that if
k is small and r is of cryptographic size then the factor g(z) is linear, so we can find a root
t' € F, that lifts to an integer ¢. The values of t and r computed thus satisfy r | ®(t — 1)
and r | Dy? + (t — 2)2. By construction of ¢, the CM equation holds, which then yields
g+1—t=0 (mod r).

We observe that there is again no reason to believe a priori that ¢ is much smaller
than 7, and thus in general we find that ¢ ~ r2. We conclude that the curves produced by
this method also tend to have p values around 2.

Like the Cocks-Pinch method, the Dupont-Enge-Morain method is effective for com-
puting curves for arbitrary embedding degree k. However, whereas in the former method we
could choose the subgroup size r nearly arbitrarily, in this method r is a factor of a value of
the polynomial R(a). Since r must be of cryptographic size, it will usually only be compu-
tationally feasible to find such an r if the remaining factors of R(a) are small, so in general
r will be roughly the size of R(a). Since R(a) has degree ¢(k) and is irreducible (because it
is the resultant of two irreducible polynomials), the factors r we find will grow roughly like

a?®) . Thus the possible subgroup orders r are more restricted in the Dupont-Enge-Morain
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method than in the Cocks-Pinch method. This is the only significant difference between
the two methods, and thus we recommend using the Cocks-Pinch method for applications

where a curve with arbitrary embedding degree and p ~ 2 is desired.

2.4 Sparse families of pairing-friendly curves

Recall that to construct families of pairing-friendly curves, we search for polynomials
t(x),r(x),q(z) that satisfy certain divisibility conditions modulo r(z), and for which the
CM equation

Dy? = 4q(x) — t(x)* = 4h(z)r(z) — (t(z) — 2)° (2.2)

has infinitely many solutions (z,y). Here, h(x) is the “cofactor” satisfying
h(z)r(z) = q(z) + 1 —t(z).

In practice, for any t(x) we can easily find r(z) and ¢g(z) satisfying the divisibility
conditions modulo r(z); the difficulty arises in choosing the polynomials so that Dy? =
4q(x) — t(x)? has infinitely many integer solutions. In general, if f(z) is a square-free
polynomial of degree at least 3, then there will be only a finite number of integer solutions
to the equation Dy? = f(z) (cf. Proposition 2.4.5 below). Thus we conclude that (¢,7,q)
can represent a family of curves only if f(z) has some kind of special form.

We now consider one of these special forms: namely, the case where f(x) is quadratic.
We show that in this case, one integral solution to the equation Dy? = f(z) will give us
infinitely many solutions. This is the technique that Miyaji, Nakabayashi and Takano [93]
use to produce curves with embedding degree 3, 4, or 6, and we will use the same technique
in Section 3.1 to construct curves with embedding degree 10.

The idea is as follows: since f(z) is quadratic, we complete the square to write the
equation Dy? = f(z) as u? — D'v? = T for some constants D’ and T, and observe that (u,v)
is a solution to this equation if and only if u +vv/D’ has norm T in the real quadratic field
Q(v/D’). By Dirichlet’s unit theorem, there is a one-dimensional set of norm-one integral
elements of this field; multiplying each of these units by our element of norm T gives an
infinite family of elements of norm 7'. We then show that a certain fraction of these elements

can be converted back to solutions of the original equation.

Theorem 2.4.1. Fiz an integer k > 0, and suppose the polynomials t(x), r(z), q(z) € Q[z]
satisfy conditions (1)—(4) of Definition 2.2.3 (i). Let f(x) = 4q(z) —t(x)%. Suppose f(x) =
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ax? + bx + ¢, with a,b,c € Z, a > 0, and b*> — 4ac # 0. Let D be a square-free integer such
that aD is not a square. If the equation Dy?> = f(z) has an integer solution (zo,yo), then

(t,r,q) represents a family of curves with embedding degree k.

Proof. Completing the square in the equation Dy? = f(z) and multiplying by 4a gives
aD(2y)? = (2az + b)* — (b* — dac).

If we write aD = D'w? with D’ square-free and make the substitutions v = 2az+b, v = 2wy,

T = b? — 4ac, the equation becomes
u? — D' =T. (2.3)

Note that since aD is not a square, we have D" > 1.

Under the above substitution, a solution (zg, o) to the original equation Dy? = f(x)
gives an element ug +vgv/ D’ of the real quadratic field Q(v/D’) with norm T. Furthermore,
this solution satisfies the congruence conditions

up =b (mod 2a) (2.4)
vo =0 (mod 2w).
We wish to find an infinite set of solutions (u, v) satisfying the same congruence conditions,
for we can transform such a solution into an integer solution to the original equation. To
find such solutions we employ Dirichlet’s unit theorem [9%8, §1.7], which tells us that the
integer solutions to the equation o? — D/3? = 1 are in one-to-one correspondence with the

real numbers

a+ BVD' = +(ag + BoV D)™

for some fixed (a, fp) and any integer n. The real number ag + BoV/ D' is either a funda-
mental unit of the real quadratic field Q(v/D’) or (if the norm of the fundamental unit is
—1) the square of a fundamental unit.

Reducing the coefficients of ag + Bpv/D’ modulo 2a gives an element z of the ring

Z[x]

= a2y

Furthermore, since (ag + SovV D')(ag — oV D’) =1, z is invertible in R, i.e., z € R*. Since

R* is a finite group of size less than 4a?, there is an integer m < 4a? such that z™ =1 in
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R*.T Lifting back up to the full ring Z[v/D’], we see that (ag + BovV D)™ = ay + 1V D’ for

integers aq, (1 satisfying

a1 =1 (mod 2a),
(2.5)
f1 =0 (mod 2a).

Now for any integer n we can compute integers (u,v) such that
u~+vvVD = (up+voVD') (a1 + S1vVD)". (2.6)

We claim that (u,v) satisfy the congruence conditions (2.4). To see this, let ay, + B,V D' =
(a1 + B1v D")™. The conditions (2.5) imply that «,, = 1 (mod 2a) and 3, = 0 (mod 2a).

Combining this observation with the formulas
u = anug + BrvgD’
v = anvy + Pauo,

we see that u = up = b (mod 2a) and v = vy (mod 2a). Furthermore, vop = 0 (mod 2w)
and 2w divides 2a (since aD = D'w? and D is square free), so we conclude that v = 0
(mod 2w).

The new solution (u,v) thus satisfies the congruence conditions (2.4). Any integer n
gives such a solution, so by setting x = (v — b)/2a and y = v/2w for each such (u,v), we
have generated an infinite number of integer solutions to the equation Dy? = f(z). This is
condition (5) of Definition 2.2.3 (i); by hypothesis (¢, 7, q) satisfy conditions (1)-(4), so we

conclude that (t,,q) represents a family of curves with embedding degree k. O

Remark 2.4.2. More generally, we may find an infinite family of curves in the case where
f(x) = g(x)®h(x), with h(x) quadratic. Specifically, if we let y = y'g(x), then given one
integral solution (z,y’) to the equation Dy'? = h(z) we may use the method of Theorem
2.4.1 to find an infinite number of solutions. However, we currently know of no examples

for which f(x) is of this form.

Remark 2.4.3. We see from (2.6) that solutions to the Pell equation (2.3) grow exponen-
tially, and thus only very few values of x satisfy our original equation Dy? = f(x). (Indeed,
even the smallest solution will be exponential in the bit size of D [75].) Thus the families

of Theorem 2.4.1 will be sparse (in the sense of Definition 2.2.3).

tIn fact, since z is an element of the norm-one subgroup of R*, m is bounded above by 2°a, where s is
the number of distinct primes dividing 2a. A more detailed study of the group R* appears in [30].
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Remark 2.4.4. The argument in the proof of Theorem 2.4.1 can easily be made into an
algorithm for finding x and y, using for example using one of the techniques described by
Matthews [33] or Robertson [105] to find a fundamental solution to the equation (2.3), and

using the continued fraction expansion of v/ D’ to find the fundamental unit (or its square)

ag + BoV' D' [75].

Theorem 2.4.1 tells us that if f(x) is quadratic and square free, we obtain a family
of curves of the prescribed embedding degree for each D. If f(z) is instead a linear or
constant function times a square, then we obtain a family of curves for a single D. In this
case the family is complete (in the sense of Definition 2.2.3), and such examples belong in
the discussion of Section 2.5.

We conclude this section with a partial converse to Theorem 2.4.1; namely, if the

degree of f(x) is at least 3, then we are unlikely to find an infinite family of curves.

Proposition 2.4.5. Let (t,r,q) be polynomials with integer coefficients satisfying conditions
(1)~(4) of Definition 2.2.3, and let f(x) = 4q(x) — t(z)%. Suppose f(x) is square free and
deg f(x) > 3. Then (t,r,q) does not represent a family of elliptic curves with embedding
degree k.

Proof. Since f(z) is square free (i.e., has no double roots) and has degree at least 3, the
equation Dy? = f(z) defines a smooth affine plane curve of genus g > 1. By Siegel’s
Theorem [117, Theorem IX.4.3] such curves have a finite number of integral points, so

condition (5) of Definition 2.2.3 is not satisfied. O

2.4.1 MNT curves

Miyaji, Nakabayashi and Takano [93] were the first to propose ordinary pairing-friendly
curves, for embedding degrees k = 3, 4, and 6. In fact, ordinary curves of prime order with

embedding degrees 3, 4, or 6 have been fully characterized as follows:

Theorem 2.4.6 ([93]). Let q be a prime and E/F, be an ordinary elliptic curve such that
r = #E(F,) is prime. Lett =q+1—r.

1. Assume q > 64. E has embedding degree k = 3 if and only if there exists x € Z such
that t = —1 4 6x and ¢ = 1222 — 1.

2. Assume q > 36. E has embedding degree k = 4 if and only if there exists x € Z such
thatt = —x ort=x+1, and ¢ = 2> + v + 1.
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3. Assume q > 64. E has embedding degree k = 6 if and only if there exists x € Z such
that t = 1+ 2z and g = 42% + 1.

In all three cases, the proof (of the “only if” part) of Theorem 2.4.6 starts out with
the condition r | ®(q) and exploits the primality of the group order. All of the proofs are

entirely elementary.

Remark 2.4.7. It is easy to show (see [03]) that if both  and ¢ are primes greater than 64
then there is an elliptic curve E//F, with embedding degree 6, discriminant D, and #E(F,) =
r if and only if there is an elliptic curve E’/F, with embedding degree 4, discriminant D,

and #FE'(F,) = q.

In all three cases of Theorem 2.4.6, the CM equation Dy? = 4q(x) — t(z)? defines a
curve of genus zero, with the right-hand side being quadratic in z. In each case, by a linear
change of variables, the CM equation can be transformed into a generalized Pell equation

of the form (2.3). Specifically,
1. for k = 3, setting u = 62 £ 3 and v = y yields u? — 3Dv? = 24,

2. for k =4, settingu=3x+2 (if t = —x) oru=3zx+1 (if t =2+ 1), and v = y yields
u? —3Dv? = —8, and

3. for k = 6, setting v = 6z F 1 and v = y yields u? — 3Dv? = —8.

(The signs in (1) and (3) are to match those in Theorem 2.4.6.) We can then find solutions
(z,y) (if any exist) using the procedure of Theorem 2.4.1 (cf. Remark 2.4.4).

Now, the MNT strategy for generating ordinary elliptic curves of prime order with
embedding degree k = 3, 4, or 6 is the following: repeatedly select small discriminants
D and compute solutions (u,v) to equation (2.3) (with 7" = 24 or T = —8) until the
corresponding ¢ = ¢(z) and r = ¢(z) + 1 — ¢(z) are primes of the desired bit length.
Then there exists an elliptic curve over F, with r points and embedding degree 3, 4, or 6,
respectively, which can be constructed via the CM method.

The search for MNT curves can be sped up slightly by noting that if & = 3, it is
necessary that D = 19 (mod 24) [93], and if £k = 4 or 6 then necessarily D = 3 (mod 8)
and D # 5 (mod 10). Also, T" must be a quadratic residue modulo 3D in all cases.

The major downside of MNT curves is that (as noted in Remark 2.4.3) the families

obtained are sparse. In fact, Luca and Shparlinski [$0, 1] give a heuristic argument that
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for any upper bound D, there exist only a finite number of MNT curves with discriminant
D < D, with no bound on the field size! On the other hand, specific sample curves of
cryptographic interest have been found, such as MNT curves of 160-bit, 192-bit, or 256-bit

prime order (see, for example, [101] and [112]).

2.4.2 Extensions of the MNT strategy

The MNT strategy has been extended by Scott and Barreto [113], and by Galbraith,
McKee and Valenga [10], by allowing a small constant-size cofactor h.
Starting out with (2.2), Scott and Barreto [113] fix small integers h and d and substitute
r=®,(t—1)/d and t =z + 1, to obtain the equation
)
Dy? = 4h’“6§x) —(z—1)% (2.7)

As the right-hand side is quadratic in = for k£ = 3, 4, or 6, just as with MNT curves we
can transform (2.7) into a generalized Pell equation of the form (2.3) by an appropriate
linear substitution of z. Subsequently, the MNT strategy can be applied to find curves with
embedding degrees k = 3, 4, or 6 of almost-prime order.

