Linearly Homomorphic Signatures over Binary Fields and
 New Tools for Lattice-Based Signatures

Dan Boneh and David Mandell Freeman

Stanford University, USA

PKC 2011
Taormina, Italy
7 March 2011

Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to authenticate vector subspaces of a given ambient space.

Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to authenticate vector subspaces of a given ambient space.

Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to authenticate vector subspaces of a given ambient space.

Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to authenticate vector subspaces of a given ambient space.

$\mathbf{v}_{i} \in \mathbb{F}_{p}^{n}$
$\mathbf{v} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$
$\sigma_{i}=$ signature on \mathbf{v}_{i}
$\sigma=$ signature on \mathbf{v}

Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to authenticate vector subspaces of a given ambient space.

- Security: no adversary can authenticate any vector \mathbf{v}^{*} outside $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Motivation: Network Coding

Network coding routing mechanism [ACLYO0]:

- Interpret data as vectors in \mathbb{F}_{p}^{n}.
- Routers send random linear combinations of received vectors, along with coefficients.
- Recipient reconstructs file from full-rank system.

Motivation: Network Coding

Network coding routing mechanism [ACLYOO]:

- Interpret data as vectors in \mathbb{F}_{p}^{n}.
- Routers send random linear combinations of received vectors, along with coefficients.
- Recipient reconstructs file from full-rank system.

Problem: susceptible to pollution attacks.

- Recipient can't distinguish good packets from bad ones.

Motivation: Network Coding

Network coding routing mechanism [ACLYOO]:

- Interpret data as vectors in \mathbb{F}_{p}^{n}.
- Routers send random linear combinations of received vectors, along with coefficients.
- Recipient reconstructs file from full-rank system.

Problem: susceptible to pollution attacks.

- Recipient can't distinguish good packets from bad ones.

Solution: linearly homomorphic signatures
[KFM04,ZKMH07,CJL09,BFKW09,GKKR10]

- Routers derive signature on lin. combinations; recipient verifies.

Motivation: Network Coding

Network coding routing mechanism [ACLY00]:

- Interpret data as vectors in \mathbb{F}_{p}^{n}.
- Routers send random linear combinations of received vectors, along with coefficients.
- Recipient reconstructs file from full-rank system.

Problem: susceptible to pollution attacks.

- Recipient can't distinguish good packets from bad ones.

Solution: linearly homomorphic signatures
[KFM04,ZKMH07,CJL09,BFKW09,GKKR10]

- Routers derive signature on lin. combinations; recipient verifies.

Current solutions authenticate vectors over \mathbb{F}_{p} for large p. For efficiency, we want to use vectors defined over \mathbb{F}_{2}.

Our Contributions

- Linearly homomorphic signatures over \mathbb{F}_{2}.
- Secure under lattice assumptions, private unconditionally.
- Primitive that can be constructed via lattice techniques, but not (currently) via dlog or factoring.

Our Contributions

- Linearly homomorphic signatures over \mathbb{F}_{2}.
- Secure under lattice assumptions, private unconditionally.
- Primitive that can be constructed via lattice techniques, but not (currently) via dlog or factoring.
- New tools for lattice-based cryptography.
- New k-SIS assumption; reduction to worst-case lattice assumptions (used for security result).
- Result on distributions of sums of discrete Gaussian samples (used for privacy result).
- Tight length bounds for discrete Gaussian samples.

Our Contributions

- Linearly homomorphic signatures over \mathbb{F}_{2}.
- Secure under lattice assumptions, private unconditionally.
- Primitive that can be constructed via lattice techniques, but not (currently) via dlog or factoring.
- New tools for lattice-based cryptography.
- New k-SIS assumption; reduction to worst-case lattice assumptions (used for security result).
- Result on distributions of sums of discrete Gaussian samples (used for privacy result).
- Tight length bounds for discrete Gaussian samples.
- k-time signature scheme without random oracles.
- Application of new k-SIS assumption.

