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Abstract
Online social networks (OSNs) such as Facebook, Twitter,
and LinkedIn give hundreds of millions of individuals around
the world the ability to communicate and build communities.
However, the extensive user base of OSNs provides consider-
able opportunity for malicious actors to abuse the system, with
fake accounts generating the vast majority of harmful actions
and content. Social networks employ sophisticated detection
mechanisms based on machine-learning classifiers and graph
analysis to identify and remediate the actions of fake accounts.
Disabling or deleting these detected accounts is not tractable
when the number of false positives (i.e., real users disabled)
is significant in absolute terms. Using challenge-based verifi-
cation systems such as CAPTCHAs or phone confirmation as
a response for detected fake accounts can enable erroneously
detected real users to recover their access, while also making
it difficult for attackers to abuse the platform.

In order to maintain a verification system’s effectiveness
over time, it is important to iterate on the system to improve
the real user experience and adapt the platform’s response to
adversarial actions. However, at present there is no established
method to evaluate how effective each iteration is at stopping
fake accounts and letting real users through. This paper pro-
poses a method of assessing the effectiveness of experimental
iterations for OSN verification systems, and presents an eval-
uation of this method against human- labelled ground truth
data using production Facebook data. Our method reduces the
volume of necessary human labelled data by 70%, decreases
the time necessary for classification by 81%, has suitable pre-
cision/recall for making decisions in response to experiments,
and enables continuous monitoring of the effectiveness of the
applied experimental changes.

1 Introduction

Online Social Networks (OSNs) enable people to build com-
munities and communicate effortlessly. With the proliferation
of social media usage, OSNs now play a role in the lives

of billions of people every day. The largest social networks—
Facebook, Twitter, LinkedIn, and Instagram—provide a broad
set of features enabling more than two billion people to share
news, media, opinions, and thoughts [12, 49]. The scale and
scope of these OSNs in turn attract highly motivated attackers,
who seek to abuse these platforms and their users for political
and monetary gain [3].

The prevalence, impact, and media coverage of harmful
social media accounts has increased commensurately with
the growth of the platforms [8, 28]. A key contributor to this
problem is fake accounts—accounts that do not represent an
authentic user, created for the express purpose of abusing the
platform or its users.

Recent research estimates as much as 15% of all Twitter
accounts to be fake [51], and Facebook estimates as much as
4% of their monthly active users to fall into this category [11].
These fake accounts post spam, compromise user data, gener-
ate fraudulent ad revenue, influence opinion, or engage in a
multitude of other abuses [14, 15, 38, 44, 48].

The variety of behaviours exhibited by fake accounts—
especially those controlled by humans—makes building ac-
curate detection systems a challenge. On a platform with
billions of active users, a detection system with even 99%
precision would incorrectly identify hundreds of thousands
of users every day as malicious. It follows that OSNs require
remediation techniques that can tolerate false positives with-
out incurring harm, while still providing significant friction
for attackers.

A common OSN remediation technique is to enroll fake
accounts detected by a detection system into a verification
system [17, 33] aimed at blocking access to the OSN for fake
accounts and providing a way to recover an account for le-
gitimate users. These systems are composed of challenges
which prompt identified users to provide some additional
information such as phone numbers, recent activity, or iden-
tity verification. These challenges—of which the best known
example is a CAPTCHA [53]—take the form of challenge-
response tests that are designed to be easy for real users to
pass, but difficult for attackers to solve. Verification systems



have numerous advantages over direct disabling of accounts.
They provide a soft response that is tolerant of false positives:
a real user classified as potentially fake has semi-automated
means of changing the classification result without substan-
tial impact on their engagement. The challenges themselves
provide an opportunity to collect additional signals about the
user (e.g., time-to-solve), which can aid in further investiga-
tion, re-classification, and remediation. The strength (friction)
of the challenge can be scaled based on initial classification
confidence of the detection system.

Despite these advantages, attackers can adapt to overcome
the friction posed by verification system challenges [27, 35,
41]. It follows that continuously iterating on the design of
those challenges and being able to measure the effectiveness
of the iterations over time is an important component of im-
proving fake account defences, which has not yet been ad-
dressed in the research literature.

We seek to understand iteration effectiveness: the degree
to which a new or improved challenge is more successful in
both stopping fake accounts and letting real users through.
To compare effectiveness, we subject pools of accounts to
two different experiences in an A/B experiment and compute
the change in the proportion of fake and real accounts that
managed to successfully pass the verification process. This
computation is particularly challenging as it involves deter-
mining the true nature of a set of users that were already
identified as fake (with high-probability) by an in-production
detection framework. To aid in classification one could lever-
age human labelling of accounts at various stages within and
after the verification process. However, relying on human
labelling limits the scale and speed of experiments, especially
when we require that: many experiments can be run at the
same time; we support backtests, a technique where some
flows are withheld from a small proportion of the popula-
tion after they have become the default experience, in order
to gauge adversarial response; experiments must be power-
ful enough to show results on different user segments (e.g.,
platform, locale).

To enable such classification at scale and across such re-
quirements, our approach is to replace the majority of human
labelling with automated techniques having precision/recall
suitable for both making decisions on the experiments and
continuously monitoring the effectiveness of the applied ex-
perimental changes.

Our contribution: In this work we develop an automated,
scalable method of assessing the effectiveness of experimental
iterations for OSN verification systems. A important insight
is that we only need weak labels (i.e., “likely” labels) in order
to enable rapid experimentation.