Galbraith, McKee and Valenga [16] give a complete characterization of curves with
embedding degree 3,4 and 6 with cofactors 2 < h < 5. This is achieved by mimicking
the Miyaji-Nakabayashi-Takano proof of Theorem 2.4.6, but substituting hr for #E(F,),
followed by an explicit (but tedious) analysis for h = 2,3,4,5. Just as in the prime-order
case, all resulting parametrizations for ¢ are linear in x, and all resulting parametrizations
for ¢ are quadratic in z, so that the resulting CM equations Dy? = 4q(x) — t(x)? are
quadratic in x and allow for a transformation into generalized Pell equations.

Given the nature of the solutions of Pell equations, we once again obtain sparse families.

2.5 Complete families of pairing-friendly curves
Once again, we start out with the CM equation
Dy* = 4q(x) — t(x)? = 4h(z)r(z) — (t(z) - 2) (2.8)

and search for polynomials ¢(x),r(x),q(z) that satisfy certain divisibility conditions and
for which the CM equation has infinitely many solutions (x,y). The constructions in this

section work by choosing the parameters D, t(x),r(x), ¢(x) such that the right-hand side of
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the CM equation is always D times a perfect square, and thus the equation is satisfied for
every integer x. These constructions thus give complete families of curves in the sense of
Definition 2.2.3.

There are two principal strategies for constructing complete families, one due to Scott
and Barreto [113] and the other due originally to Barreto, Lynn, and Scott [3], and in its
fullest generality to Brezing and Weng [19]. Both start in the same way: fix an embedding
degree k, choose an irreducible polynomial r(z) € Z[x] such that K = Q|z]/(r(z)) is a
number field containing the kth roots of unity, and then choose t(x) to be a polynomial
mapping to 1 + (g, where (; is a primitive kth root of unity in K.

At this point the two strategies diverge. Brezing and Weng use the fact that if K
contains a square root of —D, then since r(z) = 0 in K, we can factor the CM equation

(2.8) in K as
(t(x) -2+ y@) (t(:r:) -2— y@) =0 mod r(x).

Since t(z) — (x + 1 € K, it now becomes clear that if we choose y(x) to be a polynomial
mapping to ((x —1)/v/—D in K, then the CM equation is automatically satisfied for any z.

If we do not know that K contains an element of the form /—D for some D, then
we may apply the Scott-Barreto strategy. This strategy is to take the t(x) and r(x) from
above and search (usually via computer) for cofactors h(z) that make the right-hand side
of the CM equation (2.8) either a perfect square or a linear factor times a perfect square.

The CM equation then becomes
Dy? = (azx + b)g(z)%

If @ = 0 then we take D = b and y = g(x). If a > 0, we may choose any D and make

Dz%2—b o . . .
=== If we then set y = zg(x), the CM equation is automatically

the substitution x —
satisfied for any z.

In both cases we finish by constructing ¢(x) as

1

1 (t(:v)2 + Dy(;r)z) .

q(x) =

If g(z) represents primes and r(z) has positive leading coefficient, then (¢,7,q) represents a
complete family of pairing-friendly curves.

The success of either strategy depends heavily on the choice of number field K. The

obvious choice is to set K to be a cyclotomic field Q(¢;) for some ¢ that is a multiple of
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k, and define r(x) to be the ¢th cyclotomic polynomial ®;(x). Then K contains the kth
roots of unity. Furthermore, it is a standard result of the theory of cyclotomic fields that K
contains v/—1 if 4 | £, K contains v/—2 if 8 | £, and K contains (_?l)p for any odd prime
p dividing ¢. Thus, for any & and D we can use a cyclotomic field in the Brezing-Weng
construction; see Murphy and Fitzpatrick’s work [96] for more details. We call families
constructed in this manner “cyclotomic families,” and we discuss some of the most efficient
constructions in Section 2.5.1 below.

We may achieve even better success by choosing K to be a (perhaps trivial) extension
of a cyclotomic field, with r(x) not a cyclotomic polynomial. There are two ways of creating
such an extension. The first is to make the substitution z +— w(x) for some polynomial w.
If ®y(u(x)) is irreducible we have gained nothing, but if ®,(u(x)) factors as r1(z)ra(z) with
r1 irreducible, then we may set K = Q[z]/(r1(x)). Then K is a field containing the ¢th
roots of unity, and u(z) maps to an £th root of unity in K. If we know that v/—D € Q({y),
then v/—D € K as well, and we may use the Brezing-Weng construction; otherwise we may
apply the Scott-Barreto construction.

The second method, due to Kachisa, Schaefer, and Scott [62] is to find a non-cyclotomic
polynomial r(x) such that K = Q[z]/(r(z)) is isomorphic to the cyclotomic field Q(¢;). Such
a polynomial r(z) can be computed as the minimal polynomial of a random element of Q((y).
Given this r(x), we can find a polynomial ¢(z) mapping to 1 + (j in K and proceed as in
the Brezing-Weng method.

Since nontrivial factorizations of ®y(u(z)) are rare for random () and, furthermore,
the g(z) produced by the Kachisa-Schaefer-Scott technique do not usually represent primes,
we will call families of curves obtained by either of these techniques “sporadic” families; they
are discussed in Section 2.5.2 below. Although such families are rare, they may have better
p-values than curves constructed using a cyclotomic field. This was most spectacularly
demonstrated by Barreto and Naehrig [9], who used this method to construct curves of

prime order with embedding degree 12 (Example 2.5.7 below).

2.5.1 Cyclotomic families

Barreto, Lynn, and Scott [3], and independently, Brezing and Weng [19], both observed
that if we apply the Cocks-Pinch method but parametrize t, r, ¢ as polynomials, then we can

improve on this value of p. Brezing and Weng stated the construction in greatest generality;
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their theorem is below.

Theorem 2.5.1 ([19]). Fix a positive integer k and a positive square-free integer D. Ezxecute

the following steps.

1. Find an irreducible polynomial r(x) € Z[x] with positive leading coefficient such that

K = Qlz]/(r(x)) is a number field containing /—D and the cyclotomic field Q((x).
2. Choose a primitive kth root of unity ¢, € K.
3. Let t(z) € Q[z] be a polynomial mapping to (x + 1 in L.

4. Let y(z) € Q[z] be a polynomial mapping to (¢x — 1)/v/—D in L. (So, if s(z) maps
to /=D then y(z) = (2 — t(x))s(x)/D mod r(x).)

5. Let q(x) € Q[x] be given by (t(z)? + Dy(x)?)/4.

If q(z) represents primes, then the triple (t(z),r(z), q(z)) represents a family of curves with

embedding degree k and discriminant D.

The p-value for this family (Definition 2.2.6) is

ot q) = 2max{degt(x),degy(z)} .

degr(x)

Since we can always choose t(z) and y(z) to have degree strictly less than r(z), we see
that this method can produce families with p-values strictly less than 2. In general, we
expect the smallest possible degree for ¢(z) and y(z) to be deg(r) — 1, so p will not be much
less than 2. However, for certain clever choices of the number field K, we may construct
polynomials ¢ and y with smaller degree, thus improving the p-value. We will now examine
in detail some constructions for certain sets of k.

Barreto, Lynn, and Scott [3] gave the first construction along the lines of Theorem
2.5.1. They construct families by taking the polynomial r(z) defining the number field K
to be the kth cyclotomic polynomial, choosing ( — « in K (so t(z) = 1+ z)," and using
the fact that if k is divisible by 3 then v/—3 € K. Brezing and Weng [19] set r(z) to be a
cyclotomic polynomial ®,(x) for some ¢ that is a multiple of the desired embedding degree

k and choosing various representatives for (x in Q[z]|/(r(x)). The discriminants D in these

THere and in the following examples, for o € K and f(z) € Q[z] we use the notation o — f(z) to mean
that f(z) represents a in K = Q[z]/(r(x)).
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constructions are often taken to be 1 or 3. The tricky part of most of these constructions
is ensuring that the resulting ¢(x) represents primes.

The constructions we present in this section are generalizations of constructions al-
ready existing in the literature. Construction 2.5.2 is based on an example of Brezing and
Weng [19, §3, Example 3], while Constructions 2.5.3 and 2.5.4 adapt this example to even
embedding degrees k. Construction 2.5.5 generalizes examples of Brezing and Weng [19,
§3, Example 4] and Barreto, Lynn, and Scott [, §3.1]. Finally, Construction 2.5.6 gener-
alizes examples of Brezing and Weng [19, §3, Example 5] and Murphy and Fitzpatrick [96,
Example 2.2.2 and §4.4].

We begin with a construction given by Brezing and Weng, who state the construction
for prime embedding degrees k; we observe that the construction extends readily to all odd
k. We choose K to be a cyclotomic field containing a fourth root of unity v/—1, so we may
choose D = 1.

Construction 2.5.2 ([19]). Let k be odd, and let r(z) = ®yx(x), so K = Q[z]/(r(z)) =
Q(Cax). We choose ¢, +— —a? (so t(x) = 1—22) and /—1 + z¥. The Brezing-Weng method
(Theorem 2.5.1) then gives

a(@) = (=2 17 + (2 +1)%%)

T4

_ i <x2k+4 492k H+2 | g2k | o4 902 4 1) .

Since ¢(1) = 1, if ¢ is irreducible then it represents primes. Computations with PARI [102]

(2.9)

show that g(x) is irreducible for odd k& < 200, and we conjecture that ¢(z) is irreducible
for all odd k. We conclude that for odd k£ < 200 (and conjecturally for all odd k), (¢,7,q)
represents a complete family of curves with embedding degree k and discriminant 1. The

p-value for this family is deg g/ deg @y = (k +2)/p(k). O

We next observe that if k is odd, then (5 = —(i. Thus if we change the sign of the
polynomials representing (i in Construction 2.5.2, the same construction can be used to

create families with embedding degree 2k and the same p-values.

Construction 2.5.3. Let k£ be odd. Changing the sign of j in Construction 2.5.2 gives

r(z) = Pa(x),
tz) = z°+1,
1
q(x) = 1 (m2k+4 — 2222 g2k gt 2% 4 1) .



44

Then (t,r, q) represents a potential family of pairing-friendly elliptic curves with embedding
degree 2k and discriminant 1. If  is odd, then ¢(x) is an integer. Since g(z) is the reverse
of the polynomial given in (2.9), ¢(x) is irreducible if and only if (2.9) is. Thus (¢,1,q)
represents a family of curves for odd & < 200, and we conjecture for all k. The p-value
for this family is (k + 2)/¢(k); in terms of the embedding degree k' = 2k the p-value is
(K )2+ 2) [p(K). m

With the same setup, using (4 = +/(or gives the following construction.

Construction 2.5.4. Let k be odd. Using (4% — « in Construction 2.5.2 gives

r(z) = Pu(z),
t(x) = z+1,
1
q(z) = 1 (3:2k+2 — 2P g2k a2 4 on 4 1) .

Then (¢, r, q) represents a potential family of pairing-friendly elliptic curves with embedding
degree 4k and discriminant 1. Since ¢(1) = 1, if ¢ is irreducible then it represents primes.
Computations with PARI [102] show that ¢(z) is irreducible for odd k£ < 200, and we
conjecture that ¢(z) is irreducible for all odd k. Thus (¢,r, q) represents a family of curves
for odd k < 200, and we conjecture for all k. The p-value for this family is (k+1)/¢(k); in
terms of the embedding degree k' = 4k the p-value is (k'/2 + 2)/p(K'). O

We now consider families constructed by choosing K to be a cyclotomic field containing
a cube root of unity. Such fields contain v/—3, so we may choose D = 3. Some constructions
of this form have been given by Barreto, Lynn, and Scott [3] and Brezing and Weng [19] for
certain values of k; we consider the construction for all &, and discover families in all cases

where k is not divisible by 18.

Construction 2.5.5. Let k be any positive integer, let £ = lem(6, k), and let r(x) = ®y(x).
We work in the field Q((x, (g), defined as K = Q[x]/(®¢(x)). In this field we have v/—3 —
22¢/6 — 1. Our goal is to use the relation z¢/% = /6 —1 mod r(z) to minimize the degree
of y(z) = (¢ — 1)/v/—3. The obvious choice is ¢ — z!/*; however, in many cases we can
do better by choosing (i +— x® with a only slightly larger than ¢/6. Since x is a primitive
¢th root of unity, for % to be a primitive kth root of unity we need ged(a,f) = £/k. The

exact choice depends on the congruence class of  modulo 6:
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e k=1 (mod 6), £ = 6k: Since 2k + 1 = 3 (mod 6), z?**! is a primitive 2kth root
of unity. Since k is odd, —z?**1 is a primitive kth root of unity. Thus we choose

G — —x2 = 2 L mod r(x).

k=2 (mod 6), £ = 3k: We have k +1 = 3 (mod 6), so we choose (; +— 2! =

/21— mod r(x).

e k =3 (mod 6), £ = 2k: Since z2*/3 is a cube root of unity and 3 | k, we need to
multiply z2¥/3 by a primitive kth root of unity. Since k is odd and z is a 2kth root
of unity, —z is a kth root of unity. Thus we choose ¢ — —z2k/3+t1 = _gh/3+1 4 4
mod r(x).

e k=4 (mod 6), £ = 3k: Choose (j — z°.
e k=5 (mod 6), £ = 6k: We have k+1 =0 (mod 6), so we choose (j, — z**1.
e k=0 (mod 6), £ = k: Choose (i — .

