Constructing pairing-friendly hyperelliptic curves using Weil restriction

The problem

A pairing-friendly curve is a curve C over a finite field \mathbb{F}_{q} whose Jacobian $\operatorname{Jac}(C)$ has

- a subgroup of large prime order r
- small embedding degree $k:=\left[\mathbb{F}_{q}\left(\zeta_{r}\right): \mathbb{F}_{q}\right]$ with respect to r

These curves have numerous applications in cryptography. For these applications to be efficient, we wish to minimize the parameter

$$
\rho:=\operatorname{dim}(\operatorname{Jac}(C)) \cdot \log q / \log r .
$$

Constructing pairing-friendly genus 2 curves C with small ρ-values is a difficult task.
If $\operatorname{Jac}(C)$ is ordinary and absolutely simple, the best known constructions achieve $\rho \approx 8$ generically and $\rho \approx 4$ for some k. If $\operatorname{Jac}(C)$ is supersingular, then we can achieve $\rho \approx 1$, but only for $k \leq 12$.
What if we require $\operatorname{Jac}(C)$ to be ordinary and simple, but not absolutely simple?

Weil restriction

Given a field extension L / K, Weil restriction interprets a variety over L as a higher-dimensional variety over K. On affine varieties X, we do the following: (For projective varieties we glue affine subsets.)

1. Choose a K-basis $\left\{\alpha_{i}\right\}$ of L.
2. Write the equations for X in terms of the $\left\{\alpha_{i}\right\}$.
3. Collect terms with matching basis elements These equations define $X^{\prime}=\operatorname{Res}_{L / K}(X)$.

Proposition 1 Let A / K be a g-dimensional simple abelian variety. Let L / K be a finite, separable extension. Suppose A is isogenous over L to a product of g isomorphic elliptic curves E defined over K Then A is isogenous over K to a subvariety of the Weil restriction $\operatorname{Res}_{L / K}(E)$.

For $K=\mathbb{F}_{q}$, let $f_{X, q}$ be the characteristic polynomial of the q-power Frobenius endomorphism of X.
Proposition 2 Let $A / \mathbb{F}_{q^{d}}$ be an abelian variety Let $A^{\prime}=\operatorname{Res}_{\mathbb{F}_{q^{d}} / \mathbb{F}_{q}}(A)$. Then $f_{A^{\prime}, q}(x)=f_{A, q^{d}}\left(x^{d}\right)$.

Overview of our technique

$A=\operatorname{Jac}(C)$ is a simple abelian surface over \mathbb{F}_{q}

Over the extension field $\mathbb{F}_{q^{d}}, A$ maps to a product of isomorphic elliptic curves E defined over \mathbb{F}_{q}

Primitive subgroups

When A is an abelian variety over \mathbb{F}_{q}, the Weil restriction of A from $\mathbb{F}_{q^{d}}$ to \mathbb{F}_{q} is isogenous over \mathbb{F}_{q} to a product of primitive subgroups:

$$
\operatorname{Res}_{\mathbb{F}_{q^{d}} / \mathbb{F}_{q}}(A) \sim \bigoplus_{e \mid d} V_{e}(A)
$$

$V_{e}(A)$ is defined to be the intersection of the kernels of the maps on $\operatorname{Res}_{\mathbb{F}_{q^{d}}} / \mathbb{F}_{q}(A)$ induced by $\operatorname{Tr}_{\mathbb{F}_{q^{d}}} / \mathbb{F}_{q}$. If $A=E$ is an ordinary elliptic curve over \mathbb{F}_{q}, then:

- $\operatorname{dim} V_{d}(E)=\varphi(d)$
- $\operatorname{End}(E) \otimes \mathbb{Q}$ is a quadratic imaginary field K
- For some primitive $\zeta_{d} \in \overline{\mathbb{Q}},\left(\zeta_{d}\right)^{d}=1$, the q-power Frobenius endomorphisms of $V_{d}(E)$ and E are related by

$$
\operatorname{Frob}_{V_{d}(E)}=\zeta_{d} \cdot \operatorname{Frob}_{E} \in K\left(\zeta_{d}\right)
$$

- $V_{d}(E)$ is simple if and only if $K \cap \mathbb{Q}\left(\zeta_{d}\right)=\mathbb{Q}$

This means that A is isogenous to a primitive sub group of the Weil restriction of E from $\mathbb{F}_{q^{d}}$ to \mathbb{F}_{q} and thus there is a d th root of unity ζ_{d} such that

$$
\operatorname{Frob}_{A}=\zeta_{d} \cdot \operatorname{Frob}_{E}
$$

Using this relationship, we construct a Frob_{E} so that $\zeta_{d} \cdot \mathrm{Frob}_{E}$ has the desired pairing-friendly properties We use the $\boldsymbol{C M}$ method to construct E from Frob $_{E}$

From $j(E)$ we can compute a genus 2 curve C such that $A=\operatorname{Jac}(C)$ is pairing-friendly over \mathbb{F}_{q}

NON-SIMPLE ABELIAN SURFACES

Let C, C^{\prime} be genus 2 curves over \mathbb{F}_{q} given by

$$
\begin{align*}
C: y^{2} & =x^{5}+a x^{3}+b x \tag{1}\\
C^{\prime}: y^{2} & =x^{6}+a x^{3}+b .
\end{align*}
$$