Building Block: GPV Trapdoor Function

- $\wedge \subset \mathbb{Z}^{m}$ a lattice (full-rank subgroup), defined by matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}(n<m)$:
$\Lambda=\Lambda_{q}^{\perp}(\mathbf{A}):=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{A} \cdot \mathbf{v}=0 \bmod q\right\}$

Building Block: GPV Trapdoor Function

- $\wedge \subset \mathbb{Z}^{m}$ a lattice (full-rank subgroup), defined by matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}(n<m)$:
$\Lambda=\Lambda_{q}^{\perp}(\mathbf{A}):=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{A} \cdot \mathbf{v}=0 \bmod q\right\}$
- $D:=\left\{\right.$ short vectors in $\left.\mathbb{Z}^{m}\right\}$,

Building Block: GPV Trapdoor Function

- $\wedge \subset \mathbb{Z}^{m}$ a lattice (full-rank subgroup), defined by matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}(n<m)$:
$\Lambda=\Lambda_{q}^{\perp}(\mathbf{A}):=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{A} \cdot \mathbf{v}=0 \bmod q\right\}$
- $D:=\left\{\right.$ short vectors in $\left.\mathbb{Z}^{m}\right\}$,
$R:=\mathbb{Z}^{m} \bmod \Lambda \cong \mathbb{Z}_{q}^{n}$.

Building Block: GPV Trapdoor Function

- $\wedge \subset \mathbb{Z}^{m}$ a lattice (full-rank subgroup), defined by matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}(n<m)$:
$\Lambda=\Lambda_{q}^{\perp}(\mathbf{A}):=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{A} \cdot \mathbf{v}=0 \bmod q\right\}$
- $D:=\left\{\right.$ short vectors in $\left.\mathbb{Z}^{m}\right\}$,
$R:=\mathbb{Z}^{m} \bmod \Lambda \cong \mathbb{Z}_{q}^{n}$.
- GPV: define a preimage-samplable trapdoor function $\phi: D \rightarrow R$ by

$$
\phi(\mathbf{v}):=\mathbf{v} \bmod \Lambda=\mathbf{A} \cdot \mathbf{v} \bmod q
$$

Building Block: GPV Trapdoor Function

- $\wedge \subset \mathbb{Z}^{m}$ a lattice (full-rank subgroup), defined by matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}(n<m)$:
$\Lambda=\Lambda_{q}^{\perp}(\mathbf{A}):=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{A} \cdot \mathbf{v}=0 \bmod q\right\}$
- $D:=\left\{\right.$ short vectors in $\left.\mathbb{Z}^{m}\right\}$,

$$
R:=\mathbb{Z}^{m} \bmod \Lambda \cong \mathbb{Z}_{q}^{n}
$$

- GPV: define a preimage-samplable trapdoor function $\phi: D \rightarrow R$ by

$$
\phi(\mathbf{v}):=\mathbf{v} \bmod \Lambda=\mathbf{A} \cdot \mathbf{v} \bmod q
$$

- For any $\mathbf{w} \in R$, can sample short vectors in $\phi^{-1}(\mathbf{w})=\Lambda+\mathbf{w}$ given a "short" basis of Λ.

Building Block: GPV Trapdoor Function

- $\wedge \subset \mathbb{Z}^{m}$ a lattice (full-rank subgroup), defined by matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}(n<m)$:
$\Lambda=\Lambda_{q}^{\perp}(\mathbf{A}):=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{A} \cdot \mathbf{v}=0 \bmod q\right\}$
- $D:=\left\{\right.$ short vectors in $\left.\mathbb{Z}^{m}\right\}$,

$$
R:=\mathbb{Z}^{m} \bmod \Lambda \cong \mathbb{Z}_{q}^{n}
$$

- GPV: define a preimage-samplable trapdoor function $\phi: D \rightarrow R$ by

$$
\phi(\mathbf{v}):=\mathbf{v} \bmod \Lambda=\mathbf{A} \cdot \mathbf{v} \bmod q
$$

- For any $\mathbf{w} \in R$, can sample short vectors in $\phi^{-1}(\mathbf{w})=\Lambda+\mathbf{w}$ given a "short" basis of Λ.