If z(x) is the polynomial mapping to ¢, we compute y(z) by taking 3z(z)(1 — 22%/6) and
adding +2zr(x) to cancel out the leading term if & (mod 6) € {1,2,3,5}. We note that
for small values of k the resulting ¢(z) and y(x) are not completely reduced modulo r(z);
however, we find that further reduction leads to a ¢(x) that does not represent primes. Our

choices for (; and y(z) give the following formulas for g(x), which are valid for all positive

k:

e k=1 (mod 6): L +1)2(2% — b +1) — 226+,

L
—
8
S~—
Il
ol

o k=2 (mod 6): ¢(z) = & (x — 1)(zF — 2¥/2 + 1) + 2F+1.

o k=3 (mod 6): q(z) = 3(z + 1)2(a?/3 — g*/3 4 1) — 2k/3+L,

o k=4 (mod 6): g(z) = §(2% - 1)2(aF — 22 + 1) + 23,

e k=5 (mod 6): g(z) = +(2* — x4+ 1) (2% — 2% + 1) + 2.

e k=0 (mod 6): q(x):%(x—1)2(xk/3—a:k/6+l)+a:. O

We see that we have degg = £/3 + 2 in all cases except k =4 (mod 6), in which case
degq = ¢/3 + 6. Thus for any k, we have constructed a potential family of pairing-friendly
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curves with embedding degree k£ and discriminant 3. The p-values of these families are
p=/346)/p)if k=4 (mod 6), and (¢£/3 + 2)/p(¢) otherwise.

It remains to consider whether ¢(z) represents primes. We can check conditions (4)
and (5) of Definition 2.2.1 simultaneously: If k is even then ¢(1) = 1, if K = 1 or 3
(mod 6) then ¢(—1) =1, and if k =5 (mod 6) then ¢g(—1) =4 and ¢(2) is an odd integer.
Finally, computations with PARI [102] indicate that the appropriate g(x) is irreducible for
all £ < 300, except when k is divisible by 18. We conjecture that these polynomials are
irreducible for all k not divisible by 18.

Next, we consider families obtained by choosing K to be a cyclotomic field containing
an eighth root of unity. Such fields contain v/—2, so we may choose D = 2. Brezing and
Weng give an example of the construction with & = 18, while Murphy and Fitzpatrick [90]

give an example with £ = 24. We describe the construction for any k divisible by 3.

Construction 2.5.6. Let k& be a positive integer divisible by 3. We work in the field
Q(C, G), defined as K = Q[z]/(®4(x)), where £ = lem(8, k). In this field, we have ¢y s z//*
(so t(z) = 2% +1), and /=2 = (g + ¢ — x'/8 + 2348, We choose y(z) to be a polynomial
mapping to ((x — 1)/v/—2 and compute the reduction of y(x) modulo ®,(z). Since k is

0/3

a multiple of 3, we can use the relation zt/3 = 2%/6 — 1 to compute y(z) modulo ®,(x)

explicitly, for we have

Ck —21 _ %(1 2R (BB 4 /8

%(1 R (P2 4 g8 gt1) nod ().

We set y(x) equal to this last polynomial. If % + 3£ < () (a condition which holds
whenever 3 | k, kK > 18, and k has at most two prime factors greater than 3), then y(x) is

the minimal-degree representative of ({ — 1)/v/—2 modulo ®(z), and we may set
g(z) = é (2(x£/k )24 (1 — g/R)2(528 4 /8 xe/24)2> _

The degree of ¢ is thus (% + %) We observe that ¢(1) = 1 for any k; computations with
PARI show that g(x) is irreducible when 3 | k£ and k& < 200, and we conjecture that g(x)
is irreducible for all such k. Thus for these values of k, (/% + 1, ®,(x), q(z)) represents a
family of curves with embedding degree k. The p-value of this family is (%k +4)/p(k) if k
is odd, and (% +2)/p(k) if k is even. O
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Table 2.1: Families of pairing-friendly elliptic curves with k£ € {15,28,44} and D = 2.

k| € |tx),q) p

t(l‘) — 28424 416,12 .89

15| 120 q(:(:) = %(2x56+4x52+x50+2x48+2w46—4a:44+ar42—6x40—4x36—z30 7/4

+12228 —2426 414424 — 224 92220 10216 — 10212 4410848 4246 +x2+8)

t(r) = —2?
q(x) = 1(2(22—1)2 42 (2241)2(21441)?)
t(z) = —a?
u|ss | @="" 7/4

q(x) = %(2(x2_1)2+x22($2+1)2($22+1)2)

Construction 2.5.6, while stated only for k divisible by 3, can be carried out for any
positive integer k, setting y(x) to be the minimal-degree representative for (¢ —1)/y/—2 in
K. However, unlike the case of Construction 2.5.5, the expressions for g(x) when k is not
divisible by 3 or when % + % > () become too complicated to enumerate explicitly in
general. Furthermore, in some cases the construction may not give a family of curves; for
example, if k = 20 the g(z) given by the construction never takes integer values. Potential

families for a few selected values of k are given in Table 2.1.

2.5.2 Sporadic families of Brezing-Weng curves

Brezing and Weng only consider cyclotomic polynomials r(z) for their constructions,
but in some cases using non-cyclotomic polynomials r(x) that define (perhaps trivial) ex-
tensions of cyclotomic fields may turn out to be even more effective. One method for
constructing such extensions is to substitute z — wu(x) in the cyclotomic polynomial ®(x),
where u(z) is some polynomial. If ®,(u(z)) is irreducible, as is usually the case, going to
the extension field will give us no advantage, as we will just be substituting x — u(z) in t,
r, and q. However, if ®y(u(z)) factors, we may gain some advantage.

Galbraith, McKee and Valenga [16] have analyzed the factorizations of ®y(u(x)) when
u is quadratic and ®, has degree 4. For ¢ = 8 there are no quadratic v such that ®g(u(z))
factors. For ¢ = 5,10, there is a one-dimensional family of such u, parametrized be the
rational points of a rank-one elliptic curve over Q. However, since Q((5) = Q(¢10) has no

quadratic imaginary subfields, we cannot use Theorem 2.5.1 to construct a complete family
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using such a factorization.
Finally, for ¢ = 12 there are two such u(x). Barreto and Naehrig constructed pairing-

friendly curves of prime order using one such factorization.

Example 2.5.7 (Barreto-Naehrig curves [9]). Galbraith, McKee and Valenga [1(] discov-
ered that if u(x) = 622, then ®19(u(x)) = r(x)r(—x), where r(z) = 36x* + 362 + 1822 +
6z + 1. If we set K = Q[z]/(r(z)), then (12 — 62% in K, and using /-3 = 2¢}, — 1 we
compute y(z) = 62% + 4z + 1 and q(z) = 362 + 3623 + 2422 + 62 + 1. Since ¢(z) and r(x)
have the same degree and leading coefficient, r(z) is actually the number of points on the
elliptic curve to be constructed. Thus if ¢(x) and r(z) are both prime for some value of x,

then the elliptic curve constructed will have prime order. ]

A computer search for further factorizations of ®j(u(x)) for various values of k and

degrees of u found the following example.

Example 2.5.8. Let k = 8. If u(z) = 923 + 322 4+ 22+ 1, then ®g(u(x)) has an irreducible
factor r(z) = 9% + 1223 + 822 + 4z + 1. Setting D = 1 and K = Q|xz]/(r(x)), we choose
(s — —u(x) and /=1 = (¢ — —1823 —152% — 102 —4 mod r(z). Applying Theorem 2.5.1,

we compute

tx) = —92° —32% — 2z

1 .
q(w) = 7 (812°+540° + 452" +120° +132% + 63+ 1).

Since ¢(1) = 53 and ¢(—1) = 17 are distinct primes, g(x) represents primes. We conclude
that (¢,r,q) represents a family of curves with embedding degree 8. The p-value for this
family is 3/2, which is worse than p = 5/4 given by Construction 2.5.5. However, curves
with D = 1 have an automorphism of order 4, and since k is a multiple of 4 we may take
advantage of this “quartic twist” to map points P € E(F;) down to the field Fj 2, thus

speeding up the pairing computation (see [56, §5]). O

Kachisa, Schaefer, and Scott [62], building on the work of Kachisa [01], give a different
strategy for constructing non-cyclotomic polynomials that define a cyclotomic field. Their
strategy is to choose elements 3 € Q((;) that can be written as an integer linear combination
of a power basis with small coefficients, and let r(z) be the minimal polynomial of 5. Since
most elements of Q({y) do not lie in a proper subfield, in most cases we have Q[x]/(r(x)) =

Q(¢r). We can then proceed as in the Brezing-Weng method.
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Which 3 and which kth root of unity modulo r(z) to choose are determined by com-
puter search; the resulting polynomial ¢(z) should have a degree low enough such that we
obtain an attractive p-value. In practice we find that most polynomials g(x) generated by
the construction have large denominators, so it is rare for these polynomials to take integer
values. Yet favorable polynomials do exist, as the following examples show. We give one

example below; others can be found in [62].

Example 2.5.9 ([62]). Let k = ¢ = 16. We set 3 = —22°+2, which has minimal polynomial
r(z) = o® + 48z* + 625.
In QLz]/(r(x)), we use Cig = 3 (22% + 412), 50
1
t(z) = — (22° + 41z + 35)..
35
We use /=1 — —1 (2 + 24). We get y(z) = —5=(2° + 52* + 38z + 120) and

1
a(7) = 555 (2% + 227 + 52® + 482° + 1522° + 2402" + 6252° + 2398z + 3125) .

The polynomial g(z) is irreducible. We find that both ¢(z) and ¢(z) are integers if and only
if # = £25 (mod 70). In addition, ged({q(£25+470n) : n € Z}) = 1, so ¢ represents primes.
Thus (t,r,q) represents a family of curves with embedding degree 16. The p-value of this
family is 5/4. O

2.5.3 Scott-Barreto families

To employ the strategy of Scott and Barreto [113], we again take K to be an extension
of a cyclotomic field, but this time we do not assume that K contains an element v/—D. If
we choose t(x) to be any polynomial and r(x) to be an irreducible factor of ®(¢t(x) — 1),
then Q[z]/(r(z)) defines an extension of a cyclotomic field. We then search for an h(x) that
makes the right hand side of the CM equation

Dy? = 4h(x)r(x) — (t(x) — 2)2

take the form of a linear factor times a perfect square. Below we give some examples of this
method that achieve p-values less than 2 with (nearly) arbitrary D. These examples are
due to Mike Scott, who found them by fixing k& and executing a computer search through
the space of possible ¢(z) and h(z).
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Example 2.5.10. Let k = 4. Take t(z) = x+1, r(x) = ®y4(x) = 22 +1, h(z) = (x+13)/25.
Then the CM equation becomes
4
Dy = —(z+13)(2®+1)— (z —1)*

25

- 2%(49@ +3)(z +3)2.

If we substitute 2 = (Dz? — 3)/4, the right hand side becomes D times a square, and we
find
1
q(z) = — (2° + 132” + 26z + 13) .

S 25
The p-value for this family is 3/2. We observe that ¢(z) is an integer if and only if z = 2
(mod 5), and since x = (Dz? — 3)/4 we conclude that D = 11 or 19 (mod 20). O

Example 2.5.11. Let k = 6. Take t(x) = —42? + 42 + 2, r(z) = ®g(t(z) — 1) = 162* —
3223 + 1202 + 4z + 1, h(z) = x/4. Then the CM equation becomes

Dy? = x(42® — 6+ 1)°.
If we substitute z = Dz2, the right hand side becomes D times a square, and we find
5 4 3 2 17
q(z) = 4z° — 82" + 32° — 3z JerJrl.
The p-value for this family is 5/4. O

Setting D = 3 in Example 2.5.11 would be ideal in terms of performance, for curves
with D = 3 have sextic twists [9] that would allow both inputs to the pairing to be given
over [F,. Unfortunately, the polynomial 7(322) factors into two degree-four polynomials in z,
so 7(32%) can never be prime. However, the construction does produce curves with p ~ 5/4

for many other values of D.
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Chapter 3

New Constructions of

Pairing-Friendly Elliptic Curves

3.1 Elliptic curves with embedding degree 10.

In this section we use the framework of Chapter 2, and in particular the theory of
“sparse families” described in Section 2.4, to construct elliptic curves of prime order with
embedding degree 10. This result also appears in [37].

As in Chapter 2, we are looking for polynomials ¢(x),r(z), q(x) that parametrize the
trace, subgroup size, and field size (respectively) of elliptic curves with prescribed embedding
degree. Since we want the curves to have prime order, r(x) must be the full group size of
the curve, and the three polynomials must satisfy r(z) = ¢(x) + 1 — ¢t(x). Furthermore, the
CM equation

Dy? = 4g(x) — (t(x))? = 4r(x) — (t(z) - 2)?

must have an infinite number of solutions. As we showed in Proposition 2.4.5, this can only
happen if the right hand side f(z) = 4r(x) — (t(x) — 2)? is quadratic or has a multiple root.
Since r(z) must be an irreducible factor of ®(t(x) — 1), where ®; is the kth cyclotomic
polynomial, the following lemma suggests that a quadratic f(x) occurs naturally only in

the cases k = 3, 4, or 6.