Our approach, which we call the Post Authentication State
Model (PAS), reproduces in an automated way the process
that human investigators use to determine the authenticity of
an account. PAS requires accounts to be observed for a certain
period of time after the verification process in order to collect

additional signals, after which they are evaluated against a
continuously retrained machine-learned ensemble decision
tree of account behaviours. Using this model to evaluate test
and control groups of accounts that pass the verification sys-
tem allows us to determine the change in post-verification
fake/real distributions and ultimately how successful an in-
troduced change is at improving the system’s effectiveness.
Section 3 provides an overview of Facebook’s verification sys-
tem and relevant background. Section 4 discusses the design
of this model and several variants. We assess our approach
with experiments conducted on Facebook’s production veri-
fication system, described in Section 5. Our system: enables
rapid A/B experimentation; supports an arbitrary number of
backtests of the experimental changes, allowing us to con-
tinuously monitor the effectiveness of the improvements and
adversarial response over time; supports a variety of verifica-
tion system challenges.

We deployed our approach in a real-world setting at Face-
book to assess its potential effectiveness. Our approach, PAS,
provided useful signal on whether accounts clearing the ver-
ification system were real or fake; it vastly out-performed
random assignment, achieving precision over 70% and recall
over 60% for all three classes. This approach reduced the vol-
ume of human labelling for the life cycle of an experiment by
70%, and the labelling frequency from continuous to a single
post-experiment operation. Practically, we showed that our
approach could reduce the time necessary for classification by
up to 81%. This reduction in human effort allowed Facebook
to run more experiments in parallel, improving the agility and
scale of their experimentation methods.

Furthermore, the deployed model completely automated
the backtests of successfully launched experiments. Thanks
to automated backtesting, three instances of adversarial adap-
tation to the experimental changes were discovered, allowing
the Facebook team to quickly find appropriate mitigations.

Out-of-scope: In this work, we focus on classification of
fake and real accounts that were already detected by an in-
production detection framework and were able to pass chal-
lenges in OSN verification systems, such as CAPTHA and
phone confirmation. Automated classification of these ac-
counts enables an assessment of experimental iterations for
OSN verification systems in order to improve real user ex-
perience and increase friction for fake accounts. Based on
description above, we consider the following areas out of
scope of this work: improvements to efficiency and accuracy
of existent fake account detection systems and methods; mea-
surement of recall and precision of fake account detection
systems; and improvements made to verification systems.

2 Related Work

There is a large literature examining fake accounts in social
networks. This work touches on understanding what the ac-



counts are doing (e.g., scamming, impersonation, etc.), meth-
ods for detecting fake accounts, and providing techniques (e.g.
CAPTCHA) to effectively address detected fake accounts.

2.1 Types of Fake Accounts

Fake accounts (sometimes called sybils [56]) can be di-
vided into three broad classes: automated, manual, and hy-
brid [7, 21]. Automated fake accounts—social bots—are
software-controlled profiles that can post and interact with
legitimate users via an OSNs’s communication mechanisms,
just like real people [38]. Usually, social bots are created at
scale via automated registration of new accounts in OSNs.
The types of abuse caused by social bots varies. There have
been instances of social bots that participate in organised
campaigns to influence public opinion, spread false news, or
gain personal benefits [2, 44]. Recently, social bots have tar-
geted and infiltrated political discourse, manipulated the stock
market, stolen personal data, and spread misinformation [15].

In contrast, manually driven fake accounts (MDFA) are
set up for a specific purpose without using automation, and
are then operated manually by attackers to gain personal
benefit [20], push propaganda [28], or otherwise harm users
of the platform. The close similarity between actual users
and MDFAs breaks traditional at-scale detection techniques
which focus on identifying automated behaviours.

Hybrid fake accounts (sometimes called cyborgs [7]) in-
clude fake accounts driven by bot-assisted humans or human-
assisted bots. In practice, sophisticated attackers may choose
a mix of tactics for running cyborg fake accounts. Cyborgs
are often used for the same purposes as social bots, such as
spam and fake news [39].

2.2 Detecting Fake Accounts

The topic of detection of fake accounts is actively explored in
recent literature. Research has mostly focused on the design
and measurement of detection systems with the purpose of
increasing precision and recall. Detection frameworks can be
based on different methodologies.

Graph-based and sybil detection focuses on exploring con-
nections between identities and their properties inside social
graph to detect fake accounts [9, 23, 56]. A typical example
of graph-based sybil detection framework is Sybilguard [58].
The detection protocol of this framework is based on the
graph among users, where an edge between two users indi-
cates a human-established trust relationship. Malicious users
can create many identities but few trust relationships. There-
fore, there is a disproportionately-small “cut” in the graph
between the sybil nodes and the honest nodes. Other examples
of the detection frameworks based on this methodology that
use various algorithms and assumptions about social graph
are Sybillimit [57], Sybilinfer [10], SybilRank [5].

Behaviour-based and spam detection employs rule-base
heuristics to detect fake accounts. An example of such heuris-
tic is rate limits on specific user activity such as comments
and posts and anomalies of such activities. This methodology
focuses on high precision to avoid high false positive rate in
detection and usually shows low recall [45,52,54,59]. Another
example of behaviour-based cetection system is SynchroTrap.
This system employs clustering of accounts according to the
similarity of their actions to detect large groups of abusive
accounts [6].

Machine learning detection frameworks use machine learn-
ing models to detect fake accounts [16, 24, 47, 55]. Machine
learning models are usually trained based on human labelled
data or high precision proxies and utilize an extracted set
of user’s behavioral features. One of the first examples of
such machine learning detection frameworks was proposed
by Stein et al. [43]. There are two main downsides of this
methodology: it is challenging to properly design features that
are resistant to adversarial response, and the process of col-
lecting high precision training data based on humal labelling
is expensive.

Digital footprint detection employs digital footprints of
OSN users to detect fake and malicious accounts across dif-
ferent social networks. A digital footprint is generated based
on publicly available information about a user, such as user-
name, display name, description, location, profile image and
IP address [29, 46].

