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Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to authenticate
vector subspaces of a given ambient space.
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v ∈ span(v1, . . . ,vk )
σ = signature on v

Security: no adversary can authenticate any vector
v∗ outside span(v1, . . . ,vk ).
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Motivation: Network Coding

Network coding routing mechanism [ACLY00]:
Interpret data as vectors in Fn

p.
Routers send random linear combinations of received vectors,
along with coefficients.
Recipient reconstructs file from full-rank system.

Problem: susceptible to pollution attacks.
Recipient can’t distinguish good packets from bad ones.

Solution: linearly homomorphic signatures
[KFM04,ZKMH07,CJL09,BFKW09,GKKR10]

Routers derive signature on lin. combinations; recipient verifies.

Current solutions authenticate vectors over Fp for large p.
For efficiency, we want to use vectors defined over F2.
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Our Contributions

Linearly homomorphic signatures over F2.
– Secure under lattice assumptions, private unconditionally.
– Primitive that can be constructed via lattice techniques,

but not (currently) via dlog or factoring.

New tools for lattice-based cryptography.
– New k -SIS assumption; reduction to worst-case lattice

assumptions (used for security result).
– Result on distributions of sums of discrete Gaussian

samples (used for privacy result).
– Tight length bounds for discrete Gaussian samples.

k -time signature scheme without random oracles.
– Application of new k -SIS assumption.
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Building Block: GPV Trapdoor Function

Λ ⊂ Zm a lattice (full-rank subgroup),
defined by matrix A ∈ Zn×m

q (n < m):

Λ = Λ⊥q (A) := {v ∈ Zm : A · v = 0 mod q}

D := {short vectors in Zm},

R := Zm mod Λ ∼= Zn
q.

GPV: define a preimage-samplable
trapdoor function φ : D → R by

φ(v) := v mod Λ = A · v mod q

For any w ∈ R, can sample short
vectors in φ−1(w) = Λ + w given a
“short” basis of Λ.
Sampling short vectors in Λ + w
without short basis is hard.

O
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Linearly Homomorphic Signatures: Key Ideas

GPV sign/verify algorithms: H : {0,1}∗ → Zn
q

pk = A ∈ Zn×m
q sk = short basis of Λ⊥q (A)

Sign(v) := short vector in (Λ⊥q (A) + H(v))

Verify(σ) := 1 iff σ is short, A · σ mod q = H(v)

Idea: instead of hashing, use lattice Λ⊥2q(A) defined mod 2q:
mod 2 part encodes a vector v ∈ Fn

2.
mod q part encodes solution to a hard problem.

Homomorphic property: “mod 2q” is a linear map, so adding
signatures corresponds to adding messages.

Suppose σ1, σ2 are signatures on v1,v2
⇒ σi short, A · σi mod 2q = q · vi .

Define signature on v1 + v2 to be σ := σ1 + σ2.
⇒ σ is short, A · σ mod 2q = q · (v1 + v2).
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Security Analysis

Goal: Reduce system’s security to the following problem.

SISq,m,β Problem

Given random A ∈ Zn×m
q ,

k short vectors e1, . . . ,ek ∈ Λ⊥q (A)

find an v∗ ∈ Λ⊥q (A) with ‖v∗‖ < β.

and e∗ 6∈ Q-span(e1, . . . ,ek ).

Theorem [MR04,GPV08]: An algorithm that solves SIS can be
used to solve worst-case lattice problems (e.g., GapSVP,
SIVP).

Problem: signatures are already short vectors in Λ⊥q (A), so
can’t simulate in a reduction.
Solution: Make a new assumption!
(and then reduce it to a standard assumption).
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Security Analysis

Goal: Reduce system’s security to the following problem.

k -SISq,m,β Problem

Given random A ∈ Zn×m
q and k short vectors e1, . . . ,ek ∈ Λ⊥q (A)

find an v∗ ∈ Λ⊥q (A) with ‖v∗‖ < β and e∗ 6∈ Q-span(e1, . . . ,ek ).