Lemma 3.1.1. Fix k, let t(x) be a polynomial, and let r(x) be an irreducible factor of

O (t(x) —1). Then the degree of r is a multiple of p(k), where ¢ is the Euler phi function.
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Proof. Suppose t(z) has degree d, so deg @y (t(z) — 1) = dp(k). Let 6 be a root of r(x) in
Q, and let w = ¢(f) — 1. Then ®;(w) = 0, so w is a primitive kth root of unity. We thus have
the inclusion of fields Q(0) D Q(w) D Q. Since [Q(#) : Q] = degr(z) and [Q(w) : Q] = p(k),
we conclude that ¢(k) divides degr(z). O

Our key observation is that since construction of a sparse family requires f(z) =
4r(z) — (t(xr) — 2)? to be quadratic (see Theorem 2.4.1) and Lemma 3.1.1 implies that
degr(z) > p(k), if K > 6 we must choose r(z) and t(x) in such a way that the high-degree
terms of ¢(x)? cancel out those of 4r(x). In particular, the degree of ¢(x) must be half the
degree of r(x). We have discovered that for k& = 10 there is a choice of r(z) and ¢(x) such
that this is possible. The resulting construction of elliptic curves with embedding degree
10 solves an open problem posed by Boneh, Lynn, and Shacham [17, §4.5].

We begin by noting that in the case k£ = 10, Lemma 3.1.1 tells us that the smallest
possible degree of 7(x) is ¢(10) = 4. Thus to get the high-degree terms of t(x)? to cancel out
those of 4r(z) in this smallest case we must choose t(z) to be quadratic, and furthermore
®10(t(z) — 1) must have a degree-4 factor.

It happens that for k € {5,8,10,12}, Galbraith, McKee, and Valenca [1(] have char-
acterized all quadratic t(z) such that ®(¢t(z) — 1) factors into two irreducible quartic poly-
nomials. In the case k = 10 they show that there is an infinite set of ¢(x) such that this
factorization occurs, and that these ¢(x) are parametrized by the rational points of a cer-
tain rank-1 elliptic curve. By experimenting with some of the examples given by Galbraith,

McKee, and Valenca, we discovered that t(z) = 1022 + 52 + 3 leads to a quadratic f(x).

Theorem 3.1.2. Fix a positive square-free integer D relatively prime to 15. Define t(x),

r(x), and q(z) by

t(x) = 102° +5z+3
r(z) = 25zt + 2523 + 1522 + 52+ 1
q(z) = 25z% + 2523 + 2522 + 10z + 3.

If the equation u? — 15Dv? = —20 has a solution with w = 5 (mod 15), then (t,r,q) repre-

sents a sparse family of curves with embedding degree 10.

Proof. It is easy to verify that conditions (1)—(4) of Definition 2.2.3 (i) hold. Condition (5)

requires an infinite number of integer solutions to Dy? = f(z), where f(z) = 4q(z) — t(z)2.
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The key observation is that for this choice of ¢t and n,
f(z) = 4q(x) — t(z)* = 152% + 10z + 3.
Multiplying by 15 and completing the square transforms the equation we wish to solve into
D'y* = (15x + 5)? + 20,

where D’ = 15D. Integer solutions to this equation correspond to integer solutions to
u? — D'v? = —20 with u =5 (mod 15). By Theorem 2.4.1, if one such solution exists then
an infinite number exist, so (t,, q) represents a family of curves with embedding degree 10.

Since the solutions grow exponentially, this family is sparse (cf. Remark 2.4.3). O

To use Theorem 3.1.2 to construct curves with embedding degree 10, we choose a D
and search for solutions to the equation u? — 15Dv? = —20 that give prime values for ¢ and
r. The following lemma, proposed by Mike Scott, speeds up this process by restricting the

values of D that we can use.

Lemma 3.1.3. Let q(z) be as in Theorem 3.1.2. If (x,%) is an integer solution to Dy* =
1522 4 10x + 3 such that q(x) is prime, then D = 43 or 67 (mod 120).

Proof. If x =0 or 2 (mod 3) then ¢(z) is divisible by 3, while if z is odd then g(z) is even.
Thus if ¢(z) is prime, then x =4 (mod 6).

To deduce the stated congruence for D, we consider the equation Dy? = 1522410z +3
modulo 3, 5, and 8. To begin, we have Dy?> = x = 1 (mod 3), so D = 1 (mod 3). Next,
we have Dy? =3 (mod 5), so y> =1 or 4 (mod 5) and D =2 or 3 (mod 5). Finally, since
r is even we see that Dy? = 3 (mod 8), and thus y?> = 1 (mod 8) and D = 3 (mod 8).
Combining these results via the Chinese remainder theorem, we conclude that D = 43 or

67 (mod 120). O

After reading an earlier version of this work [36], Mike Scott used Theorem 3.1.2 and
Lemma 3.1.3 to find examples of elliptic curves with embedding degree 10 via the following

algorithm.

Algorithm 3.1.4. Let (¢,r,q) be as in Theorem 3.1.2. The following algorithm takes inputs
MaxD, MinBits, and MaxBits, and outputs pairs (D, zg) such that D < MaxD, the number

of bits in g(z¢) is between MinBits and MaxBits, and ¢(xg) and r(xo) are both prime.
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1. Set D to be a positive integer such that D = 43 or 67 (mod 120) and 15D is square

free.

2. Use the continued fraction algorithm [75] to compute a fundamental unit v of the ring

of integers in Q(v/15D). Set & « ~? if v has norm —1, § « ~ otherwise.

3. Use the algorithm of Lagrange, Matthews [$3], and Mollin [94, Chapter 5] to find

fundamental solutions (u,v) to the equation u? — 15Dv? = —20. (See also [105].)
4. For each fundamental solution (u,v) found in (3):

(a) If logy u > (MaxBits 4 11)/4, go to the next fundamental solution.
(b) If u =45 (mod 15) and log, u > (MinBits + 11)/4, then:

i. Set xg « (=5 £ u)/15.

ii. If g(xo) and r(zg) are prime, output (D, x¢).

(c) Write §(u+vv15D) =o' +v'v15D. Set u «— ', v < v/, and return to step (a).
5. Increase D. If D < MaxD, return to step (1); otherwise terminate.

The bounds on log, u in Step (4) can be explained as follows: since g(x) = 252*+0(z3)
and x = (=5 4 u)/15, g(z) grows roughly like u*/2025. We conclude that log, q(x) =

4logyu — 11, so we require v in the algorithm to satisfy

MinBits + 11 MaxBits + 11

1 < logyu < 1 (3.1)

In our description of Algorithm 3.1.4, the specific parameters of Theorem 3.1.2 have
allowed us to simplify the procedure described in the proof of Theorem 2.4.1. The require-
ment that 15D be square free implies that w = 1, and the fact that b = 10 is even allows
us to remove the factors of 2 in the congruence moduli of equations (2.4). Thus in Step
(4) we need only to find (u,v) with u? — 15Dv? = —20 and u = £5 (mod 15). Given this
requirement, we see that the only restriction on the unit § = a + 3v/15D in Step (4c) is
that a # 0 (mod 3), which must be true since a? — 15D3% = 1. Thus our choice of § = v
or v2 will always give new solutions (u,v) with u = +5 (mod 15); i.e., the parameter m of
Theorem 2.4.1 is equal to 1.

In practice the fundamental unit v computed in Step 2 will usually be very large,

in which case we may skip Step (4c) altogether. For example, computations with PARI



95

indicate that when D ~ 109, « has at least 100 bits 99.5% of the time and at least 200 bits
98.9% of the time.

Mike Scott ran Algorithm 3.1.4 with inputs MaxD = 2 - 10°, MinBits = 148, and
MaxBits = 512; some sample output appears in Appendix A.1. For each (D, xo) output by
the algorithm, one may then use the CM method (see Section 1.2.4) to construct an elliptic
curve over [F, ) whose number of points is r(zo). Since r(z¢) is prime, by Lemma 1.2.2
this curve has embedding degree 10.

Below are two examples of elliptic curves that Scott constructed in this manner.

Example 3.1.5. (A 234-bit curve.) Running Algorithm 3.1.4 with D = 1227652867 pro-
duces the output o = —164286669864814370, from which we compute the 234-bit primes

q = 18211650803969472064493264347375950045934254696657090420726230043203803

T = 18211650803969472064493264347375949776033155743952030750450033782306651.

The class number of Q(v/—D) is 5328. The CM method produces the curve E over F, given
by
y? = 2% — 3z + 15748668094913401184777964473522859086900831274922948973320684995903275.

Then E/F, has r points and embedding degree 10. O

Example 3.1.6. (A 252-bit curve.) Running Algorithm 3.1.4 with D = 1039452307 pro-
duces the output xog = —4009700747060840276, from which we compute the 252-bit primes

q = 6462310997348816962203124910505252082673338846966431201635262694402825461643

T = 6462310997348816962203124910505252082512561846156628595562776459306292101261.

The class number of Q(v/—D) is 4548. The CM method produces the curve E over F, given
by

y? = 2% — 3z + 4946538166640251374274628820269694144249181776013154863288086212076808528141.

Then E/F, has r points and embedding degree 10. 0

Ideally, the bit size of curves with embedding degree 10 should be chosen so that
the discrete logarithm in the finite field Fj10 is approximately of the same difficulty as the
discrete logarithm problem on an elliptic curve of prime order over IF,. Using the best
known discrete logarithm algorithms, this happens when g has between 220 and 250 bits
(see Table 1.1 and [13, Chapter 1]). The curves in Examples 3.1.5 and 3.1.6 have been
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selected so that their bit sizes are close to this range and the class numbers of Q(v/—D) are
small enough for the CM method to be effective.

In practice, it appears that curves with small embedding degree, prime order, and small
CM discriminant D are quite rare. Luca and Shparlinski [$0, 81] come to this conclusion
for curves with embedding degree 3, 4, or 6 (the MNT curves) through a heuristic analysis
of the MNT construction. Since our construction of curves with embedding degree 10 is
similar to the MNT construction (cf. Section 2.4.1), a similar analysis should hold for our
k = 10 curves. The experimental evidence supports this reasoning: Scott’s execution of
Algorithm 3.1.4 with MaxD = 2 - 10° found only 23 curves with prime orders between 148
and 512 bits [111]. Parameters for these curves can be found in Appendix A.1.

If we relax the condition on r(xg) in Step 4(b)ii of Algorithm 3.1.4 and allow r(xg) =
hrg with r¢ a large prime and h a small cofactor, then we may find a larger number of
suitable curves. Scott also ran this version of the algorithm and found 101 curves with r¢
between 148 and 512 bits, h at most 16 bits, and D < 2-10? [111]. Some examples can be
found in Appendix A.1.

3.1.1 Comparison with prior state of the art

The problem that motivated Boneh, Lynn, and Shacham to seek prime-order elliptic
curves with embedding degree 10 is that of producing short digital signatures using their
algorithm [17] at a security level equivalent to the Digital Signature Algorithm (DSA) over a
2048-bit prime field. The standards for DSA [0, 30] require DSA signatures over a 2048-bit
field IF, to use a 224-bit prime-order subgroup of F;. It follows that to obtain Boneh-
Lynn-Shacham (BLS) signatures at this security level we should work in an elliptic curve
subgroup whose order is a prime of at least 224 bits, and the Weil pairing should map this
subgroup to a finite field of at least 2048 bits. (This is also the recommended equivalence
between DSA and elliptic curve signatures [0, §5.6].) Since the ratio 2048/224 is between
9 and 10, for the most efficient implementation of BLS signatures at this security level we
should use curves of prime order with embedding degree 9 or 10.

Before our discovery of the family in Theorem 3.1.2, the smallest known p-value for

a family of elliptic curves with embedding degree 10 was 3/2. This family, which is due to
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Table 3.1: Elliptic curve parameters for Boneh-Lynn-Shacham signatures with security
equivalent to 2048-bit DSA.

Family Embedding | Field size | Subgroup size | Extension field
degree k q (bits) r (bits) q" (bits)

Miyaji-Nakabayashi-Takano 6 342 342 2052

(Theorem 2.4.6)

Barreto-Lynn-Scott 7 299 224 2091

(Construction 2.5.5)

Brezing-Weng 8 280 224 2240

(Construction 2.5.5)

Brezing-Weng 9 299 224 2688

(Construction 2.5.5)

Brezing-Weng 10 336 224 3360

(Equation (3.2), page 57)

Barreto-Lynn-Scott 11 269 224 2957

(Construction 2.5.5)

Barreto-Naehrig 12 224 224 2688

(Example 2.5.7)

Freeman 10 234 234 2340

(Example 3.1.5)

Brezing and Weng [19, §3, Example 2], has CM discriminant 1 and (¢,r,q) given by

tx) = —aS+at =22 +2, r(z) = Pog(z), qlx)= 3(1:12 — 2194 2% — 520 4 521 — 422 4-4).

(3.2)
An elliptic curve in this family with a 224-bit prime-order subgroup would be defined over a
336-bit field Fy, and the pairing would map to a 3360-bit field. A BLS signature using such
a curve would attain the level of security equivalent to 2048-bit DSA, but the signatures
would be 336 bits long.

On the other hand, if we implement BLS signatures using the 234-bit prime-order
curve of Example 3.1.5, then the pairing maps to a 2340-bit field and signatures are 234
bits long, so the desired security is obtained with a shorter signature.