Described methodologies of fake account detection and
detection frameworks can’t be directly used to measure effec-
tiveness of the improvements in verification systems for fake
accounts because users in verification systems are already
classified as fakes by detection frameworks. However, in the
proposed approach, we use learnings and techniques from
machine-learning, graph-based and behaviour-based detec-
tion methodologies.

2.3 Remediating Fake Accounts

Once fake accounts are detected, social networks must decide
how to respond. Typical actions that a social network might
take on detected fake accounts include disabling or deletion.
Such responses might be appropriate in some particular cases,
where the approximate cost of abusive actions taken by fake
accounts and the cost of disabling a real user can both be
established. In such cases, the detection framework owner can
use this information to make a trade-off between recall and
precision [36]. However, representing user actions and cost
in financial terms typically will only apply to very narrow
scenarios like e-commerce transactions.

In order to allow incorrectly detected real users to regain
access to the system, OSNs employ verification systems and
challenges. There are numerous types of challenges, includ-
ing email verification, CAPTCHA resolution, phone confir-
mation, time and IP address restrictions, challenge questions



and puzzles, manual review of the account, ID verification,
facial/voice recognition, and challenges based on liveness de-
tection systems [1, 25, 33, 42, 50]. Most prior work related to
verification systems for fake accounts covers new types of
verification challenges [22, 30–32] or ways to bypass these
systems [26, 60]. This paper is focused on the effectiveness
measurement of the improvements in verification systems for
fake accounts, for which there is no prior exploration.

3 Background

In this section we frame the overall space of fake account
verification systems, outline the metrics used to evaluate the
effectiveness of such systems, and discuss prior systems used
at Facebook.

3.1 Verification Systems and Clearance
The purpose of OSN fake account verification systems is to
block access to the OSN for accounts detected by fake ac-
count detection systems; present those accounts with various
challenges that allow them to identify themselves as legiti-
mate; collect additional signals by means of those challenges;
and ultimately make a determination if an account is real or
fake.

An account that is determined to be real is said to “clear”
the challenge. Figure 1 shows the structure of an OSN fake ac-
count verification system such as the one used at Facebook. A
particular path an account takes through the system, which in-
volves passing one or more challenges, is called a flow. A flow
is divided into flow points, or steps, which describe the current
state of the account within the verification system. Each step
can have a number of outcomes, which result in transitions
to different steps in the flow or back to the same step. Thus
the verification system is essentially a set of possible flows
on a directed (possibly) cyclic graph, where the nodes are the
steps and the edges are the possible step transitions.

A step is most often associated with a user interface (UI)
screen that either requires user input or contains some infor-
mation for the user, for example an introduction step that
explains the reason for being enrolled into the verification
system. Some steps contain only a piece of business logic
and are invisible to the user. An example of such a step is the
challenge chooser, which contains rules to decide whether
the user has provided sufficient information to determine the
authenticity of their account; if the answer is negative, this
step will also decide which challenge to show the user. In the
context of the flow graph, a challenge is represented as group
of one or more steps that need to be completed to proceed
forward through the flow.

Each challenge and the steps within it present variable fric-
tion to the user, defined as the degree of difficulty in solving
the challenges or proceeding through a given step. This fric-
tion causes two observable phenomena in the flow graph.

The first phenomena is churn, defined as the number of users
which do not proceed further through the flow in a given step,
which reveals how restrictive a step is for a user. The second
phenomena is anomalies in step completion, such as spikes
or long term drift, which reveal, for example, that bad actors
have become proficient at solving the challenge or that there
is a loophole in the system being exploited by attackers.

To measure these phenomena, Facebook uses a “funnel log-
ging” system. This system tracks transition events through the
flow graph—when a user proceeds from one step to another
step, receives a challenge, starts or finishes the verification
system flow. Figure 1 shows such events as dots labelled with
dashed boxes. Along with those transition events, event meta-
data such as country, device, or user age are logged in order
to be able to understand how clearance rates vary across user
segments.

Funnel logging allows us to calculate clearance rate metrics
that quantify the overall friction for the step, challenge, or
verification system as a whole. We can also calculate these
metrics for different sub-populations or segments of users.
For a specific subpopulation segment Y , enrolled on day de,
which cleared step s on day dc, we define the step clearance
rate C as:

C(de,dc,s,Y ) =
|de,dc,s,Y |
|de,Y |

,

where | · | denotes the number of users in a population defined
by the given variables. The step clearance rate can be used to
calculate the end-to-end challenge or system clearance rate
by using the last step of the challenge or flow, respectively, as
the input to s.

Using data from the funnel logging system, it is possible
to monitor churn for each step and detect anomalies in the
clearance rate metrics for specific user segments. The spikes
or drops in clearance rate metrics can be an early signal of a
bot attack or a bug in the verification system.

However, since our goal is be able to identify fake accounts
that pass verification challenges and can be ultimately oper-
ated by attackers with a range of skills, clearance rate alone
is not sufficient to fully capture the effectiveness of a set of
challenges or the verification as a whole. We need further tech-
niques which have the power to distinguish between real and
manually driven fake accounts clearing verification system
flows.

3.2 Label and Metric Definitions

We examine the performance of our classification models for
distinguishing between fake and real accounts by comparing
our classifications to expert manually labelled accounts. In
order to establish if an account is fake, Facebook uses a team
of specialists to review accounts. The reviewers look for spe-
cific signals that can indicate whether a account is real or fake,
and using these signals ultimately label each account. For the
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Figure 1: Flow graph showing Facebook’s fake account verification system. Logging events (“funnel logging”) are indicated as
dots labelled with the name of the event in the dashed box.

purposes of this work we treat such labelling as ground truth.
We define three account labels:

• Abusive: The account has intent to abuse the platform,
including human-driven abuse.

• Benign: The account is authentic/real.

• Empty: There is not yet enough information to classify.