Building Block: GPV Trapdoor Function

- $\wedge \subset \mathbb{Z}^{m}$ a lattice (full-rank subgroup), defined by matrix $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}(n<m)$:
$\Lambda=\Lambda_{q}^{\perp}(\mathbf{A}):=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{A} \cdot \mathbf{v}=0 \bmod q\right\}$
- $D:=\left\{\right.$ short vectors in $\left.\mathbb{Z}^{m}\right\}$,
$R:=\mathbb{Z}^{m} \bmod \Lambda \cong \mathbb{Z}_{q}^{n}$.
- GPV: define a preimage-samplable trapdoor function $\phi: D \rightarrow R$ by

$$
\phi(\mathbf{v}):=\mathbf{v} \bmod \Lambda=\mathbf{A} \cdot \mathbf{v} \bmod q
$$

- For any $\mathbf{w} \in R$, can sample short vectors in $\phi^{-1}(\mathbf{w})=\Lambda+\mathbf{w}$ given a "short" basis of Λ.
- Sampling short vectors in $\Lambda+\mathbf{w}$ without short basis is hard.

Linearly Homomorphic Signatures: Key Ideas

GPV sign/verify algorithms: $\quad H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$
$p k=\mathbf{A} \in \mathbb{Z}_{q}^{n \times m} \quad$ sk $=$ short basis of $\Lambda_{q}^{\perp}(\mathbf{A})$
$\operatorname{Sign}(\mathbf{v}) \quad:=$ short vector in $\left(\wedge_{q}^{\perp}(\mathbf{A})+H(\mathbf{v})\right)$
$\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad \sigma$ is short, $\mathbf{A} \cdot \sigma \bmod q=H(\mathbf{v})$

Linearly Homomorphic Signatures: Key Ideas

GPV sign/verify algorithms: $\quad H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n}$

$$
\begin{array}{cll}
p k=\mathbf{A} \in \mathbb{Z}_{q}^{n \times m} & s k=\text { short basis of } \Lambda \frac{\perp}{q}(\mathbf{A}) \\
\operatorname{Sign}(\mathbf{v}) & := & \text { short vector in } \quad\left(\Lambda \frac{\perp}{q}(\mathbf{A})+H(\mathbf{v})\right) \\
\operatorname{Verify}(\sigma) & := & 1
\end{array} \text { iff } \quad \sigma \text { is short, } \mathbf{A} \cdot \sigma \bmod q=H(\mathbf{v}) .
$$

Idea: instead of hashing, use lattice $\Lambda_{2 q}^{\perp}(\mathbf{A})$ defined mod $2 q$:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_{2}^{n}$.
- mod q part encodes solution to a hard problem.

Linearly Homomorphic Signatures: Key Ideas

New sign/verify algorithms: $\quad \mathbf{v} \in \mathbb{F}_{2}^{n}, q$ odd $p k=\mathbf{A} \in \mathbb{Z}_{2 q}^{n \times m} \quad s k=$ short basis of $\Lambda_{2 q}^{\perp}(\mathbf{A})$ $\operatorname{Sign}(\mathbf{v}) \quad:=$ short vector in $\left(\wedge \frac{\perp}{2 q}(\mathbf{A})+q \cdot \mathbf{v}\right)$
$\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad \sigma$ is short, $\mathbf{A} \cdot \sigma=\left\{\begin{array}{l}\mathbf{v} \bmod 2 \\ 0 \bmod q\end{array}\right.$
Idea: instead of hashing, use lattice $\Lambda \stackrel{\perp}{2 q}(\mathbf{A})$ defined mod $2 q$:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_{2}^{n}$.
- mod q part encodes solution to a hard problem.

Linearly Homomorphic Signatures: Key Ideas

New sign/verify algorithms: $\quad \mathbf{v} \in \mathbb{F}_{2}^{n}, q$ odd $p k=\mathbf{A} \in \mathbb{Z}_{2 q}^{n \times m} \quad s k=$ short basis of $\Lambda_{2 q}^{\perp}(\mathbf{A})$ $\operatorname{Sign}(\mathbf{v}) \quad:=$ short vector in $\left(\Lambda \frac{\perp}{2 q}(\mathbf{A})+q \cdot \mathbf{v}\right)$
$\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad \sigma$ is short, $\mathbf{A} \cdot \sigma=\left\{\begin{array}{l}\mathbf{v} \bmod 2 \\ 0 \bmod q\end{array}\right.$
Idea: instead of hashing, use lattice $\Lambda_{2 q}^{\perp}(\mathbf{A})$ defined mod $2 q$:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_{2}^{n}$.
- mod q part encodes solution to a hard problem.