Table 3.1 shows these and several other possibilities for families of elliptic curves with
subgroups of at least 224 bits for which the pairing maps to a field of at least 2048 bits. The
size of a BLS signature using a curve from this table is the size of the finite field F,. Note
that all of the choices in the table would provide shorter signatures than 2048-bit DSA,

which produces signatures of 448 bits.
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We observe that Barreto-Naehrig curves of prime order with embedding degree 12 can
also produce short BLS signatures at this security level. Since the pairing on a 224-bit
Barreto-Naehrig curve maps to a larger field than does the pairing on the curve in Example
3.1.5, the public and private keys will be larger and the signature verification may take
longer if the Barreto-Naehrig curve is used. However, compression techniques such as those

of [9, §3] may be used to reduce these sizes and the complexity of the pairing computation.

3.2 More discriminants in cyclotomic families

In this section we describe an extension to the constructions of “complete families” that
we described in Section 2.5. The “cyclotomic” and “sporadic” constructions we described
in that section have in common that we first fix a (small) square-free CM discriminant, and
then compute the corresponding complete family of curves, all with the same discriminant.
We refer to such constructions as basic constructions.

Some users, however, might prefer more flexibility with regard to the CM discriminant
D. For example, one might view curves with D = 3 suspiciously, as these curves have the
unusual property of having an automorphism group of order 6, and the extra structure may
be used to aid a future (as yet unknown) discrete logarithm attack. This is an example of
the “hard-line” position on security articulated by Koblitz [67]:

All parameters for a cryptosystem must always be chosen with the maximal

possible degree of randomness, because any extra structure or deviation from
randomness might some day be used to attack the system.

Users taking this viewpoint will want families of pairing-friendly elliptic curves with variable
CM discriminant D.

Our main result in this section is Theorem 3.2.1, which, given a family of curves with
fixed discriminant, allows us to build a family of curves with variable CM discriminant
and the same p-value. Thus, combining a basic construction with Theorem 3.2.1 yields a
general method for constructing families of curves with variable CM discriminant and p < 2.
Previous constructions with variable discriminant required either p > 2 (cf. Section 2.3) or
k <6 (cf. Section 2.5.3). Note that D is by definition square free, so curves with different
CM discriminants D are not isogenous.

After presenting our main result, we give examples of variable-discriminant families for

any embedding degree k satisfying ged(k,24) € {1,2,3,6,12}. In particular, Constructions



99

3.2.2 and 3.2.6 combine Theorem 3.2.1 with the method of Brezing and Weng to give new
families of curves for £k = 3 (mod 4) and k£ = 2 (mod 8), respectively. When £ is not
divisible by 3, these families have p-value smaller than that of any other known variable-
discriminant complete family. Furthermore, the families with & = 10 (mod 24) have p-
value smaller than any other known complete family, with fixed (in advance) or variable
discriminant.

Recall that a triple of polynomials (¢,7,q) is said to represent a potential family of
elliptic curves with embedding degree k if it satisfies conditions (2)—(5) of Definition 2.2.3
(i); in particular, ¢ may not represent primes (or be a power of a p(z) that represents
primes). Our result says that if the polynomials in a potential family have a certain form,
we may obtain families with (nearly) arbitrary discriminant. In particular, this allows us
to make D a parameter input at the time of curve construction rather than at the time the
polynomials £, r, g are computed. We will then see that in many cases the potential families

are actual families in the sense of Definition 2.2.3.

Theorem 3.2.1. Suppose (t,r,q) represents a potential family of elliptic curves with em-
bedding degree k and discriminant D. Let K = Q[z]/(r(x)), and let y(x) +— ({ — 1)/v/—D
in K as in Theorem 2.5.1. Suppose t, r, and q are even polynomials and y is an odd poly-
nomial. Define r',q' to be the polynomials such that r(x) = r'(2?) and q(x) = ¢/(x?). Then
for any integer o such that r'(ax?) is irreducible, there exists a potential family of curves

with embedding degree k, discriminant oD, and p-value equal to p(t,r,q).

Proof. We begin by defining polynomials ', 3 such that t(z) = ' (2?) and y(z) = z-y/(z?).
Let o be a root of r(z), so K = Q(0). Let 7 = o/y/a, so T is a root of r'(az?). If /(ax?)
is irreducible, we may define L to be the number field Q(7) = Q[z]/(+'(az?)). Then any
element of K that can be expressed as an even polynomial g(c?) is also an element of L.
In particular, since t(x) is even and #'(0?) — 1 = ¢} in K, we have (, = t'(ar?) — 1 in L.

Now let 3 be the element y/(02?) € K; then 8 = y/(a7?) in L. From the definition of
y(z) we have —Dy(0)? = —Do?y'(02)? = (¢t — 1) in K, so

—Da%y(ar?)? = (G — 1)°
in L. Substituting 02 = ar? gives

—Dat?y (at?)? = (G — 1),
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so we conclude that

in L.

A straightforward computation now shows that

q’(oz:rQ) = (t’(ax2)2 + aD(xy’(oe:nQ))Q) :

=

Since 7/(az?) is irreducible by hypothesis, it satisfies condition (2) of Definition 2.2.3 (i).
Thus by Theorem 2.5.1, the triple

(¢'(aa?),r'(az?), ¢ (az?))

represents a potential family of curves with embedding degree k and discriminant aD. The

p-value for this family is 2degq’/2degr’ = degq/ degr. O

Theorem 3.2.1 tells us that if ¢, r, ¢ are even polynomials and /—D mod r(z) is an odd
polynomial, then the substitution z? — ax? usually gives a potential family of curves with
discriminant aeD. In practice, if r(z) is irreducible then ' (ax?) is nearly always irreducible,
and the difficult part in obtaining true families is ensuring that ¢/(ax?) represents primes.

Our first application of Theorem 3.2.1 is to the following construction, which improves

on Construction 2.5.2 for certain odd values of k.

Construction 3.2.2. Let k be odd, D = 1, and K = Q[z]/(Par(z)). If we take (j +—
(—1)BHD/25k41 5o t(2) = 1 4 (—1)FFD/22k+1 then using /—1 — z* we have
G—1 (1 = (=1)®HD/2gh 410k = () (4D/20 Lok 10d B (a)

V-1

(since 2?¥ = —1 mod ®4(x)). We may then compute

1
q(z) = T (x2k+2 gL 4(_1)(k+1)/2xk+1 g 1) .

Then (t(z), P4r(z), q(x)) represents a complete potential family of curves with embedding

degree k and discriminant 1. The p-value for this family is deg ¢/ deg @45, = (k+1)/¢(k). O

When k£ =1 (mod 4) (i.e., when the middle term of ¢(x) is negative), ¢(z) has a factor
(22 —1)2, and thus we do not have a family of curves. We conjecture that ¢(z) is irreducible

whenever £ = 3 (mod 4), and computations show that the conjecture holds for k£ < 200. In



61

addition, ¢(z) is an integer whenever x is odd. Unfortunately, we find that ¢(x) is always
even when z is odd, so ¢ fails condition (5) of Definition 2.2.1 and thus does not represent
primes.

But all is not lost! We note that ¢,r, g of Construction 3.2.2 are even polynomials
and v/—1 is an odd polynomial, so we may apply Theorem 3.2.1 to make the substitution
2?2 — az? in t,7,q. After making this substitution, we may find that the new ¢(z) does
indeed represent primes and thus we get a true family of curves. However, to get even a

potential family, we must first show that r(x) is irreducible. We will first need an algebraic

lemma.

Lemma 3.2.3. Let K = Q(0) be a number field, and let r(x) be the minimal polynomial of
. Then for a € K, the polynomial r(ax?) is irreducible if and only if af is not a square

in K.

Proof. The proof follows exactly the proof of [16, Lemma 1]. We observe that the argument
holds regardless of whether K is Galois. O

Corollary 3.2.4. Let k be odd, and let o be an non-square integer not dividing k. Then

@ (ax?) is irreducible.

Proof. Since ¢} is a square in Q((x), by Lemma 3.2.3 ®;(az?) is irreducible if and only
if a is not a square in Q((x); a sufficient condition for this to occur is « is a non-square

integer not dividing k. O

Theorem 3.2.1 and Corollary 3.2.4 combine to tell us that Construction 3.2.2 leads to
potential families of curves with discriminant a for any non-square « { k, and it remains
only to check that the new ¢, which we denote as

1
qa(x) = 1 (ak+1m2k+2 + Pz 4 4(—a)FHD 2k 4 g2 4 1) ,

represents primes. If k =1 (mod 4) then g, (z) always factors, but for £ = 3 (mod 4) ¢, ()
is likely to be irreducible.

Other than by checking each value of  and k individually, we have no way of showing
that ¢o(z) represents primes. However, if « = 3 (mod 4) and z is odd, ¢,(z) is an odd
integer, so g, may represent primes. In practice it appears that, for various k£ and « both
congruent to 3 (mod 4), go(x) does indeed represent primes. We cannot prove this result,

but we give one such example below.
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Example 3.2.5. Let £ = 11, a = 19. Applying Theorem 3.2.1 to Construction 3.2.2 with

these parameters gives the family

t(x) = 1921241,
r(z) = ®11(—1927),
1
g(z) = (192 +19"2% +4.19%1 +192% +1).

This family has embedding degree 11. When zy = 14593 we find that g(xg) is a 265-bit
prime and r(xp) is a 222-bit prime. The unique curve with CM by the ring of integers in

Q(v—19) has j-invariant —884736 [115, §A.3]; an equation over ) is given by

y? =2+ 122 + 662488133154657423799930884337392831511233568367903219370289497229757469273982875\
949203830805705576929372735107939.

O

As in the derivation of Construction 2.5.3 from Construction 2.5.2, we may use the
fact that if k is odd then (o = —(i to derive an analogous construction for embedding

degrees that are twice an odd number.

Construction 3.2.6. Let k£ be odd. Changing the sign of (; in Construction 3.2.2 gives

t(ﬂj) - 1- (—1)(k+1)/2$k+1,
r(x) = Pyup(x),
o(z) = % <x2k+2 + a2 g(—1) D2k 2 1) .

Then (t,r, q) represents a potential family of pairing-friendly elliptic curves with embedding
degree 2k, discriminant 1, and p-value (k + 1)/¢(k). In terms of the embedding degree
k" = 2k, the p-value is thus (k¥'/2 4+ 1)/p(K). O

If £ = 3 (mod 4) then g(x) has a factor of (22 — 1)2, and if £ = 1 (mod 4) then
q(x) takes integer values when z is odd, and these values are always even. Substituting

% - amz, we get

1
fo(z) = 7 (ak+1x2k+2 T aka2k 4(_a)(k+1)/2wk+1 +az? 4+ 1) _

As in Construction 3.2.2, g, () is even for « = 1 (mod 4), so we must choose a = 3 (mod 4)

if we want ¢, () to represent primes. We illustrate with an example.
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Example 3.2.7. Let £ = 13 and o = 251 (the largest prime factor of 2008). Applying

Theorem 3.2.1 to Construction 3.2.6 with these parameters gives the family

t(z) = 25172 41,
r(r) = ®13(-2512%),
1
g(x) = 7 (261" +251%2%0 4. 25171 + 2512 + 1)

This family has embedding degree 26. When xy = 3255 we find that ¢(zg) is a 437-bit
prime and 7(xp) is a 376-bit prime. We computed the Hilbert class polynomial for the ring
of integers of Q(v/—251) in MAGMA [15] and found a root jo € Fy,). The curve with
j-invariant jo is given by

y? = 23 4+ = 4 8771654111207839181461299134630845125799169816034899811646308950254534117469969\
458312266776406054404171478315795953474442753849998.

O]

To conclude this section, we note that Constructions 2.5.2 and 2.5.3 satisfy the condi-

2 ax?, where « is odd, and obtain a

tions of Theorem 3.2.1. We make the substitution x
potential family of pairing-friendly curves. The discriminant of a curve in this family is «.

We also note that Construction 2.5.6 satisfies the conditions of Theorem 3.2.1 when k
is not divisible by 8. If k£ is not divisible by 4 we may choose any odd «; if k is divisible by
4 we must choose & =1 (mod 4). Since D = 2 in Construction 2.5.6, the discriminant of a
curve in the resulting potential family can be any square-free positive integer congruent to
2mod 4 (if 4+ k) or 2 mod 8 (if 4 | k). We can do the same for the cases presented in Table

2.1; an analysis shows that we can take any « for k = 15 and o = 3 (mod 4) for k = 28 or

44.

3.2.1 Algorithm for generating variable-discriminant families

2~ az? from Theorem 3.2.1 (for some appropriate o)

By combining the substitution x
with one of the basic constructions 2.5.2, 2.5.3, 2.5.6, 3.2.2 or 3.2.6, we can generate a family
of pairing-friendly curves with variable discriminant D for any k satisfying ged(k,24) €

{1,2,3,6,12}. We now give step-by-step instructions for this procedure.

1. Select an embedding degree k with ged(k,24) € {1,2,3,6,12}.
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2. Select a basic construction from the following list. (Some values of k may offer more

than one possibility.)

Construction 2.5.2, if k is odd.

Construction 2.5.3, if k = 2 (mod 4).

Construction 2.5.6, if 3 | k.

Construction 3.2.2, if k = 3 (mod 4).

Construction 3.2.6, if k =2 (mod 8).

3. Use the selected basic construction to compute polynomials ¢(z), r(z), ¢(x) that

represent a family of elliptic curves with embedding degree k.

