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Genus 2 Curves and CM

A genus 2 curve C (over a field of char 6= 2) is a curve of
the form

y2 = f (x)

where deg f = 5 or 6 and f has no multiple roots.
The Jacobian J(C) of a genus 2 curve C is a
2-dimensional principally polarized abelian variety.
We consider the case where End(J(C)) is the ring of
integers OK of a (primitive) degree-4 CM field K .

K = Q(
√

d)(
√
−a + b

√
d).

We say J(C) (or just C) has CM by OK .

D. Freeman and K. Lauter The Genus 2 CM Method



Introduction
Computing Igusa Class Polynomials

Analyzing the Complex-Analytic Method

Genus 2 Curves
Applications

Application: Group Orders of Abelian Surfaces over Fq

Let J(C) be the Jacobian of a genus 2 curve C over Fq
with CM by OK (K a primitive quartic CM field).
The Frobenius endomorphism π satisfies f (π) = [0], where

f (x) = x4 − sx3 + tx2 − sqx + q2

and K ∼= Q[x ]/(f (x)).
We can thus view π as an element of OK , and we have

#J(C)(Fq) = NormK/Q(π − 1) = f (1).

Conclusion: (curve C/Fq with CM by OK ) + (Frobenius
π ∈ OK ) gives #J(C)(Fq).

If K ,q are fixed, π for a given C is easy to determine, even
when q is large.
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Application: Abelian Surfaces for Cryptography

For cryptographic applications (e.g. Diffie-Hellman key
exchange), we want #J(C)(Fq) to be prime or
almost-prime.

Naïve method: Choose random curves over Fq and count
points — but genus 2 point counting is very slow!
Faster method: fix a CM curve in char 0, reduce modulo
various q and use CM property to count points.

Genus 2 curves for pairing-based cryptography
(e.g. Boneh-Franklin IBE):

Random curves almost never have the desired properties,
so we must use CM curves.
See recent work of F., F.-Stevenhagen-Streng.
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Constructing CM Curves via Igusa Class Polynomials

Recall: Igusa invariants of curves C/Q with CM by OK are
roots of Igusa class polynomials for K .
Equations for curves C can be computed easily from Igusa
invariants.
Reduction of curves in char 0 with CM by OK gives full set
of curves in char p with CM by OK .
Problem of generating curves C/Fq whose Jacobians have
a known number of points is reduced to computing Igusa
class polynomials for K .
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Three Known Methods

Known methods for computing Hilbert class polynomials
(genus 1) have all been generalized to genus 2.
Complex-analytic method (Spallek, van Wamelen, Weng):

Igusa invariants are modular functions on a Siegel upper
half-space.
Use Fourier expansions to evaluate functions to desired
precision.

Chinese Remainder Theorem method (Eisenträger-Lauter):
Test all genus 2 C/Fp to see which have CM by OK
(efficiently implemented by F.-Lauter).
Use Igusa invariants to construct class polynomials mod p.
Repeat modulo many small p, combine via CRT.

p-adic (AGM) method (Gaudry et al):
Find all genus 2 C/Fpd with CM by OK (d small).
Compute the canonical lifts of C to desired p-adic precision.
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When do we stop?

All three methods give approximations to the Igusa class
polynomials, computed to a prescribed precision.
Igusa class polynomials have rational coefficients, so to
compute the required precision we need to know

1 An upper bound on the denominators of the coefficients.
(CRT method also requires info on factorization of
denominators.)

2 An upper bound on the absolute values of the coefficients
(equivalently, on the absolute values of the roots).

Goren-Lauter have given a result for (1).
A bound (2) comes from analysis of the complex-analytic
method.
(Work in progress with Lauter, Streng.)
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j-Invariants as Modular Functions

Recall that we can define an elliptic curve E as C/Λ.
We can write Λ = 〈1, τ〉 for some τ ∈ H, the upper
half-plane.
If E has CM by OK then τ ∈ K .
The j-invariant is a modular function on H/PSL2(Z):

j(τ) =
g2(τ)

3

∆(τ)
=

1
q

+ 744 + 196884q + · · · .