The definition of what constitutes abusive and benign be-
haviour is specific to the OSN. For example, at Facebook,
these labels are defined by the Community Standards docu-
ment [13].

Human labels are robust and reliable, but not perfect. For
example, it is possible that an account’s label might change
over time, e.g. empty accounts could be created en masse and
then sold days/weeks/months later to individuals who operate
the account manually for abusive purposes.

The terms fake and abusive both refer to fake accounts. The
terms benign, authentic, and real all refer to real users. The
prevalence of a class Pv(ti,Y ) is defined as the true proportion
of accounts of class ti in the overall population Y . Prevalence
is typically measured through human labelling on a random
sample of population Y , taking care to account for bias in the
dataset (e.g., orders of magnitude more good than bad).

The ultimate goal of this work is to enable more rapid
and computationally cost effective experiment iteration, and
our strategy is to develop systems that can approximate ex-
pert human labelling. Section 4 describes several candidate
models for classifying users clearing verification flows. The
outputs of our models are called proxy labels. We evaluate our
models based on the precision and recall [40] of these labels;
specifically, for model m which classifies users into classes
t1, t2, ..., tn, we denote the precision and recall of m for class
ti over population Y by P(m, ti,Y ), R(m, ti,Y ), respectively.

We also use the F1 score [37] of m for class ti, over pop-
ulation Y , denoted F1(m, ti,Y ). This score is defined as the
harmonic mean of precision and recall:

F1(m, ti,Y ) =
2 ·P(m, ti,Y ) ·R(m, ti,Y )
P(m, ti,Y )+R(m, ti,Y )

Both precision and recall are important for classifying users
clearing verification systems. High recall across all classes
is important as there is limited utility in precisely identifying
authentic users if the identified set is only a small fraction of
the population. This consideration is equally important for
the abusive population, as we will demonstrate in Section 3.3.
On the other hand, low precision is unacceptable as it could
lead us to believe we are helping authentic users to clear when
actually we are helping both authentic and fake users.

The F1 score gives an overall quality indicator in cases
where there is an unequal distribution of fake/real classes,
and/or the relative costs of false positives and false negatives
are different; both of these conditions hold in fake account
verification problems.

A key insight in our examination of this space is that any
model that performs better than random assignment will pro-
vide useful insight. However, higher precision and recall
means we can be more confident in the model thus reduc-
ing classification time and human labelling volume. For ex-
ample, a model with near perfect precision and recall could
replace human labelling altogether, whereas a model that is
only slightly better than chance could be used in data analysis
to support hypotheses but could not be used to accurately
measure the effects of changes to real or fake users.

The methods described in this work also use some time
delay to accrue signal. We use time to classification to refer to
the time delay between a user clearing the verification system
and enough signals being collected for a label to be assigned.

3.3 Prior Art: BOT Classification Model

The goal of this work is to enable rapid iteration of verification
challenge systems, and to that end, we require metrics to



Classification Label Precision Recall F1 score

Bot abusive 86% 6% 12%
Non bot benign/empty 59% 99% 74%

Table 1: BOT model classification results for the verification
system flow.

quickly assess account clearance rates with limited human
labelling overhead.

Prior to this work Facebook employed a high precision bot
identification model to generate proxy labels and divide users
clearing the challenge into “bot” and “non-bot” classes (in ad-
dition to numerous other detection and classification systems).
This model, which we denote BOT, uses as features metadata
collected from fake account detection. In particular, it is of-
ten possible to detect a subset of abusive accounts through
very high precision rules. When such a rule is triggered the
BOT model predicts a fake account, and in all other cases
it predicts a non-bot account. Because of this definition, the
non-bot class can include a significant proportion of bots that
were not detected by the high-precision rules. Applying this
model to the clearance rate definition yields the bot proxy
clearance Cb(de,dc,s,Y ).

Given our goals and requirements, the BOT clearance rate
Cb is a potentially attractive option for our proxy metric. In
order to verify this hypothesis we sampled tens of thousands
of accounts that successfully passed the verification system
flow in August 2018 and used human labelling to find the
volume of abusive, empty and benign accounts for the result-
ing class. Table 1 shows the label distribution over the BOT
model. While P(bot,abusive) is fairly high, the model would
be of limited value because R(bot,abusive) = 6%. The ma-
jority of users that cleared the verification system flow are
ambiguous, as shown by the precision of the non-bot class,
P(bot,benign∪ empty) = 59%. Section 5 evaluates BOT fur-
ther.

The clear downside of Cb is that the non-bot class has low
recall for abusive accounts. The “non-bot clearance” label
is thus not accurate enough to measure verification system
improvements targeted at real users. The rest of this work
explores methods that better approximate human labelling
ground truth, quickly, and with limited human input.

4 Post Authentication State Model

When running a large number of A/B experiments it quickly
becomes prohibitively resource intensive to use human la-
belling to classify enough accounts clearing various chal-
lenges in each variant to get statistically significant results.
Requiring expert human labellers also slows down iteration
as such labelling jobs take time. A/B experiments are also of-
ten segmented by populations of interest (e.g., platform used,
country, locale), which again increases the volume of nec-
essary human labelling and reduces iteration frequency. To
understand subtle changes in account clearing performance

and metrics, thousands of labels are required per experiment,
and possibly also for each population of interest.

In this section we present the Post Authentication State
(PAS) model, a method for generating weak (i.e., likely) la-
bels which enable rapid A/B experimentation. PAS can be
scaled and is able to classify users more accurately than prior
low computational cost high volume solutions (e.g., BOT clas-
sification), while allowing both faster classification and far
fewer human labels than full-scale human labelling would
require. PAS classifies benign users as well as abusive users,
and has significantly higher recall of abusive accounts than
other methods.