4. Let t',7', ¢’ be polynomials such that t(z) = t/(z?), r(z) = r'(2?), and q(x) = ¢'(z?).

5. Select a square-free positive integer ot k such that after the substitution 22 — az?,

the resulting polynomial ¢/(ax?) represents primes. This condition requires a to have

the following form:

e « odd for Constructions 2.5.2, 2.5.3, and 2.5.6 with 4 1 k.
e a =1 (mod 4) for Construction 2.5.6 with 4 | k.

e o =3 (mod 4) for Constructions 3.2.2 and 3.2.6.
6. Let D = 2« if Construction 2.5.6 was used, and let D = « otherwise.

Then (#(ax?), ' (ax?), ¢ (ax?)) represents a family of elliptic curves with embedding degree
k and discriminant D. In particular, for values of a and x such that ¢’(ax?) is prime, there
is an elliptic curve over Fy/(,,2) with a subgroup of order r'(az?) and embedding degree
k. If the class number of Q(v/—D) is less than 10°, the equation for this curve can be
computed by the CM method.

One setting where this procedure may be useful is if some degree of randomness is
desired in the CM discriminant of a pairing-friendly elliptic curve. One can carry out Steps
(1)=(4), compute an integer a such that r’'(a) has slightly fewer than the minimum number
of bits necessary for the desired security level in the elliptic curve subgroup, and then choose
a randomly in [1,a] subject to the constraints of Step (5). One then expects that there

should be values of = such that ¢/(ax?) is prime and ' (ax?) is a (near-)prime of the desired
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bit length. These values of x and « can then be used to generate a pairing-friendly curve
via the CM method.

Note that the Cocks-Pinch method (Theorem 2.3.1) can be used to generate elliptic
curves with arbitrary CM discriminant for any embedding degree k. However, the p-values
of such curves will always be around 2. The advantage of the procedure outlined in this
section is that we can vary the CM discriminant and obtain p-values strictly less than 2,

for many values of k.
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Chapter 4

Constructing Pairing-Friendly

Abelian Varieties

4.1 Introduction

In Chapters 2 and 3 we addressed the Motivating Problem of page 4 in the case g = 1
by describing constructions of pairing-friendly elliptic curves. In this chapter we consider the
same problem for arbitrary g, and give two methods that produce pairing-friendly abelian
varieties of arbitrary dimension.

In contrast to the case of elliptic curves, very little is known about pairing-friendly
ordinary abelian varieties of dimension g > 2. While there are several existence results
[16, 57], until very recently there were no explicit constructions of such varieties. In [38] we
presented a method for constructing ordinary, absolutely simple abelian surfaces (g = 2),
and there is a construction due to Kawazoe and Takahashi [(4] that produces pairing-
friendly ordinary abelian surfaces that are simple over [F, but are Fq—isogenous to a product
of two isomorphic elliptic curves.

Our first main result, Algorithm 4.2.6, generalizes to arbitrary dimension the method
of Cocks and Pinch (Theorem 2.3.1) for producing pairing-friendly elliptic curves. The
algorithm produces ¢-Weil numbers 7 that correspond (in the sense of Honda-Tate theory
[122]) to ordinary, absolutely simple abelian varieties having arbitrary embedding degree
with respect to a subgroup of (nearly) arbitrary order . The method works by fixing a CM
field K of degree 2g and a primitive CM type ® on K and using a type norm to construct
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a g-Weil number m € K that satisfies the conditions of Corollary 1.2.3. It follows that the
g-Weil number 7 is the Frobenius element of a pairing-friendly ordinary abelian variety A of
dimension g. If the CM field K is suitably small, CM methods can then be used to produce
A explicitly (see Section 1.2.4). In the case g = 2 this method supersedes our result of [35].
This work is joint with Peter Stevenhagen and Marco Streng of Universiteit Leiden (the
Netherlands) and appears in [12].

Section 4.3 provides some explicit examples of pairing-friendly abelian varieties con-
structed by Algorithm 4.2.6. We find that on inputs of cryptographic size, the p-values of
the varieties produced are very close to 2gg, where 27 is the degree of the reflex field of K.
(If K is Galois then g = g, but in general we expect g to be much larger than g.) This
experimental observation agrees with a heuristic analysis of the algorithm’s output.

In dimension g = 2 the construction of [33] and that of Algorithm 4.2.6 both lead
to ordinary, absolutely simple abelian varieties with p ~ 8. The construction of Kawazoe
and Takahashi produces ordinary abelian surfaces with p-values between 3 and 4; however,
these varieties are not absolutely simple, and thus the construction can be interpreted as
producing pairing-friendly elliptic curves over some extension field of F,. Since all of the
constructions of pairing-friendly elliptic curves can produce curves with p < 2, in order to
make higher-dimensional pairing-friendly abelian varieties appealing to the practitioner we
must produce examples with smaller p-values.

In Section 4.4 we demonstrate the first constructions of pairing-friendly ordinary
abelian varieties of dimension g > 2 that are absolutely simple and have p-values sig-
nificantly less than 2¢gg. Our second main result, Algorithm 4.4.9, uses the techniques of
Section 4.2 to abstract and generalize the method of Brezing and Weng (Theorem 2.5.1) for
constructing pairing-friendly elliptic curves. The key idea is to parametrize the subgroup
order r and the Frobenius element 7 as polynomials of a single variable r(z) € Q[z] and
m(z) € K[z]. We then extend the type norm to polynomials and construct the polynomial
7(x) as the extended type norm of an element ¢ € K[z] that is chosen to have specified
residues modulo factors of r(x) in K [x]. As in the Brezing-Weng method, we compute
parameters for individual varieties by finding an xy for which ¢(xg) = 7(xo)7(z¢) is prime
and r(zo) has a large prime factor. Once such an x( is found, we can use CM methods to
construct the abelian variety whose Frobenius element is given by 7(xg).

In Section 4.5 we discuss how to select the parameters in this algorithm to produce

the optimal output, and we provide a number of examples of families of ordinary abelian
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varieties produced by our method. These include several families of abelian surfaces (g = 2)
with p <7, including one with embedding degree 5 and p ~ 4, which could be a practical
choice for certain security levels. We also demonstrate a family of three-dimensional abelian

varieties with p = 12. We conclude by discussing avenues for further research in this area.

4.2 Weil numbers yielding prescribed embedding degrees

Let F, be the field of ¢ elements, A a g-dimensional simple abelian variety over F,, and
K = Q(m) C Endp, (A) ® Q the number field generated by the Frobenius endomorphism 7
of A. As we described in Section 1.2.1, 7 is a ¢- Weil number in K: an algebraic integer with
the property that all of its embeddings in Q have complex absolute value v/q- By Honda-
Tate theory [122], all ¢-Weil numbers arise as Frobenius elements of abelian varieties over
Fy.

The ¢g-Weil number 7 determines the embedding degree of A with respect to a subgroup
of prime order 7. As we saw in Corollary 1.2.3, if K = Q(7) equals Endr,(A4) ® Q and there

is an integer k for which r { ¢k and

Ngp(r—1) = 0 (mod r), (4.1)
0

Oy (r7) = (mod ), (4.2)

then A has embedding degree k with respect to r. Thus, we can prove the ezistence of an
abelian variety A with embedding degree k by exhibiting a ¢-Weil number m € K with these

properties. The following lemma states what we need.

Lemma 4.2.1. Let m be a g-Weil number and I, be the field of q elements. Then there
exists a unique isogeny class of simple abelian varieties A/F, with Frobenius w. If K = Q(m)
is totally imaginary of degree 2g and q is prime, then such A have dimension g, and K is
the full endomorphism algebra Endg, (A) ® Q. If furthermore q is unramified in K, then A

is ordinary.

Proof. The main theorem of [122] yields existence and uniqueness, and shows that E =

Endr,(A4) ® Q is a central simple algebra over K = Q(r) satisfying
2. dim(A) = [E: K]2[K : Q].

For K totally imaginary of degree 2g and ¢ prime, Waterhouse [128, Theorem 6.1] shows
that we have F' = K and dim(A) = g. By [128, Proposition 7.1], A is ordinary if and only
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if 7+ 7 is prime to ¢ = 77 in Ok. Thus if A is not ordinary, the ideals (7) and (7) have a

common divisor p C O with p? | ¢, so ¢ ramifies in K. ]

Example 4.2.2. Our general construction is motivated by the case where K is a Galois CM
field of degree 2¢g, with cyclic Galois group generated by o. Here 09 is complex conjugation,
so we can construct an element m € Ok satisfying mo9(n) = 77 € Z by choosing any £ € O

and letting

For such 7, we have 77 = N /q(§) € Z. If Nk (&) is a prime g, then 7 is a g-Weil number
in K.

Now we wish to impose the conditions (4.1) and (4.2) on 7. Let r be a rational prime
that splits completely in K, and t a prime of O over . Fori = 1,...,2g, put t; = 0 *(t);
then the factorization of r in O is rOg = Hfﬂ 1% If a; € F, = Ok /v is the residue class
of ¢ modulo t;, then ¢*(¢) modulo t is also a;, so the residue class of 7 modulo t is [T, au.

Furthermore, the residue class of 77 modulo ¢ is H?ﬁ 1 a;. If we choose £ to satisfy

g
[[e:i=1€F,, (4.3)
=1

we find 7 = 1 (mod t) and thus Nk g(m — 1) = 0 (mod 7). By choosing § such that in
addition 2 2

¢= Hai = H Q; (4.4)

i=1 i=g+1

is a primitive k-th root of unity in IFX, we guarantee that 77 = N (&) is a primitive k-th
root of unity modulo 7. Thus we can try to find a suitable Weil number 7 by picking residue
classes a; € F)* for ¢ = 1,...,2g meeting the two conditions (4.3) and (4.4), computing
some “small” lift £ € Ok with (£ mod t;) = «;, and testing whether £ has prime norm.
As numbers of moderate size have a high probability of being prime by the prime number

theorem, a small number of choices (a;); should suffice. There are (r — 1)29~2

(k) possible
choices for (ai)?i 1» where ¢ is the Euler phi function, so for g > 1 and large r we are very
likely to succeed. For g = 1, there are only a few choices (a1, a3) = (1,¢), but one can
try various lifts and thus recover the Cocks-Pinch algorithm (Theorem 2.3.1) for finding

pairing-friendly elliptic curves. O
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For arbitrary CM fields K, the appropriate generalization of the map

g
LG

i=1
in Example 4.2.2 is provided by the type norm. A CM type of a CM field K of degree
29 is a set & = {¢1,...,04} of embeddings of K into its normal closure L such that
PUD = {¢1,...,0g,P1,-..,0g} is the complete set of embeddings of K into L. The type
norm Ng : K — L with respect to ® is the map

g
Ng 1z — H(ﬁi(x),

=1

which clearly satisfies

No(z)No(z) = Ngjg(z) € Q. (4.5)

If K is not Galois, the type norm Ng does not map K to itself, but to its reflex field K
with respect to ®. To end up in K, we can however take the type norm with respect to the
reflex type W, which we will define now (cf. [115, Section 8§]).

Let G be the Galois group of L/Q, and H the subgroup fixing K. Then the 2¢g left
cosets of H in GG can be viewed as the embeddings of K in L, and this makes the CM type
® into a set of g left cosets of H for which we have G/H = ®U®. Let S be the union of the
left cosets in ®, and put S = {o~!: o € S}. Let H = {y € G : 7S = S} be the stabilizer of
S in G. Then H defines a subfield K of L, and as we have H = {(yeG:8y= §} we can
interpret S as a union of left cosets of H inside G. These cosets define a set of embeddings

U of K into L. We call K the reflex field of (K, ®) and we call ¥ the reflex type.

Lemma 4.2.3. The field K is a CM field, and ¥ is a CM type of K. The field K is
generated over Q by the sums Z¢>e<b ¢(x) for x € K. The type norm Ng maps K to K.

Proof. The first two statements are proved in [115, Chapter II, Proposition 28] (though
the definition of H differs from ours, because Shimura lets G act from the right). For the

last statement, notice that for v € H, we have vS = S, so YIea ¢(z) = [lpeo o(x). O

A CM type ® of K is induced from a CM subfield K/ ¢ K if it is of the form
O ={¢: ¢|g € D'} for some CM type @ of K'. In other words, ® is induced from K’ if
and only if S as above is a union of left cosets of Gal(L/K'). We call ® primitive if it is not
induced from a strict subfield of K. Notice that the reflex type W is primitive by definition
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of K , and that (K, ®) is induced from the reflex of its reflex. In particular, if ® is primitive,
then the reflex of its reflex is (K, @) itself. For K Galois and ® primitive we have K=K ,
and the reflex type of ® is ¥ = {¢~!: ¢ € ®}.

For CM fields K of degree 2 or 4 with primitive CM types, the reflex field K has the
same degree as K. This fails to be so for g > 3; a proof of this fact appears in [12]. For
a “generic” CM field K the degree of L is 29¢!, and K is a field of degree 29 generated by
Yoo \/m, with o ranging over Gal(Ky/Q).

From (4.5) and Lemma 4.2.3, we see that for every £ € Op, the element 7 = Ny/(§)
is an element of O that satisfies 7 € Z. To make 7 satisfy the conditions of Corollary
1.2.3, we need to impose conditions modulo r on £ in K. The following proposition allows

us to index the factors of r in K in a way that will be useful for our construction.