Homomorphic property: "mod $2 q$ " is a linear map, so adding signatures corresponds to adding messages.

Linearly Homomorphic Signatures: Key Ideas

New sign/verify algorithms: $\quad \mathbf{v} \in \mathbb{F}_{2}^{n}, q$ odd
$p k=\mathbf{A} \in \mathbb{Z}_{2 q}^{n \times m} \quad$ sk $=$ short basis of $\Lambda_{2 q}^{\perp}(\mathbf{A})$
$\operatorname{Sign}(\mathbf{v}) \quad:=$ short vector in $\left(\wedge_{2 q}^{\perp}(\mathbf{A})+q \cdot \mathbf{v}\right)$
$\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad \sigma$ is short, $\mathbf{A} \cdot \sigma=\left\{\begin{array}{l}\mathbf{v} \bmod 2 \\ 0 \bmod q\end{array}\right.$
Idea: instead of hashing, use lattice $\Lambda_{2 q}^{\perp}(\mathbf{A})$ defined mod $2 q$:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_{2}^{n}$.
- mod q part encodes solution to a hard problem.

Homomorphic property: "mod $2 q$ " is a linear map, so adding signatures corresponds to adding messages.

- Suppose σ_{1}, σ_{2} are signatures on $\mathbf{v}_{1}, \mathbf{v}_{2}$

$$
\Rightarrow \sigma_{i} \text { short, } \mathbf{A} \cdot \sigma_{i} \bmod 2 q=q \cdot \mathbf{v}_{i}
$$

Linearly Homomorphic Signatures: Key Ideas

New sign/verify algorithms: $\quad \mathbf{v} \in \mathbb{F}_{2}^{n}, q$ odd $p k=\mathbf{A} \in \mathbb{Z}_{2 q}^{n \times m} \quad s k=$ short basis of $\Lambda_{2 q}^{\perp}(\mathbf{A})$ $\operatorname{Sign}(\mathbf{v}) \quad:=$ short vector in $\left(\Lambda_{2 q}^{\perp}(\mathbf{A})+q \cdot \mathbf{v}\right)$ $\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad \sigma$ is short, $\mathbf{A} \cdot \sigma=\left\{\begin{array}{l}\mathbf{v} \bmod 2 \\ 0 \bmod q\end{array}\right.$ Idea: instead of hashing, use lattice $\Lambda_{2 q}^{\perp}(\mathbf{A})$ defined mod $2 q$:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_{2}^{n}$.
- mod q part encodes solution to a hard problem.

Homomorphic property: "mod $2 q$ " is a linear map, so adding signatures corresponds to adding messages.

- Suppose σ_{1}, σ_{2} are signatures on $\mathbf{v}_{1}, \mathbf{v}_{2}$

$$
\Rightarrow \sigma_{i} \text { short, } \mathbf{A} \cdot \sigma_{i} \bmod 2 q=q \cdot \mathbf{v}_{i}
$$

- Define signature on $\mathbf{v}_{1}+\mathbf{v}_{2}$ to be $\sigma:=\sigma_{1}+\sigma_{2}$. $\Rightarrow \sigma$ is short, $\mathbf{A} \cdot \sigma \bmod 2 q=q \cdot\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)$.

Security Analysis

Goal: Reduce system's security to the following problem.

SIS $_{q, m, \beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$,
find an $\mathbf{v}^{*} \in \Lambda_{q}^{\perp}(\mathbf{A})$ with $\left\|\mathbf{v}^{*}\right\|<\beta$.

Security Analysis

Goal: Reduce system's security to the following problem.

SIS $_{q, m, \beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$,
find an $\mathbf{v}^{*} \in \wedge_{q}^{\perp}(\mathbf{A})$ with $\left\|\mathbf{v}^{*}\right\|<\beta$.
Theorem [MR04,GPV08]: An algorithm that solves SIS can be used to solve worst-case lattice problems (e.g., GapSVP, SIVP).

Security Analysis

Goal: Reduce system's security to the following problem.