4.1 Overview
OSNs enroll accounts suspected of being fake into a verifica-
tion system in order to gain further information about their
state. The verification system needs to evolve to match the
adversarial response of attackers, so OSNs need to run A/B
experiments. PAS classifies accounts clearing the verification
system, after a time delay, so that we can understand how the
A/B experiment affected the clearance rate of each popula-
tion (Figure 2). Based on results of A/B experiment OSN can
evolve its response to the adversarial adaption of detected
fake accounts.

PAS is a decision tree model which aims to emulate human
labelling decisions, ultimately assigning an account a proxy
label [4]. We denote such labels as “states.” PAS is trained
and validated against sets of human labelled accounts using
out of the box classifiers based on the CART recursive parti-
tioning algorithms such as SciKit Learn DecisionTreeClassi-
fier [18,34]. The model assigns one of three possible states to
the classified account: Good Post Authentication State (GPAS)
for likely real accounts with authentic signals; Bad Post Au-
thentication State (BPAS) for likely fake accounts with intent
to abuse the platform; Empty Post Authentication State (EPAS)
for accounts with too little signal post-clearing to yet make a
determination.

PAS predicts the labelling outcome based on signals we can
automate, for example number of friends. Gupta et al. [19]
showed that decision tree models, based on user level signals
and behavioural signals, can be effective in classifying real
and fake images in OSNs; we extend this approach to possible
fake accounts clearing verification challenges in OSNs. We
note that the PAS model is not designed to be a precise clas-
sifier; instead it buckets users clearing into “probably good”
and “probably bad” which gives direction to A/B experiments
with higher precision/recall.

Adversarial Adaptation: A common problem in the space of
abuse detection systems is adversarial adaptation—can attack-
ers learn what signals are used for detection, and evade them?
This is not a direct concern for PAS, since this method is not
used to take direct actions on accounts clearing verification
system flows; rather it is used to aid in A/B experimentation
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Figure 2: The PAS model as a component of the process to iterate on fake account verification systems.

Figure 3: PAS V1 decision tree generated with recursive
partitioning (CART). Accounts sent through this flow are ulti-
mately classified with weak labels for A/B experimentation.
Threshold values X , N, W , and T are operationally dependent.

and thus product evolution. This means there is no direct
mechanism for adversaries to discover which signals to ma-
nipulate.

To generate proxy labels we created multiple PAS models
iteratively. We started with a simple proof of concept, which
showed that we could create a classifier that was better than
random assignment but it had flaws in the features selection
(Section 4.2). Our next iteration, still a simple proof of con-
cept, used more robust features and was used to understand
how the time to classification, or latency, could be improved
(Section 4.3). Finally, we created a more accurate model, im-
plemented it in Facebook’s production verification system
and showed that it could maintain good performance and al-
low rapid iteration of the verification system over a 6 month
period (Section 4.4).

4.2 PAS V1 and PAS V2: Simple decision trees

The inputs to the PAS model are attributes and behaviours
we can associate with the account. Account-level attributes
include features such as the number of friends or email do-
main the account signed up with. Behaviours include post-

clearance activity such as the number of friend requests sent
or number of times other users reported the account. For each
potential input, we first observed how prominent it was in
each labelling population, to understand its potential impact
in the construction of a decision tree.

Figure 3 depicts the first PAS decision tree we developed
to classify users clearing fake account verification challenges
at Facebook. This was a simple decision tree that remained
static rather than being retrained. We wanted to understand
how this tree performed initially and how it degraded over
time. Behavioural signals such as “More than W time on
News Feed” correlate to how engaged and how manual the
account is, which in turn increases the likelihood that the
account is a real user. We leave a specified time period post-
clearing to allow these behavioural signals to accrue; it aligns
with the period we use to allow labelling signals to accrue
before human labelling, and so there is no decrease in the
time to classification (Section 5). The specific features in
this construction can vary based on OSN use case. For exam-
ple, “News Feed” could be swapped for another product users
engage with in other OSNs. Profile information such as “mo-
bile phone present” could be replaced with other engagement
signals such as employment status or current city.

During our evaluation of the first simple PAS model we
saw a clear decline in performance of the PAS V1 model over
time. This resulted from an important signal (the “high preci-
sion policy” in Figure 3) having lost its discriminating power
due to changes in the prevalence of the signal in the fake
population. We also identified that decision points which are
also prerequisites for challenges (e.g., the “having a mobile
phone number” signal is a prerequisite for the SMS challenge)
create bias in A/B experimentation; since experiments that
change the distribution of challenges offered would a priori
skew the resulting proxy labels. As a result of these observa-
tions we developed a subsequent PAS model, PAS V2, which
addressed these limitations.

PAS V2 is structured similarly to PAS V1, constructed
again using CART. In this iteration, the “high precision policy”
signal is replaced with signals we identified experimentally to
be longitudinally stable and have high distinguishing power
(Figure 4). Two new signals were added to the tree: one based
on how many times the user logged in (behavioural) and one



Figure 4: PAS V2 decision tree generated with recursive
partitioning (CART). Accounts sent through this flow are ulti-
mately classified with weak labels for A/B experimentation.
Threshold values X2, X3, N2, W2, K, L, and T are operationally
dependent.

based on the device they registered with (account attribute).
The delay period post-clearing, used to allow signals to accrue
and to calibrate thresholds used for signals such as “more than
N friends,” remained the same between the two models.

Section 5 contains a detailed evaluation of PAS V1 and
PAS V2 performance.

4.3 Quick PAS: Decreasing time to classifica-
tion

The simple PAS decision trees use fewer signals than the hu-
man labelling trees, and the signals are not contextual. Given
this, we hypothesised the time to classification (delay post-
clearing) is less critical to PAS than human labelling i.e.,
decreasing it would not significantly impact precision and
recall.