Suppose $b \in\left(\mathbb{F}_{q}^{*}\right)^{2}$. Let $c=\frac{a}{\sqrt{b}}$. Define E, E^{\prime} by (*)
$E: Y^{2}=(c+2) X^{3}-(3 c-10) X^{2}+(3 c-10) X-(c+2)$ $E^{\prime}: Y^{2}=(c+2) X^{3}-(3 c-30) X^{2}+(3 c+30) X-(c-2)$

Theorem $3 \mathrm{Jac}(C)$ is isogenous over $\mathbb{F}_{q}\left(b^{1 / 8}, i\right)$ to $E \times E$. If $\operatorname{Jac}(C)$ is ordinary, $b \notin\left(\mathbb{F}_{q}^{*}\right)^{4}$, and $\operatorname{End}(E) \otimes \mathbb{Q} \neq \mathbb{Q}(i)$, then $\operatorname{Jac}(C)$ is simple and isogenous over \mathbb{F}_{q} to $V_{4}(E)$.

Theorem $4 \operatorname{Jac}\left(C^{\prime}\right)$ is isogenous over $\mathbb{F}_{q}\left(b^{1 / 6}, \zeta_{3}\right)$ to $E^{\prime} \times E^{\prime}$. If $\operatorname{Jac}\left(C^{\prime}\right)$ is ordinary, $b \notin\left(\mathbb{F}_{q}^{*}\right)^{6}$, and $\operatorname{End}\left(E^{\prime}\right) \otimes \mathbb{Q} \not \not \mathbb{Q}\left(\zeta_{3}\right)$, then $\operatorname{Jac}\left(C^{\prime}\right)$ is simple and isogenous over \mathbb{F}_{q} to $V_{3}\left(E^{\prime}\right)$.

The algorithm

Data: integers k, d with $d \in\{3,4\}$ and $d \mid k$ a quadratic imaginary field $K \not \supset \zeta_{d}$.
Result: Primes q, r; a genus 2 curve C / \mathbb{F}_{q}.
Thm: $\operatorname{Jac}(C)$ has embedding degree k w.r.t r
1 Choose a prime $r \equiv 1 \bmod k$ with $r \mathcal{O}_{K}=\mathfrak{r} \bar{r}$.
2 Choose primitive roots of unity $\zeta_{k}, \zeta_{d} \in \mathbb{F}_{r}$
3 Compute a $\pi \in \mathcal{O}_{K}$ such that

$$
\pi \equiv \zeta_{d} \quad(\bmod \mathfrak{r}), \quad \pi \equiv \zeta_{k} / \zeta_{d} \quad(\bmod \overline{\mathfrak{r}})
$$

and $q=\pi \bar{\pi}$ is prime.
4 Use the CM method to find the j-invariant j_{0} of an elliptic curve E_{0} / \mathbb{F}_{q} with $\operatorname{End}\left(E_{0}\right) \cong \mathcal{O}_{K}$ 5 if $d=4$ then

Let E be given by $(*)$ below.
Compute $c \in \mathbb{F}_{q}$ such that $j(E)=j_{0}$
Choose $a \in \mathbb{F}_{q}$ s.t. $\frac{a}{c} \notin\left(\mathbb{F}_{q}^{*}\right)^{2}$; set $b:=\left(\frac{a}{c}\right)^{2}$
Output the curve C given by (1).
6 else if $d=3$ then
Let E^{\prime} be given by $(*)$ below.
Compute $c \in \mathbb{F}_{q}$ such that $j\left(E^{\prime}\right)=j_{0}$.
Choose $a \in \mathbb{F}_{q}$ s.t. $\frac{a}{c} \notin\left(\mathbb{F}_{q}^{*}\right)^{3}$; set $b:=\left(\frac{a}{c}\right)^{2}$ Set $n:=\Phi_{d}(\pi) \Phi_{d}(\bar{\pi})$.
if $\# \mathrm{Jac}\left(C^{\prime}\right)=n$ then
L Output the curve C^{\prime} given by (2).
else Output the quadratic twist of C^{\prime}

OUR RESULTS

We ran a Brezing-Weng variant of our algorithm:

- Choose r and π to be polynomials in $K[x]$.
- Find x_{0} such that $q\left(x_{0}\right)$ and $r\left(x_{0}\right)$ are prime. We found pairing-friendly genus 2 curves with record ρ-values:

k	d	K	ρ-value
9	3	$\mathbb{Q}(i)$	2.67
12	4	$\mathbb{Q}\left(\zeta_{3}\right)$	3.00
21	3	$\mathbb{Q}(i)$	2.67
24^{a}	4	$\mathbb{Q}(\sqrt{-2})$	3.00
27	3	$\mathbb{Q}(i)$	2.22
39	3	$\mathbb{Q}(i)$	2.33
42	3	$\mathbb{Q}(\sqrt{-7})$	3.00
44	4	$\mathbb{Q}(\sqrt{-11})$	3.00
54	3	$\mathbb{Q}(i)$	2.44

[^0]
[^0]: ${ }^{a}$ The result for $k=24$ was previously found by Kawazoe
 and Takahashi; our method properly includes theirs.