SIS $_{q, m, \beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$,
find an $\mathbf{v}^{*} \in \Lambda_{q}^{\perp}(\mathbf{A})$ with $\left\|\mathbf{v}^{*}\right\|<\beta$.
Theorem [MR04,GPV08]: An algorithm that solves SIS can be used to solve worst-case lattice problems (e.g., GapSVP, SIVP).

- Problem: signatures are already short vectors in $\wedge_{q}^{\perp}(\mathbf{A})$, so can't simulate in a reduction.

Security Analysis

Goal: Reduce system's security to the following problem.

SIS $_{q, m, \beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$,
find an $\mathbf{v}^{*} \in \Lambda_{q}^{\perp}(\mathbf{A})$ with $\left\|\mathbf{v}^{*}\right\|<\beta$.
Theorem [MR04,GPV08]: An algorithm that solves SIS can be used to solve worst-case lattice problems (e.g., GapSVP, SIVP).

- Problem: signatures are already short vectors in $\wedge_{q}^{\perp}(\mathbf{A})$, so can't simulate in a reduction.
- Solution: Make a new assumption! (and then reduce it to a standard assumption).

Security Analysis

Goal: Reduce system's security to the following problem.

$k-$ SIS $_{q, m, \beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and k short vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k} \in \Lambda_{q}^{\perp}(\mathbf{A})$ find an $\mathbf{v}^{*} \in \Lambda_{q}^{\perp}(\mathbf{A})$ with $\left\|\mathbf{v}^{*}\right\|<\beta$ and $\mathbf{e}^{*} \notin \mathbb{Q}-\operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$.

Security Analysis

Goal: Reduce system's security to the following problem.

k-SIS ${ }_{q, m, \beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and k short vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k} \in \Lambda_{q}^{\perp}(\mathbf{A})$ find an $\mathbf{v}^{*} \in \Lambda \frac{\perp}{q}(\mathbf{A})$ with $\left\|\mathbf{v}^{*}\right\|<\beta$ and $\mathbf{e}^{*} \notin \mathbb{Q}$-span $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$.

Theorem: An adversary that forges a signature (in the random oracle model) can be used to solve the $k-$ SIS $_{q, m, \beta}$ problem.

Security Analysis

Goal: Reduce system's security to the following problem.

k-SIS ${ }_{q, m, \beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and k short vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k} \in \Lambda_{q}^{\perp}(\mathbf{A})$ find an $\mathbf{v}^{*} \in \Lambda_{q}^{\perp}(\mathbf{A})$ with $\left\|\mathbf{v}^{*}\right\|<\beta$ and $\mathbf{e}^{*} \notin \mathbb{Q}-\operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$.

Theorem: An adversary that forges a signature (in the random oracle model) can be used to solve the $k-$ SIS $_{q, m, \beta}$ problem.

Theorem: An algorithm that solves the $k-$ SIS $_{q, m, \beta}$ problem can be used to solve SIS $_{q, m-k, \beta^{\prime}}$.

Security Analysis

Goal: Reduce system's security to the following problem.

k-SIS ${ }_{q, m, \beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$ and k short vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k} \in \Lambda_{q}^{\perp}(\mathbf{A})$ find an $\mathbf{v}^{*} \in \Lambda \frac{\perp}{q}(\mathbf{A})$ with $\left\|\mathbf{v}^{*}\right\|<\beta$ and $\mathbf{e}^{*} \notin \mathbb{Q}$-span $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}\right)$.

Theorem: An adversary that forges a signature (in the random oracle model) can be used to solve the $k-$ SIS $_{q, m, \beta}$ problem.

Theorem: An algorithm that solves the k-SIS ${ }_{q, m, \beta}$ problem can be used to solve SIS $_{q, m-k, \beta^{\prime}}$.

Sadly, the k-SIS-to-SIS reduction is exponential in k :

$$
\beta^{\prime} \approx k!\cdot n^{k / 2} \cdot \beta
$$

But this is OK if $k=O(1)$.