There are two natural ways to decrease the time to clas-
sification. The first is artificially limiting the time to classi-
fication, running the same model sooner. We assessed the
precision and recall of these models when run at truncated
delays post-clearing; between 40% and 80% of the full time
to classification before human labelling. As hypothesised,
reducing the time to classification did not yield significant
reductions in precision and recall, even at the shortest time to
classification tested.

The second method explored to limit the time to classifi-
cation was to train a new decision tree with a shorter delay
post-clearing and a feature set pruned of time sensitive signals.

We created “Quick PAS,” a reduced-time version of PAS V2
that provides signals more than 5 times faster than PAS V2.
Quick PAS has lower thresholds for behavioural signals, such
as time on News Feed, and omits some of the signals that
take more time to collect, such as having subscriptions. It is
important to note that the trade-off in using Quick PAS is not
just precision/recall; we are also biasing towards accounts
that return to the platform faster than others.

Section 5 evaluates Quick PAS in the context of other PAS
models. It also shows the performance of PAS V2 when time
to classification is reduced by just over 50%, “Truncated PAS
V2.”

4.4 PAS Production: Ensemble decision tree
with retraining

The simple PAS decision tree models showed promise in
terms of accuracy and latency (time to classification). How-
ever, fake account detection and response is an adversarial
space; attackers adapt their approach over time to try to evade
detection and deceive response verification systems. The con-
sequence is that a simple decision tree model, trained at a
particular point in time, will degrade in accuracy as fake ac-
counts evolve. Moreover, training just once makes the model
vulnerable to anomalies in the training data.

The next iteration, PAS Production, was developed to ad-
dress these limitations. PAS Production uses an ensemble
decision tree model, to avoid overfitting; it is also retrained
every day using a rolling window of training labels from the
last few weeks, to retain freshness. This model uses SciKit
Learn BaggingClassifer combined with DecisionTreeClassi-
fier. Like PAS V1 and PAS V2, this model was trained with
time to classification the same as the post-clearance delay to
human labelling. The goal of PAS Production was to make a
more accurate and reliable model, rather than a faster one. A
“Quick PAS” could be developed in the same way as described
in Section 4.3, by trimming the feature set and training the
model with a shorter delay post-clearing.

Additionally, we explored using SciKit Learn probability
outputs to gauge uncertainty of the predicted label. Averaging
these probabilities for each class in each experiment group
can give more signal than taking the most likely class. For
example, test groups A and B might have the same number
of GPAS (real account) predictions, but group A’s GPAS ac-
counts might all have higher probabilities associated with
them than group B’s. Averaging the probabilities would re-
veal this where summing class labels wouldn’t. It’s important
to note that probability of a predicted label class can be only
be interpreted as confidence of that prediction if the model
is well calibrated. SciKit Learn offers calibration functions,
such as CalibratedClassifierCV, to achieve this.

Section 5 evaluates PAS Production in the context of our
other PAS models; for this purpose we restrict our analysis to
class predictions and ignore the associated probabilities.



5 Evaluation

In order to assess the effectiveness of the PAS iterations,
we evaluated their classification performance against human
labelling data on hundreds of thousands of accounts over a
period from March 2018 to May 2019. In addition to results,
we also identify insights that led to further improvements
throughout the evaluation.

The goal of these models is to produce weak labelling for
use in A/B experimentation, not to produce classification for
operational in-production abuse detection. Given this goal
we can tolerate medium levels of precision, recall, and F1,
provided the models perform significantly better than random
assignment.

Table 2 presents the results of experiments carried out for
each version of the model. The table is divided into three
groupings: Baseline results 1-3 (random assignment, BOT,
human labelling), iterative developments 4-9 (PAS V1, PAS
V2, Truncated PAS V2, Quick PAS), and current deployment
10-11 (PAS Production). The last grouping represents the final
iteration of the system and shows significant decreases human
labelling volume and improvements over previous models.

5.1 Baselines: Random Assignment, BOT,
and Human Labelling

Since we take human labelling to be our ground truth, hu-
man labelling provides the benchmark and optimal result for
models intending to classify users clearing our verification
system (Table 2, Row 3). If we classified users with random
assignment, then recall would be 1/3 for each class and preci-
sion would be the prevalence of that class in the population of
accounts sent for verification (Table 2, Row 1). Random as-
signment provides a lower bound to compare models against;
any model with lower precision and/or recall than random
assignment would be detrimental in evaluating experiments.

The BOT model provides a second comparison point. This
model uses a high precision signal available from detection
to classify users as fake. The signal used is a binary signal
which predicts an account to be fake (or BPAS), if it exists for
the account. It cannot predict whether an account is authentic
(GPAS) or empty (EPAS). Table 2, Row 2 provides the preci-
sion, recall, and F1 scores for BOT. As a result of the signal
existing prior to the account clearing fake account verification
systems, there is no time delay needed to use it for prediction.
We observe that the BOT model’s BPAS precision is high,
at 86%, but its recall and thus F1 are low at 6% and 12% re-
spectively. Given the low recall for BPAS and its inability to
distinguish the other two classes, we cannot use this model
for weak labelling. We require a model that predicts both fake
and authentic users because our experiments are designed to
prevent fake users from clearing verification systems and help
authentic users to do so. Moreover, low recall for fake users
means that this model is not suitable for even the subset of

experiments that try to prevent fake accounts from clearing,
because it is able to classify too few of them.

5.2 PAS V1
Table 2, Row 4 shows the performance of PAS V1 in March
2018, during its first iteration. The PAS V1 decision tree
performed better than random assignment in terms of both
precision and recall and was an initial improvement in classi-
fication. EPAS (“empty”), the proxy label for accounts with
too little signal to mark as authentic or fake, had the poorest
precision and recall but represents the population of accounts
we are less motivated by in this use case—our primary ob-
jectives are to help increase authentic user clearance (GPAS)
and decrease clearance of abusive users (BPAS). PAS V1 has
a much better precision-recall trade-off for abusive accounts
than the bot/non-bot classification. We did not measure the
decrease in human labelling as the limitations of PAS V1
necessitated PAS V2.