Proposition 4.2.4. Let (K, ®) be a CM type, and let r be a prime that splits completely in
K, and therefore in its normal closure L and in the reflex field K with respect to ®. Pick
a prime R over r in L, and for each v € ¥ write vy, = Y~L(R), i.e., the inverse image of

R under the embedding 1 : K — L. Then the complete factorization of v in Op is

TOR- = H tw%.
Ppew

Proof. Let G = Gal(L/Q) and H = Gal(L/K). For each ¢ € U, let ¢/ € G be a
representative of the left coset of H in G that induces the embedding 1 on K. Then for
cach 1) € U we have ty, = ¢/"1(R) N Of. Since H fixes K, it follows that oi/'~*(R) is a

prime of L over ty, for every o € H, and thus
’C¢OL = H 0'7,//_1(%).
occH

If we denote by W the set {1/ : 1 € ¥}, then WU W is a complete set of coset representatives
of H in G. Tt follows that G = {o¢/,0¢’ : ¢ € ¥, 0 € H}, and thus

rO = [T TL ev o () = [] (vs00)(®00).

eV oeH Ppev

The statement follows by taking the intersection of both sides with Op. O

We can now generalize the argument of Example 4.2.2 to arbitrary CM fields K.
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Theorem 4.2.5. Let (K, ®) be a CM type and (K, V) its refler. Let v =1 (mod k) be a
prime that splits completely in K, and write its factorization in O as in Proposition 4.2.4.
Given § € Op, write (§ mod vy) = oy, € F, and ({ mod ty) = By, € F,. for ¢ € W. Suppose
that

[[ow=1 and J]B8s=¢ (4.6)

pew PYew

for some primitive k-th root of unity ¢ € F). Let m = Ny (&) € Ok. Then
1. el
2. Ngg(m—1) =0 (mod r), and
3. ®p(mm) =0 (mod 7).

Proof. Statement (1) follows from the fact that 77 = NE/Q(Q. Next, let R C Op, be
the prime over r underlying the factorization of Proposition 4.2.4. Since () C 2R for all
1 € U, the conditions (4.6) imply that 7 — 1 € Ok and ®y(7n7) € Z are both elements of
R. Statements (2) and (3) now follow. O

If the element 7 in Theorem 4.2.5 generates K and N g(m) is a prime ¢ that is un-
ramified in K, then by Lemma 4.2.1 7 is a g-Weil number corresponding to an g-dimensional
ordinary abelian variety A over F, with endomorphism algebra K and Frobenius element .
By Corollary 1.2.3, A has embedding degree k with respect to r. This leads to the following

algorithm.

Algorithm 4.2.6.

Input: a CM field K of degree 2g > 4, a primitive CM type ® of K, a positive integer
k, and a prime r = 1 (mod k) that splits completely in K.

Output: a prime g and a ¢-Weil number m € K corresponding to a g-dimensional

ordinary, simple abelian variety A/F, that has embedding degree k with respect to .

1. Compute a Galois closure L of K and the reflex (K, ¥) of (K,®). Set § « %deg[?
and write ¥ = {41, 2,...,%;5}.

2. Fix a prime R | r of O, and compute the factorization of  in Oz as in Proposition

4.2.4.

3. Compute a primitive k-th root of unity ¢ € F*.
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4. Choose random ay,...,a5-1,31,...,085-1 € F.

5. Set ay — [[-} ;' € FX and 8; — ¢[[Z) 57! € FX.

6. Compute { € Op such that (§ mod ty,) = a; and (§ mod ty,) = B fori =1,2,...,7.
7. Set q NIA{/Q(f). If ¢ is not prime, go to Step (4).

8. Set m «— Ng(§). If g is not unramified in K, or 7 does not generate K, go to Step (4).

9. Return ¢ and 7.

Remark 4.2.7. We require g > 2 in Algorithm 4.2.6, as the case g = 1 is already covered
by Example 4.2.2, and requires a slight adaptation.

The condition that r be prime is for simplicity of presentation only; the algorithm
easily extends to square-free values of r that are given as products of splitting primes. Such
r are required, for example, by the cryptosystem of Boneh, Goh, and Nissim [I(]. An

example with an r of this form appears as Example 4.3.9 below.

Theorem 4.2.8. If the field K is fized, then the heuristic expected run time of Algorithm

4.2.6 18 polynomial in logr.

Proof. The algorithm consists of a precomputation for the field K in Steps (1)—(3), followed
by a loop in Steps (4)—(7) that is performed until an element £ € K is found that has prime
norm ¢, and we also find in Step (8) that ¢ is unramified in K and the type norm 7 = Ng ()
generates K.

The primality condition in Step (7) is the “true” condition that becomes harder to
achieve with increasing r, whereas the conditions in Step (8), which are necessary to guar-
antee correctness of the output, are so extremely likely to be fulfilled (especially in cryp-
tographic applications where K is small and r is large) that they will hardly ever fail in
practice and only influence the run time by a constant factor.

As ¢ is computed in Step (6) as the lift to O of an element £ € O /rOp = (F,)%,
its norm can be bounded by a constant multiple of #29. Heuristically, ¢ = N 7 /Q(ﬁ) behaves
as a random number, so by the prime number theorem it will be prime with probability
at least (2glogr)~!, and we expect that we need to repeat the loop in Steps (4)—(7) about
2glogr times before finding an element ¢ with prime norm g. As each of the steps is

polynomial in logr, so is the expected run time up to Step (7), and we are done if we show
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that the conditions in Step (8) are met with some positive probability if K is fixed and r is
sufficiently large.

For ¢ being unramified in K, one simply notes that only finitely many primes ramify in
the field K (which is fixed) and that ¢ tends to infinity with r, since r divides Ng/q(m—1) <
(Va+1)%.

Finally, we show that m generates K with probability tending to 1 as r tends to infinity.
To show that K = Q(r), it suffices to show that any automorphism ¢ of L that fixes 7 also
fixes K. Let ¢ be an automorphism of L. Then the set ¢ o ¥ is a CM type of K. Suppose
that the following condition holds:

g
for every vector ¥ € {0,1}9 that is not all 0 or 1, we have H(ai/ﬁi)vi # 1. (4.7)

i=1
Choose 7 € {0, 1}57 such that v; = 0 if ¢ o ¥ contains ; and v; = 1 otherwise. Since
a; is (¥;(€) mod R) and G; is (¥;(§) mod R), it follows that (7w/¢(m) mod R) is equal to
Z‘-]A:l(ai /Bi)¥i. By the assumption (4.7), if this expression is 1 then ¥ = 0or@=1,so

¢oW =V or oW = W. By definition of the reflex, these conditions imply that either ¢ or

¢ is trivial on K, which is equivalent to ¢ acting trivially on the maximal real subfield Kj.
It follows that ¢ either is trivial on K or acts on K by complex conjugation. If the latter
holds, then ¢(7) = 7 implies that 7 is real and q = 72
We conclude that if (4.7) holds and ¢ is unramified in K, then ¢(7) = 7 implies that

¢ is trivial on K, and thus K = Q(7). The set of 29 — 2 (dependent) conditions in (4.7) on

, 80 ¢ ramifies in K.

the 2¢g — 2 independent random variables «;, 3;, 1 < ¢ < g — 1, is satisfied with probability
at least 1 — (29 —2)/(r —1). Since the probability that ¢ is unramified tends to 1 as r tends
to infinity, it follows that K = Q(7) with probability tending to 1 as r tends to infinity. [

4.3 Performance of Algorithm 4.2.6 and examples

Step (6) of Algorithm 4.2.6 uses the Chinese remainder theorem to determine an
element § € O with the specified residues ; and 3; modulo primes over r. In practice, for
given 7, one lifts a standard basis of Op /rOp = (F,)% to O - Multiplying those lifts by
integer representatives for the elements «; and 3; of F,., one quickly obtains lifts £. We also
choose, independently of r, a Z-basis of O consisting of elements that are “small” with

respect to all absolute values of K. We translate & by multiples of r to lie in rF', where F' is
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the fundamental parallelotope in K®R consisting of those elements that have coordinates

in (—%, %] with respect to our chosen basis.
If we denote the maximum on F N K of all complex absolute values of K by Mz, we

have ¢ = NIA(/Q(f) < (rMIA()Zg. For the p-value p = glogq/logr (see page 11), we find
p < 2gg(1 +log My /logr), (4.8)

which is approximately 2¢q if r gets large with respect to M 72+ We would like p to be small,

but this is not what one obtains by lifting random admissible choices of €.
Theorem 4.3.1. If the field K is fixed and r is large, we expect that
1. the output q of Algorithm 4.2.6 yields p =~ 2gg, and
2. an optimal choice of § € O satisfying the conditions of Theorem 4.2.5 yields p ~ 2g.

The proof of Theorem 4.3.1 is due to Peter Stevenhagen and Marco Streng, and appears
in [12]. The idea is as follows: let H, ) be the subset of the parallelotope rF C K®R
consisting of those { € 7F' N Op that satisfy the two congruence conditions (4.6) for a
given embedding degree k. To prove (1), one shows heuristically that a random & € H,
has Nz, (€) ~ 729, To prove (2), one shows that the smallest value of M for which the

K/Q
expected number of £ € H, j with Nf(/@(f) < M is at least 1 is M ~ r2.

Open Problem 4.3.2. Find an efficient algorithm to compute an element § € Op satis-

fying the conditions of Theorem 4.2.5 for which p = 2g.

4.3.1 Examples demonstrating the distribution of p-values

For very small values of r we are able to do a brute-force search for the smallest g by
testing all possible values of a,...,a5-1,01,...,85-1 in Step (4) of Algorithm 4.2.6. We
performed two such searches, one in dimension 2 and one in dimension 3. The experimental
results support the conclusions of Theorem 4.3.1, that p ~ 2g is possible with a smart choice

in the algorithm, and that p =~ 2¢g is achieved with a randomized algorithm.

Example 4.3.3. Take K = Q((5), and let ® = {¢1, p2} be the CM type of K defined by
bn(Cs) = €2™/5 We ran Algorithm 4.2.6 with r = 1021 and k = 2, and tested all possible
values of ay, #1. The total number of primes g found was 125578, and the distribution of the
corresponding p-values appears in Figure 4.1. The smallest g found was ¢ = 2023621, giving
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Figure 4.1: Distribution of p-values for pairing-friendly abelian surfaces with CM field Q((5)
and embedding degree 2 with respect to r = 1021.
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Figure 4.2: Distribution of p-values for pairing-friendly abelian surfaces with CM field Q(¢7)
and embedding degree 4 with respect to r = 29.
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a p-value of 4.19. The curve over F, for which the Jacobian has this p-value is y? = 2° + 18,

and the number of points on its Jacobian is 4092747290896. O

Example 4.3.4. Take K = Q((7), and let ® = {¢1, ¢2, ¢3} be the CM type of K defined
by ¢:(¢r) = e*™/7. We ran Algorithm 4.2.6 with » = 29 and k = 4, and tested all possible
values of ay, as, 81, B2. The total number of primes ¢ found was 162643, and the distribution
of the corresponding p-values appears in Figure 4.2. The smallest ¢ found was ¢ = 911,
giving a p-value of 6.07. The curve over F, for which the Jacobian has this p-value is

y? = 27 + 34, and the number of points on its Jacobian is 778417333. O

Example 4.3.5. Take K = Q((5), and let ® = {¢1, p2} be the CM type of K defined by
$i(C5) = €2™/°. We ran Algorithm 4.2.6 with r = 2160 4 685 and k = 10, and tested 220
random values of ayq, #1. The total number of primes g found was 7108. Of these primes,
6509 (91.6%) produced p-values between 7.9 and 8.0, while 592 (8.3%) had p-values between
7.8 and 7.9. The smallest ¢ found had 623 binary digits, giving a p-value of 7.78. O
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4.3.2 Examples of cryptographic size

We implemented Algorithm 4.2.6 in MAGMA [18] and used it to compute examples
of ¢-Weil numbers 7 corresponding to pairing-friendly abelian varieties of dimension 2 and
3. We then used CM methods (Section 1.2.4) to find curves whose Jacobians are in the
specified isogeny class. We chose the subgroup size r so that the discrete logarithm problem
in A[r] is expected to take roughly 2% steps. The embedding degree k is chosen so that
rk/9 ~ 1024; this would be the ideal embedding degree for the 80-bit security level if we

could construct varieties over F, with #A(F,) ~ r.

Example 4.3.6. Let 7 = v/—2 + /2 and let K be the degree-4 Galois CM field Q(n). Let
® = {¢1, p2} be the CM type of K such that Im(¢;(n)) > 0. We ran Algorithm 4.2.6 with
CM type (K, ®), r = 2160 — 1679, and k = 13. The algorithm output the following field
size:

q = 31346057808293157913762344531005275715544680219641338497449500238872300350617165 \

40892530853973205578151445285706963588204818794198739264123849002104890399459807 \
463132732477154651517666755702167 (640 bits)

There is a single F,-isomorphism class of curves over F, whose Jacobians have CM by Of.

It has been computed in [124], and the desired twist turns out to be
C:y?=2°+32" — 223 — 622 + 32+ 1.