Idea of the k-SIS-to-SIS Reduction

Given SIS challenge $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, do:

- Choose $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$ from Gaussians over \mathbb{Z}^{m+k}.
- Define \mathbf{B} by appending k random columns to \mathbf{A} such that

Idea of the k-SIS-to-SIS Reduction

Given SIS challenge $\mathbf{A} \in \mathbb{Z}_{q}^{n \times m}$, do:

- Choose $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$ from Gaussians over \mathbb{Z}^{m+k}.
- Define \mathbf{B} by appending k random columns to \mathbf{A} such that

Theorem

($\mathbf{B}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$) produced in this way is statistically indistinguishable from a k-SIS challenge in dimension $m+k$.

Real k-SIS challenge: fix \mathbf{B}, then choose $\mathbf{e}_{i} \in \Lambda_{q}^{\perp}(\mathbf{B})$.

k-SIS-to-SIS Reduction, Continued

Given simulated k-SIS challenge ($\mathbf{B}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$)

k-SIS-to-SIS Reduction, Continued

Given simulated k-SIS challenge ($\mathbf{B}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$)

k-SIS adversary produces $\mathbf{e}^{*} \in \Lambda_{q}^{\perp}(\mathbf{B})$ not in \mathbb{Q}-span $\left(\mathbf{e}_{1} \ldots, \mathbf{e}_{k}\right)$.

k-SIS-to-SIS Reduction, Continued

Given simulated k-SIS challenge ($\mathbf{B}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$)

k-SIS adversary produces $\mathbf{e}^{*} \in \Lambda_{q}^{\perp}(\mathbf{B})$ not in \mathbb{Q}-span $\left(\mathbf{e}_{1} \ldots, \mathbf{e}_{k}\right)$.

- Use Gaussian elimination over \mathbb{Z} to find short nonzero $\mathbf{v}^{*} \in \mathbb{Z}$-span $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}, \mathbf{e}^{*}\right)$ with last k entries 0 .

k-SIS-to-SIS Reduction, Continued

Given simulated k-SIS challenge ($\mathbf{B}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$)

k-SIS adversary produces $\mathbf{e}^{*} \in \Lambda_{q}^{\perp}(\mathbf{B})$ not in \mathbb{Q}-span $\left(\mathbf{e}_{1} \ldots, \mathbf{e}_{k}\right)$.

- Use Gaussian elimination over \mathbb{Z} to find short nonzero $\mathbf{v}^{*} \in \mathbb{Z}$-span $\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}, \mathbf{e}^{*}\right)$ with last k entries 0.
- First m entries of \mathbf{v}^{*} are in $\Lambda_{q}^{\perp}(\mathbf{A})$ - solves SIS problem!

k-SIS-to-SIS Reduction, Continued

Given simulated k-SIS challenge ($\mathbf{B}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$)

k-SIS adversary produces $\mathbf{e}^{*} \in \Lambda_{q}^{\perp}(\mathbf{B})$ not in \mathbb{Q}-span $\left(\mathbf{e}_{1} \ldots, \mathbf{e}_{k}\right)$.

- Use Gaussian elimination over \mathbb{Z} to find short nonzero $\mathbf{v}^{*} \in \mathbb{Z}-\operatorname{span}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}, \mathbf{e}^{*}\right)$ with last k entries 0 .
- First m entries of \mathbf{v}^{*} are in $\Lambda_{q}^{\perp}(\mathbf{A})$ - solves SIS problem!

Gaussian elimination blows up length by a factor $\approx k!\cdot n^{k / 2}$.

Privacy property: derived signature on $\mathbf{v}=\sum c_{i} \mathbf{v}_{i}$ reveals nothing about $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ beyond value of \mathbf{v}.

Privacy property: derived signature on $\mathbf{v}=\sum c_{i} \mathbf{v}_{i}$ reveals nothing about $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ beyond value of \mathbf{v}.

Specifically: given two vector spaces

$$
V=\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right), \quad W=\operatorname{span}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right)
$$

and a set of coefficients $\left\{c_{i}\right\}$ with

$$
\sum c_{i} \mathbf{v}_{i}=\sum c_{i} \mathbf{w}_{i}
$$

even unbounded adversary cannot distinguish derived signature on $\sum c_{i} \mathbf{v}_{i}$ from derived signature on $\sum c_{i} \mathbf{w}_{i}$.