Table 2, Row 5 shows the performance for PAS V1 in June
2018, three months after implementation. The precision of
benign classifications decreased significantly, from 76% to
25%, and recall across both abusive and empty classifications
also similarly decreased. F1 scores dropped for all classes. As
discussed in Section 4.2, the “high precision policy” signal
had lost its discriminating power due to changes unrelated to
our work. These changes motivated the design of PAS V2.

5.3 PAS V2
Table 2, Row 6 shows PAS V2 performance in July 2018,
when it was first evaluated. Compared to the degraded scores
of PAS V1 from June 2018, PAS V2 shows large improve-
ment in F1 scores for all classes. In comparison to the initial
PAS V1, F1 score increased for BPAS class and decreased for
GPAS classes. Additionally, we’ve observed that more of its
signals have stable distribution over time.

To explore the stability of the system, we reran the eval-
uation of PAS V2 in September 2018, several months after
it was first implemented (Table 2, Row 7). Unlike PAS V1,
we did not notice a substantial reduction in performance over
time. The main change was that the F1 score for abusive ac-
counts dropped from 72% to 53%, primarily from abusive
precision dropping from 66% to 42%. The drop is caused by
changes in the abusive clearance population; fewer accounts
were being labelled as abusive, and more were labelled as
empty—potentially due to attackers choosing to let accounts
“sleep” in response to concurrent, independent work on im-
proved detection.

PAS V2 does not have the same issues as PAS V1 with re-
spect to signals that can be skewed by the verification system
itself and none of the underlying signals changed in definition.
However the reduction in abusive precision highlights the
fact it is necessary to monitor and retrain the PAS decision



Row Method Time Period
BPAS GPAS EPAS Decrease

Class.
Time

Decrease
Human

Label Vol.
Abusive Benign Empty

Precision Recall F1 Precision Recall F1 Precision Recall F1

1 Rand. Assign. Sep 2018 33% 33% 33% 25% 33% 28% 42% 33% 36% – –
2 BOT Aug 2018 86% 6% 12% – – – – – – – –
3 Human Label. All 100% 100% 100% 100% 100% 100% 100% 100% 100% 0% 0%

4 PAS V1 Mar 2018 65% 61% 63% 76% 78% 77% 47% 51% 49% 0% –
5 PAS V1 Jun 2018 74% 32% 45% 25% 82% 38% 40% 32% 36% 0% –
6 PAS V2 Jul 2018 66% 80% 72% 53% 64% 58% 76% 35% 48% 0% 70%
7 PAS V2 Sep 2018 42% 70% 53% 57% 62% 59% 79% 33% 46% 0% 70%
8 PAS V2 Trunc. Jul 2018 63% 77% 70% 52% 60% 56% 73% 36% 48% 56% –
9 Quick PAS Jul 2018 61% 76% 68% 59% 36% 45% 55% 45% 50% 81% 70%

10 PAS Production Nov 2018 73% 61% 66% 71% 71% 71% 78% 86% 82% 0% 70%
11 PAS Production May 2019 68% 62% 65% 61% 61% 61% 74% 81% 78% 0% 70%

Table 2: Comparison of PAS models broken down by classification method and validated against human labelling. The first
grouping of rows shows idealised and prior methods. The second grouping shows results of intermediate techniques. The third
grouping shows results of the final design.

tree model at regular intervals to mitigate risks of changing
behaviours in the clearance population.

5.4 Truncated PAS V2 and Quick PAS
To verify our hypothesis about the trade-offs associated with
shortened post-clearing delay (Section 4.3), Table 2 (Row 8)
measures performance of PAS V2 after truncating the post-
clear calculation delay by just over 50%. Compared with
PAS V2 evaluated over the same period, the performance of
Truncated PAS V2 is only very slightly lower for each class.
This experiment confirmed that the post-clearing delay can
be reduced without compromising accuracy, which allows
us to introduce lower thresholds for behavioural signals and
train a decision tree optimised for those changed thresholds
and shortened delay. Such changes were codified (beyond a
simple reduced threshold) into Quick PAS (Section 4.3).

Table 2, Row 9 shows the performance of Quick PAS in July
2018. Quick PAS has lower F1 scores in all classes compared
to PAS V2. However, benign recall drops and empty recall
increases, since the reduced time window limits our ability to
collect authentic engagement signals which would ultimately
disambiguate an “empty” account from benign for expert
human labellers.

5.5 PAS Production
Table 2, Row 10 shows the performance of PAS Production in
November 2018. PAS Production strikes the best performance
balance between classes: it is the only model to have F1 scores
above 60% for every class. In particular, the Empty (EPAS) F1
score is much higher than other models, 82% compared with
50% or less from previous models, due to increased recall.
This could be a result of the retraining, allowing thresholds
to adapt. The Benign (GPAS) F1 score is also higher than
PAS V2’s, 71% compared with 59% or less, due to increased
precision. This could be a result of using an ensemble model
and not overfitting on the training data. The Abusive (BPAS)

F1 score is slightly lower that the F1 score of PAS V2 when it
was first developed, 66% compared with 72%. However, this
is a much smaller drop than the gain in accuracy for the other
two classes and still much higher than random assignment,
so we find this acceptable. To verify our hypothesis that PAS
Production is more robust than previous PAS models that
didn’t retrain, we reran the evaluation of PAS Production six
months later in May 2019 (Table 2, Row 11). The precision,
recall and F1 scores of all three classes remained above 60%.
The largest drop was for the F1 score of the Benign (GPAS)
class, from 71% to 61%, changing equally in precision and
recall. These drops might result from attackers increasing
their efforts to appear real over those six months, as far as the
automatable signals used in PAS can tell. Our human labelling
process relies on more signals, some of which are contextual,
and it adapts over time. We are still confident that our human
labels represent ground truth.