Theorem: An adversary that forges a signature (in the random
oracle model) can be used to solve the k -SISq,m,β problem.

Theorem: An algorithm that solves the k -SISq,m,β problem can
be used to solve SISq,m−k ,β′ .

Sadly, the k -SIS-to-SIS reduction is exponential in k :

β′ ≈ k ! · nk/2 · β.

But this is OK if k = O(1).
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Idea of the k -SIS-to-SIS Reduction

Given SIS challenge A ∈ Zn×m
q , do:

Choose e1, . . . ,ek from Gaussians over Zm+k .
Define B by appending k random columns to A such that | |

A b1 · · · bk
| |


︸ ︷︷ ︸

B

·


∣∣∣∣
ei∣∣∣∣

 = 0 mod q for all i

Theorem
(B,e1, . . . ,ek ) produced in this way is statistically
indistinguishable from a k-SIS challenge in dimension m + k.

Real k -SIS challenge: fix B, then choose ei ∈ Λ⊥
q (B).
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k -SIS-to-SIS Reduction, Continued

Given simulated k -SIS challenge (B,e1, . . . ,ek ) | |
A b1 · · · bk

| |


︸ ︷︷ ︸

B

·


∣∣∣∣ ∣∣∣∣

∣∣∣∣

e1 · · · ek

e∗

∣∣∣∣ ∣∣∣∣

∣∣∣∣

 = 0 mod q
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Privacy

Privacy property: derived signature on v =
∑

civi reveals
nothing about v1, . . . ,vk beyond value of v.

Specifically: given two vector spaces

V = span(v1, . . . ,vk ), W = span(w1, . . . ,wk )

and a set of coefficients {ci} with∑
civi =

∑
ciwi ,

even unbounded adversary cannot distinguish derived
signature on

∑
civi from derived signature on

∑
ciwi .
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New Tool Used to Prove Privacy

Theorem
Let ei ∈ Zm be sampled from a discrete Gaussian over Λ + ti
with parameter σ. Let ci ∈ {0,1}. Then for sufficiently large σ,
the distribution of

∑
ciei is a discrete Gaussian∗over Λ +

∑
ci ti .

Corollary: Linearly homomorphic signatures over F2 are private.

Proof idea:
Sigs on vi sampled from discrete Gaussian distribution,
derived sigs are linear combinations.
By theorem, distribution of derived signature on v =

∑
civi

depends only on {ci} and v, not on the vi .
If
∑

civi =
∑

ciwi , derived sig distributions are identical∗.

Theorem generalizes to tuples of discrete Gaussians.

∗up to negligible statistical distance
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Other Contributions

A k -time signature scheme without random oracles:

Sign/Verify algorithms same as in homomorphic scheme:

Sign(v) := Gaussian sample from (Λ⊥2q(A) + q · v)

Verify(σ) := 1 iff ‖σ‖ < β, A · σ = q · v mod 2q.

Eliminate homomorphic property by choosing small β:
σ1 + σ2 now too long to verify for v1 + v2.
Requires tight bound on length of Gaussian samples.

Theorem
Let e ∈ Zn be sampled from a discrete Gaussian with
parameter σ. Then for any ε > 0 we have w.h.p.

(1− ε) · σ
√

n/2π ≤ ‖e‖ ≤ (1 + ε) · σ
√

n/2π.

Best previous result was ‖e‖ ≤ σ
√

n.
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Open Problems

1 Find a better k -SIS→ SIS reduction.
Current reduction is exponential in k .
System can only sign k = O(1) vectors while maintaining
security based on worst-case problems.

2 Homomorphic signatures over F2 with worst-case security
for k = poly(n).

Achieved in BF eprint 2011/018:
“Homomorphic Signatures for Polynomial Functions.”

3 Remove random oracle from security proof.
Adapt techniques from the next talk to lattice setting?

4 Find other applications of the k -SIS tool.

Thank you!
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