New Tool Used to Prove Privacy

Theorem

Let $\mathbf{e}_{i} \in \mathbb{Z}^{m}$ be sampled from a discrete Gaussian over $\Lambda+\mathbf{t}_{i}$ with parameter σ. Let $c_{i} \in\{0,1\}$. Then for sufficiently large σ, the distribution of $\sum c_{i} \mathbf{e}_{i}$ is a discrete Gaussian* over $\Lambda+\sum c_{i} \mathbf{t}_{j}$.

[^0]
New Tool Used to Prove Privacy

Theorem

Let $\mathbf{e}_{i} \in \mathbb{Z}^{m}$ be sampled from a discrete Gaussian over $\Lambda+\mathbf{t}_{i}$ with parameter σ. Let $c_{i} \in\{0,1\}$. Then for sufficiently large σ, the distribution of $\sum c_{i} \mathbf{e}_{i}$ is a discrete Gaussian* over $\Lambda+\sum c_{i} \mathbf{t}_{j}$.

Corollary: Linearly homomorphic signatures over \mathbb{F}_{2} are private.

Proof idea:

- Sigs on \mathbf{v}_{i} sampled from discrete Gaussian distribution, derived sigs are linear combinations.
- By theorem, distribution of derived signature on $\mathbf{v}=\sum c_{i} \mathbf{v}_{i}$ depends only on $\left\{c_{i}\right\}$ and \mathbf{v}, not on the \mathbf{v}_{i}.
- If $\sum c_{i} \mathbf{v}_{i}=\sum c_{i} \mathbf{w}_{i}$, derived sig distributions are identical*.

[^1]
New Tool Used to Prove Privacy

Theorem

Let $\mathbf{e}_{i} \in \mathbb{Z}^{m}$ be sampled from a discrete Gaussian over $\Lambda+\mathbf{t}_{i}$ with parameter σ. Let $c_{i} \in\{0,1\}$. Then for sufficiently large σ, the distribution of $\sum c_{i} \mathbf{e}_{i}$ is a discrete Gaussian* over $\Lambda+\sum c_{i} \mathbf{t}_{j}$.

Corollary: Linearly homomorphic signatures over \mathbb{F}_{2} are private.
Proof idea:

- Sigs on \mathbf{v}_{i} sampled from discrete Gaussian distribution, derived sigs are linear combinations.
- By theorem, distribution of derived signature on $\mathbf{v}=\sum c_{i} \mathbf{v}_{i}$ depends only on $\left\{c_{i}\right\}$ and \mathbf{v}, not on the \mathbf{v}_{i}.
- If $\sum c_{i} \mathbf{v}_{i}=\sum c_{i} \mathbf{w}_{i}$, derived sig distributions are identical*.

Theorem generalizes to tuples of discrete Gaussians.
*up to negligible statistical distance

Other Contributions

A k-time signature scheme without random oracles:

Other Contributions

A k-time signature scheme without random oracles:

- Sign/Verify algorithms same as in homomorphic scheme:
$\operatorname{Sign}(\mathbf{v}):=$ Gaussian sample from $\left(\wedge_{2 q}^{\perp}(\mathbf{A})+q \cdot \mathbf{v}\right)$
$\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad\|\sigma\|<\beta, \mathbf{A} \cdot \sigma=q \cdot \mathbf{v} \bmod 2 q$.

Other Contributions

A k-time signature scheme without random oracles:

- Sign/Verify algorithms same as in homomorphic scheme:
$\operatorname{Sign}(\mathbf{v}):=$ Gaussian sample from $\left(\wedge_{2 q}^{\perp}(\mathbf{A})+q \cdot \mathbf{v}\right)$
$\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad\|\sigma\|<\beta, \quad \mathbf{A} \cdot \sigma=\boldsymbol{q} \cdot \mathbf{v} \bmod 2 q$.
- Eliminate homomorphic property by choosing small β : $\sigma_{1}+\sigma_{2}$ now too long to verify for $\mathbf{v}_{1}+\mathbf{v}_{2}$.