Our ensemble decision tree, PAS Production, which was
been implemented to retrain daily, shows more consistent
performance between the three classes and more robustness to
time compared with previous models. It has the same time to
classification as the labelling process. A lower latency “Quick
PAS Production” could be developed to complement PAS
Production, to provide earlier signal for A/B experiments.

5.6 PAS Impact
We integrated PAS Production into Facebook’s environment
to assess their usefulness in the experimentation process.
When a change was introduced into a verification system
through an experiment, we used PAS to understand how the
change impacted real and abusive accounts clearing the sys-
tem. In order to understand how experiments impact how
accounts flow within a verification system, we used funnel
logging event aggregations within challenges to identify the
number of accounts attempting and passing challenges, and
the time taken. We used the proxy labels assigned by the PAS
models, combined with the funnel logging metrics, to support



or refute our hypotheses. If the proxy labels and the additional
metrics supported the experiment hypothesis, we would then
supplement with additional human labelling to validate results
before launching the change.

Decreased Classification Time: Quick PAS showed that we
are able to get directional signal on experiments with sig-
nificant reductions in the time to classification that human
labelling requires. This early signal enables us to stop failing
experiments earlier or request human labelling validation so
that we can launch a change sooner. Quick PAS decreased
classification time by 81% whilst keeping accuracy for each
class well above random assignment.

Decreased Human Labelling Volume: As outlined in Sec-
tion 3, the purpose of an OSN fake account verification system
is to block access for abusive accounts; and permit benign
accounts to re-enter the OSN. Experiments on verification
systems will aim to achieve one of these objectives, without
harming the other. It is thus necessary to understand how an
experiment affects each population and not rely on just the
overall clear rates. For example, without further breakdown,
an increase in the volume of accounts clearing the verification
system cannot be interpreted as achieving the objective of
helping benign accounts; as these incremental accounts might
be overwhelmingly abusive. A significant amount of labels
are required to understand the effects of an experiment at
different stages. Accounts have to be labelled early to catch
failing experiments sooner. In addition, accounts clearing in
subsequent days have to be labelled to mitigate effects of se-
lection bias of the early-stage labelling. Finally, labelling may
be required to measure adversarial response several weeks
after shipping a feature, using a holdout.

Using the Wald method of binomial distribution, in order to
estimate the proportion of accounts in each group that are abu-
sive, benign and empty, to within a 5% error bound, we would
need 400 labels per group. Doing this several times per exper-
iment, for multiple experiments per week, would mean tens of
thousands of labels are required each week. Human labels are
a scarce resource and can’t be scaled to support experiments.
Pairing the PAS model-produced proxy labels with just one
set of validation human labels per experiment, for only those
experiments we believe are successful, reduces total human
label volume. This method saves early-stage labels on all
experiments and it saves all label requirements in clearly neg-
ative experiments; as PAS proxy labels give this information.
We evaluated labelling volume from July to May 2019. Over
this period, Facebook launched and analysed more than 120
experiments. In total, 20,000 human labels were required to
be confident about shipping iterations to the fake account ver-
ification system. Facebook saved an estimated 50,000 human
labels that would have otherwise been required to monitor
these experiments. PAS models reduced the volume of human
labelling required for experiment analysis by 70% (Table 2).
Additionally, as each of the launched experiments required

substantially fewer labels, Facebook could run many more
experiments in parallel.

Adversarial Adaptation: In addition to improving effi-
ciency, the models were successfully used for automated moni-
toring in backtests of launched features. With this framework,
Facebook discovered three cases in which the adversaries
eventually adapted to the new feature, which would manifest
itself as a shift in BPAS prevalence in the population exposed
to that feature. This measurement allowed the team working
on the verification system to quickly discover the underlying
reasons for adaptation and mitigate the problem appropriately.

6 Conclusion and Future Work

We have presented a method for evaluating changes to fake
account verification systems, the Post Authentication State
(PAS) method. PAS uses a continuously retrained machine-
learned ensemble decision tree model that proxies human
labelling to classify accounts as abusive and benign faster and
with less human labelling than prior approaches. PAS can be
used to measure the effectiveness of changes in a verification
system over time and to analyse A/B experiments which aim
to prevent abusive accounts clearing or help benign accounts
to clear the system. At Facebook, PAS reduced the volume of
human labelling required for experiment analysis by 70% and
decreased the classification time of accounts by 81%. The pre-
sented method achieved precision over 70% and recall over
60% for all three classes. PAS has allowed Facebook engineer-
ing and data science teams to iterate faster with new features
for verification challenges, scale experimentation launch and
analysis, and improve the effectiveness of verification systems
at remediating fake accounts.

In this paper we have mentioned that fake account is a
generic term that can cover several types of abusive accounts;
a high-level taxonomy would be bots and manually driven
fake accounts (MDFA). Being able to further divide our abu-
sive labels and further divide BPAS (our proxy label) into
abusive bot and abusive MDFA would greatly help to opti-
mise challenge selection in a verification system. For example,
there could be challenges that are trivial for humans and dif-
ficult for bots (e.g., a well designed CAPTCHA), and there
could be challenges that may be solved by bots but deter hu-
mans (e.g., a time-consuming verification). If we were able
to measure whether a fake account was a bot or a MDFA then
we could assign challenges appropriately.

Finally, we note that our implementation and experiments
use the data and infrastructure of a single large online social
network, Facebook, and therefore the experimental results
might be different for other OSNs. We encourage the research
community to apply our approach more broadly to determine
to what extent the results and conclusions we have presented
in this paper transfer to other areas.
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