(g2 = Eisenstein series; ∆ = cusp form; q = e2πiτ .)
Analogous statements hold for abelian surfaces and Igusa
invariants:
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Igusa Invariants as Modular Functions

An abelian surface A = J(C) can be defined as C2/Λ.
We can write Λ = 〈Id , τ〉 for some period matrix τ ∈ H2,
the Siegel upper half-space:

τ =

(
τ1 ε
ε τ2

)
, τ1, τ2, ε ∈ C, Im τ positive-definite

The Igusa invariants of the associated curve C are
modular functions on H2/Sp2(Z):

ii = 2·35·
χ5

12

χ6
10
, i2 =

33

23 ·
ψ4χ

3
12

χ4
10

, i3 =
3
25 ·

ψ6χ
2
12

χ3
10

+
32

23 ·
ψ4χ

3
12

χ4
10

,

ψ4, ψ6 are genus 2 Eisenstein series; χ10, χ12 are cusp
forms.
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Bounding the Igusa Invariants

Goal: compute an upper bound on |i1| = 2 · 35 · |χ12(τ)5

χ10(τ)6 | in
terms of numerical invariants of CM field K (e.g.
discriminant).
Ingredients:

1 Upper and lower bounds on entries of τ in terms of
invariants of K .

2 Upper bound on χ12 in terms of entries of τ .
3 Lower bound on χ10 in terms of entries of τ .
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The Fundamental Domain

Since Igusa invariants are modular functions, we can apply
an element of the modular group Sp2(Z) to move τ into a
fundamental domain.
Fundamental domain for τ = ( τ1 ε

ε τ2 ) defined by 28
inequalities:

−1/2 ≤ Re τ1,Re τ2,Re ε ≤ 1/2
Im τ1 ≥ Im τ2 ≥ 2|Im ε| ≥ 0

19 more

We’ve computed some bounds, but are missing upper
bound on Im τ1 and lower bound on |ε|.
Streng: alternatively, compute bounds by enumerating
reduced quadratic forms corresponding to relative ideal
classes of OK/OK + . (Work in progress.)
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Bounding the Modular Forms

Looking for (asymptotic) upper bound on
|i1| = 2 · 35 · |χ12(τ)5

χ10(τ)6 |.
Need to bound modular forms χ12(τ) from above and
χ10(τ) from below in terms of τ .
Method 1: Use theta functions

χ12 = (ϑ0ϑ1ϑ2ϑ4ϑ8ϑ15)
4 + (ϑ0ϑ1ϑ2ϑ6ϑ9ϑ12)

4 + 13 more

Theta functions are simple modular forms; easier to bound
in terms of input (from above and below).
Dupont, Streng: achieved rigorous upper and lower
bounds; Streng currently working on improving them.
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Bounding the Modular Functions

Method 2: Use Fourier series

χ12(τ) =
∑

N

ANe2πi Tr Nτ

(N = pos. def. sym. half-integer matrices; AN = Fourier
coefficients)

Leading terms of Fourier series dominate as Im τ gets
large.

χ12(τ) ≈ (5 + 10(e2πiτ1 + e2πiτ2) cos 4πε+ cos 2πε)/6

Experimentally, leading terms provide very good estimate
of actual value of Igusa invariants.
Not yet achieved rigorous asymptotic results.
Can method be used to give lower bounds?
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The (Expected) Result

Our analysis gives:
log|i1|, log|i2|, and log|i3| are Õ(∆) (∆ = discriminant of K ).
This result + Goren-Lauter bounds on denominators ⇒
Igusa class polynomials can be computed in time Õ(h3∆2)
(h = class number of K ).
Equivalently, Igusa class polynomials can be computed in
time Õ(∆7/2).

Compare with Õ(∆) for Hilbert class polynomials.
Bounds on the denominators are the biggest obstacle to
improving the bound. (See next talk! )
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