Other Contributions

A k-time signature scheme without random oracles:

- Sign/Verify algorithms same as in homomorphic scheme:
$\operatorname{Sign}(\mathbf{v}):=$ Gaussian sample from $\left(\wedge_{2 q}^{\perp}(\mathbf{A})+q \cdot \mathbf{v}\right)$
$\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad\|\sigma\|<\beta, \quad \mathbf{A} \cdot \sigma=\boldsymbol{q} \cdot \mathbf{v} \bmod 2 q$.
- Eliminate homomorphic property by choosing small β : $\sigma_{1}+\sigma_{2}$ now too long to verify for $\mathbf{v}_{1}+\mathbf{v}_{2}$.
- Requires tight bound on length of Gaussian samples.

Other Contributions

A k-time signature scheme without random oracles:

- Sign/Verify algorithms same as in homomorphic scheme:
$\operatorname{Sign}(\mathbf{v}):=$ Gaussian sample from $\left(\wedge_{2 q}^{\perp}(\mathbf{A})+\boldsymbol{q} \cdot \mathbf{v}\right)$
$\operatorname{Verify}(\sigma) \quad:=1 \quad$ iff $\quad\|\sigma\|<\beta, \quad \mathbf{A} \cdot \sigma=q \cdot \mathbf{v} \bmod 2 q$.
- Eliminate homomorphic property by choosing small β : $\sigma_{1}+\sigma_{2}$ now too long to verify for $\mathbf{v}_{1}+\mathbf{v}_{2}$.
- Requires tight bound on length of Gaussian samples.

Theorem

Let $\mathbf{e} \in \mathbb{Z}^{n}$ be sampled from a discrete Gaussian with parameter σ. Then for any $\epsilon>0$ we have w.h.p.

$$
(1-\epsilon) \cdot \sigma \sqrt{n / 2 \pi} \leq\|\mathbf{e}\| \leq(1+\epsilon) \cdot \sigma \sqrt{n / 2 \pi}
$$

Best previous result was $\|\mathbf{e}\| \leq \sigma \sqrt{n}$.

Open Problems

(1) Find a better k-SIS \rightarrow SIS reduction.

- Current reduction is exponential in k.
- System can only sign $k=O(1)$ vectors while maintaining security based on worst-case problems.

Open Problems

(1) Find a better k-SIS \rightarrow SIS reduction.

- Current reduction is exponential in k.
- System can only sign $k=O(1)$ vectors while maintaining security based on worst-case problems.
(2) Homomorphic signatures over \mathbb{F}_{2} with worst-case security for $k=\operatorname{poly}(n)$.
- Achieved in BF eprint 2011/018: "Homomorphic Signatures for Polynomial Functions."

Open Problems

(1) Find a better k-SIS \rightarrow SIS reduction.

- Current reduction is exponential in k.
- System can only sign $k=O(1)$ vectors while maintaining security based on worst-case problems.
(2) Homomorphic signatures over \mathbb{F}_{2} with worst-case security for $k=\operatorname{poly}(n)$.
- Achieved in BF eprint 2011/018: "Homomorphic Signatures for Polynomial Functions."
(3) Remove random oracle from security proof.
- Adapt techniques from the next talk to lattice setting?

Open Problems

(1) Find a better k-SIS \rightarrow SIS reduction.

- Current reduction is exponential in k.
- System can only sign $k=O(1)$ vectors while maintaining security based on worst-case problems.
(2) Homomorphic signatures over \mathbb{F}_{2} with worst-case security for $k=\operatorname{poly}(n)$.
- Achieved in BF eprint 2011/018: "Homomorphic Signatures for Polynomial Functions."
(3) Remove random oracle from security proof.
- Adapt techniques from the next talk to lattice setting?
(4) Find other applications of the k-SIS tool.

Open Problems

(1) Find a better k-SIS \rightarrow SIS reduction.

- Current reduction is exponential in k.
- System can only sign $k=O(1)$ vectors while maintaining security based on worst-case problems.
(2) Homomorphic signatures over \mathbb{F}_{2} with worst-case security for $k=\operatorname{poly}(n)$.
- Achieved in BF eprint 2011/018: "Homomorphic Signatures for Polynomial Functions."
(3) Remove random oracle from security proof.
- Adapt techniques from the next talk to lattice setting?
(4) Find other applications of the k-SIS tool.

Thank you!

[^0]: *up to negligible statistical distance

[^1]: *up to negligible statistical distance