The number of points on Jac(C) is

n = 98257534012085645468742020244740953209785833076897404114476588803802898841721765552063 \
92181154361818788939054993090072546074938823597526095237976730990371957700656600973040 \
04394777376859846749722986780002585907720332533316840460187492286611405819671581730435 \
14025181652565119992502811164589910192157242874099206924648559421700563468599496922882 \
48425215869986332558945448705570388799388.

The p-value of Jac(C') is 7.99. O

Example 4.3.7. Let n = \/m and let K be the degree-4 non-Galois CM field
Q(n). The reflex field K is Q(w) where w = V=15 + 2\/55. Let ® be the CM type of K
such that Im(¢;(n)) > 0. We ran Algorithm 4.2.6 with the CM type (K, ®), subgroup size
r = 2160 _ 1445, and embedding degree k = 13. The algorithm output the following field

size:



78

g = 11091654887169512971365407040293599579976378158973405181635081379157078302130927 \
51652003623786192531077127388944453303584091334492452752693094089192986541533819 \
35518866167783400231181308345981461 (645 bits)

The Igusa class polynomials for K can be found in the preprint version of [131]. We used the
roots of the Igusa class polynomials mod ¢ to construct curves over F, with CM by Of. As
K is non-Galois with class number 4 and the real quadratic subfield Q(v/5) has class number
1, there are 8 isomorphism classes of curves in 2 isogeny classes [132, Theorem 3.1]. We
found a curve C' in the correct isogeny class with equation y? = z° + aza® 4+ asz? + a1z + ao,

with

az = 37909827361040902434390338072754918705969566622865244598340785379492062293493023 \
07887220632471591953460261515915189503199574055791975955834407879578484212700263 \
2600401437108457032108586548189769

az = 18960350992731066141619447121681062843951822341216980089632110294900985267348927 \
56700435114431697785479098782721806327279074708206429263751983109351250831853735 \
1901282000421070182572671506056432

a1 = 69337488142924022910219499907432470174331183248226721112535199929650663260487281 \
50177351432967251207037416196614255668796808046612641767922273749125366541534440 \
5882465731376523304907041006464504

ap = 31678142561939596895646021753607012342277658384169880961095701825776704126204818 \
48230687778916790603969757571449880417861689471274167016388608712966941178120424 \
3813332617272038494020178561119564

The number of points on Jac(C') is

n = 12302480813607134152353875076989454869931477616234328922193695444353667807283567991245 \
52289361933877359068792458700186290529504684796804568944080681730157602604572147127022 \
31288523317856392212671114502267687283901115567591891650298458993321887124003665048523 \
38670650751419620560388032480624660152147036520126818089716832434307572624148525008152 \
014578663376649053009947066525621705214049680

The p-value of Jac(C) is 8.06. O

Example 4.3.8. Let K be the degree-6 Galois CM field Q(¢7), and let ® = {¢1, 2, ¢3} be
the CM type of K such that ¢, (¢7) = e*™™/7. We used the CM type (K, ®) to construct a

curve C' whose Jacobian has embedding degree 17 with respect to r = 2189 — 7427. There is
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a unique isomorphism class of curves in characteristic zero whose Jacobians are absolutely
simple and have CM by K; these curves are given by y? = 27 + a. Algorithm 4.2.6 output
the following field size:

g = 15755841381197715359178780201436879305777694686713746395506787614025008121759749726349 \
37716254216816917600718698808129260457040637146802812702044068612772692590771889662051 \
56107806823000096120874915612017184924206843204621759232946263357637192516979877402638 \
9116897144108553148110927632874029911153126048408269857121431033499 (1077 bits)

The equation of the curve C is y?> = 27 + 10. The number of points on Jac(C) is

n = 39113330703213383903291899165497846707299640282288010371282813488147953692153947662664 \
87252485974936142264723108321714842103685916400288716182633388935114532835166693330040 \
95545943359012561774771305526500666604924329553188177699453004555405726433521561627622 \
61074129109013127264412235930234914768887070866275495725369523589290159648017286825332 \
13398119756438341220383130961697054012739531362817955056695544923703260402101558162169 \
27334291487286073498459048447037839938917664864068332436643506359136501666836695077326 \
30537433609708703129108678808307517651131971076118265117524469717302805274201967349144 \
38426064159106519721205811641961761227684605183281919001353935798297520311078638711448 \
72379208464128289504401132185462240908777732195011292231019924327946350840874929691801 \
70242401172090383352813864799888248813047134539470026093689167970134943800805899022427 \
48586135077158852852001496833282132349040089907306348248919793635627911951010657055098 \
159756792889062169576019083.

The p-value of Jac(C) is 17.95. O

We now give an example of an abelian surface that is pairing-friendly with respect
to a subgroup whose order is a composite number that is presumed to be infeasible to
factor, such as an RSA modulus. Such abelian varieties are required by a number of recent

protocols, such as that of Boneh, Goh, and Nissim [16].

Example 4.3.9. Let K = Q((5). We chose two random 512-bit primes congruent to 1 mod
9,
r1 = 11856688933122306712531807066122238396666465588837749557506570490684144303902813825873 \
551794459259674597557027194217311490745735797836341219374437395610371,

ro = 12720953704024996851715009787852970500057783698336479473144274622632461124945698973258 \
268824071286151997260549018351088484741838683144715708710336086192081,

and set 7 = r179. Let ® = {¢1, ¢} be the CM type of K defined by ¢;(¢s) = €*™/5. We
used the CM type (K, ®) to construct a curve C' whose Jacobian has embedding degree 1



80

with respect to both r; and 3. We ran Steps (4) and (5) of Algorithm 4.2.6 for each of

and ry, and combined the results modulo 7 in Step (6). This modified algorithm output the

field size

15305870577409851876289113028580329836078659930030429240512042343301192834799149144442 \
05306727371204456305652250167850021083923658534356683194226231182780831326634187879416 \
14495184031267778964109279448921867740552536616129070354304897783659358739595010718915 \
11146756371547330497981734382713426984316028382805897839962496228320101227973555854647 \
04554474469541725082042374935237802651609518636715018641122747524291521644233591146378 \
21859901176790037660028389832831432899097670590996223027686315569096715314736656223931 \
38848795403328584885953767830463466707630016817038498835683349061661845613859738852134 \
27603587984874905102613761371339797676153245430645356358443376449483800403438204439384 \
97999747999642923717047286744973592275821382124862960329786730977712064192699696139914 \
72611814580568512892181187433399835721051418647509430657062758455801139095565029007635 \
61654955366276645120027000222514570745405077437252734979546811837118564070384613823416 \
73373892312213000882840101747935749506434009093189986194415920812391819415999263220759 \
88344370056780822915422219851064871656382428710473985632013468597037008267717153955643 \
03077731549586343097747519834757426072073294857723485730686405890330436472056117598460 \
965761440398702915841156471.

The equation of the curve C is y? = 2° + 28. The number of points on Jac(C) is
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n = 23426967413242059247761153665964776744834615410460936438247712371139176779262109902343 \
74199228669946259573580828630039461086239081758575972695514513501880938293759655771000 \
63557748135352030958817498075184361976515996532475545598013859366239488124051490416908 \
07197701631795107093955658774342786795748251615267429157991498155496214084045191716469 \
76970479540238108699403959831678960851175582125601082139717626477826223494860015367625 \
51018060002193033486345228533304541181543073080060002257000118924771917522668699506852 \
80211971443390391133709527548886526781982040577981692822714539832289447164851702844518 \
43675394526166292951549872324453544592887310125013912081318734787687611705379403953381 \
27191045522603846760357931345750847663744006141917559577776487260810446699143120851673 \
67650444175441439248739417258405308071477992158269569064050918195806831131736611334068 \
26793505413004914302505400187694284836431267557256905937124880333750425162092460939049 \
04823630958425417016704530700021038475717172406795956478848017560677371756405280083827 \
87070537789039367675543110155225625432813106707791816836762696392716470468386982839056 \
39440768910521299108713033705739336945623822130494225319387819507884687628708566597708 \
23452516277500963561146187047154220550264158094911389255264315934811555192211653883871 \
47202380799184327442648223962981017246785201886759972836210773619439190635498840177350 \
73259157156590091401405973221768447687160494186295805136343979195503950558230675736028 \
87493467631705907346526136661681326539596752964487343469859379452406909751260794319284 \
50609221863699233336318985374682067799984596582222298162876618083032232912006554059107 \
86234846406764378119680190499456944355330181893097194548299189618101149716283202893173 \
58807609635336499282858169888345621547048291219905664160755827821020870544135024839927 \
35197766499406080615409150165541292039209288664492553128573355471420463912134790016237 \
89045806297512566841579964497156228403175362962460208369693051398201036430968071092461 \
54853557162447730706464011975932984974033845629329589249269354959681568506544793514123 \
31092842389371579848475340984602697256929155207876918949319999183071820307875931857439 \
79182235710850090048451467152159707810997200119677538431361879863477670186660694786125 \
40180449212407589196775928923992491827764840704078650446001037562327609820674522122652 \
06769176746883461365765760684425625326171954731006096130092390185607970843024674869657 \
77145788751364904946926792070410169096691133613925296

The p-value of Jac(C') with respect to r = 7o is 7.98. O

We conclude with an example of an 8-dimensional pairing-friendly abelian variety
found using our algorithms. Since CM methods are not developed in dimension 8, we
started with a single CM abelian variety A in characteristic zero and applied our algorithm
to different CM types until we found a prime ¢ for which the reduction has the specified em-

bedding degree. To speed up the search, we used a small (i.e., non-cryptographic) subgroup
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size r.

Example 4.3.10. Let K = Q(¢17). We set r = 1021 and k£ = 10 and ran Algorithm
4.2.6 repeatedly with different CM types for K. Given the output, we tested the Jacobians
of twists of 42 = 27 + 1 for the specified number of points. We found that the curve
y? = 27 + 30 has embedding degree 10 with respect to r over the field F, of order

g = 6869603508322434614854908535545208978038819437.

The CM type producing this ¢ was

P = {¢17 ¢3a ¢5a ¢63 ¢83 ¢107 ¢13’ ¢15}’

where ¢, (C17) = €2™/17. The number of points on Jac(C) is

n = 49596767669734690396483294297242049264137991259883991466325815369473583352878357078415 \
33722240256546576887632756868758737467860743626339670941664308267473521789465058669390 \
78241397009939647628736463907607851411770208766581896025805693515312873934071230292821 \
34867798307132054329986633233201819182828117339688977152736243690105873530954449413613 \
08898131394201910207237.

The p-value of Jac(C) is 121.9. O

Even if we could improve on the p-value of Example 4.3.10, abelian varieties of dimen-
sion 8 would be of limited use in cryptographic applications, as index calculus attacks can
solve the discrete logarithm problem in time O(q'%/?) [19]. If p ~ 1 then this is equivalent

to O(r2/?), which is much faster than the best time of O(r'/?) in dimensions 1 and 2.

4.4 A generalized Brezing-Weng method

Algorithm 4.2.6 can be viewed as a generalization to arbitrary dimension of the Cocks-
Pinch method (Theorem 2.3.1) for constructing pairing-friendly ordinary elliptic curves. In
the elliptic curve case, the Brezing-Weng method (Theorem 2.5.1) generalizes the Cocks-
Pinch method by parametrizing the trace t, subgroup size r, and field size ¢ as polynomials
t(x), r(x), q(x) that produce valid curve parameters for many different inputs z. The
advantage of such “families” is that the p-values produced are often smaller than those

produced by the Cocks-Pinch method.
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In this section, we show how the techniques of Section 4.2 can be used to view the
Brezing-Weng construction from a new perspective that admits a generalization to higher
dimensions. In dimension g the resulting abelian varieties have p-values strictly less than
2¢gg, which is the best value we expect to obtain from Algorithm 4.2.6.

For convenience, we reproduce the Brezing-Weng algorithm here.

Algorithm 4.4.1 ([19]).

Input: a positive integer k and a positive square-free integer D.

Output: polynomials r(x), and ¢(z) such that for any xg for which ¢(zo) is prime,
there is an ordinary elliptic curve E over F(,,) such that End(F) ® Q = Q(v/—D) and E
has embedding degree k with respect to r(xg).

1. Find an irreducible polynomial r(z) € Z[z] such that L = Q[z]/(r(x)) is a number
field containing v/—D and the cyclotomic field Q((x).

2. Choose a primitive kth root of unity ¢ € L.

3. Let t(x) € Q[z] be a polynomial mapping to ( +1 in L.

4. Let y(x) € Q[x] be a polynomial mapping to (( —1)/v/—D in L.

5. Set g(z) «— (t(x)? + Dy(x)?)/4. Return r(z) and q(z). O

Remark 4.4.2. In this chapter we will always use K to denote a CM field, and L to denote
a field containing K and some primitive kth root of unity. This notation differs slightly
from that of Chapter 2.

Our new perspective on the Brezing-Weng method starts with the fact that since
L = Q[z]/(r(z)) contains K = Q(v/—D), the polynomial r(x) splits into two irreducible
factors when viewed as an element of K[x]. We thus have r(z) = r1(z)71(x) in K[z], and
L= Klz|/(r1(z)) = K[z]/(F1(z)). Without loss of generality, we may assume that the map
implied in Steps (3) and (4) of Algorithm 4.4.1 sends x to a root of ri(x).

If we compute t(z) and y(z) as in Theorem 4.4.1 and let 7(z) = (t(z) + y(z)v/—D),
then 7(z) = ¢ mod r1(z). In addition,