Linearly Homomorphic Signatures over Binary Fields and New Tools for Lattice-Based Signatures

Dan Boneh and David Mandell Freeman

Stanford University, USA

PKC 2011 Taormina, Italy 7 March 2011

Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to *authenticate vector subspaces* of a given ambient space.

Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to *authenticate vector subspaces* of a given ambient space.

Linearly homomorphic signatures allow users to *authenticate vector subspaces* of a given ambient space.

 $\mathbf{v}_i \in \mathbb{F}_p^n$ $\sigma_i = \text{signature on } \mathbf{v}_i$

Linearly Homomorphic Signatures

Linearly homomorphic signatures allow users to *authenticate vector subspaces* of a given ambient space.

Linearly homomorphic signatures allow users to *authenticate vector subspaces* of a given ambient space.

Security: no adversary can authenticate any vector
 v* outside span(v₁,..., v_k).

Network coding routing mechanism [ACLY00]:

- Routers send random linear combinations of received vectors, along with coefficients.
- Recipient reconstructs file from full-rank system.

Network coding routing mechanism [ACLY00]:

- Routers send random linear combinations of received vectors, along with coefficients.
- Recipient reconstructs file from full-rank system.

Problem: susceptible to pollution attacks.

• Recipient can't distinguish good packets from bad ones.

Network coding routing mechanism [ACLY00]:

- Routers send random linear combinations of received vectors, along with coefficients.
- Recipient reconstructs file from full-rank system.

Problem: susceptible to pollution attacks.

• Recipient can't distinguish good packets from bad ones.

Solution: linearly homomorphic signatures [KFM04,ZKMH07,CJL09,BFKW09,GKKR10]

• Routers derive signature on lin. combinations; recipient verifies.

Network coding routing mechanism [ACLY00]:

- Routers send random linear combinations of received vectors, along with coefficients.
- Recipient reconstructs file from full-rank system.

Problem: susceptible to pollution attacks.

• Recipient can't distinguish good packets from bad ones.

Solution: linearly homomorphic signatures [KFM04,ZKMH07,CJL09,BFKW09,GKKR10]

• Routers derive signature on lin. combinations; recipient verifies.

Current solutions authenticate vectors over \mathbb{F}_p for large p. For efficiency, we want to use vectors defined over \mathbb{F}_2 .

Our Contributions

- Linearly homomorphic signatures over \mathbb{F}_2 .
 - Secure under lattice assumptions, private unconditionally.
 - Primitive that can be constructed via lattice techniques, but not (currently) via dlog or factoring.

Our Contributions

- Linearly homomorphic signatures over \mathbb{F}_2 .
 - Secure under lattice assumptions, private unconditionally.
 - Primitive that can be constructed via lattice techniques, but not (currently) via dlog or factoring.
- New tools for lattice-based cryptography.
 - New k-SIS assumption; reduction to worst-case lattice assumptions (used for security result).
 - Result on distributions of sums of discrete Gaussian samples (used for privacy result).
 - Tight length bounds for discrete Gaussian samples.

Our Contributions

- Linearly homomorphic signatures over \mathbb{F}_2 .
 - Secure under lattice assumptions, private unconditionally.
 - Primitive that can be constructed via lattice techniques, but not (currently) via dlog or factoring.
- New tools for lattice-based cryptography.
 - New k-SIS assumption; reduction to worst-case lattice assumptions (used for security result).
 - Result on distributions of sums of discrete Gaussian samples (used for privacy result).
 - Tight length bounds for discrete Gaussian samples.
- *k*-time signature scheme without random oracles.
 - Application of new *k*-SIS assumption.

 Λ ⊂ Z^m a lattice (full-rank subgroup), defined by matrix A ∈ Z^{n×m}_q (n < m):

$$\Lambda = \Lambda_q^{\perp}(\mathbf{A}) := \{\mathbf{v} \in \mathbb{Z}^m : \mathbf{A} \cdot \mathbf{v} = 0 mod q\}$$

- Λ ⊂ Z^m a lattice (full-rank subgroup), defined by matrix **A** ∈ Z^{n×m}_a (n < m):
- $\Lambda = \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{A} \cdot \mathbf{v} = 0 \bmod q \}$

- Λ ⊂ Z^m a lattice (full-rank subgroup), defined by matrix A ∈ Z^{n×m}_q (n < m):
- $\Lambda = \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{A} \cdot \mathbf{v} = 0 \bmod q \}$
 - $D := \{\text{short vectors in } \mathbb{Z}^m\},\ R := \mathbb{Z}^m \mod \Lambda \cong \mathbb{Z}_q^n.$

- Λ ⊂ Z^m a lattice (full-rank subgroup), defined by matrix A ∈ Z^{n×m}_q (n < m):
- $\Lambda = \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{A} \cdot \mathbf{v} = 0 \bmod q \}$
 - $D := \{\text{short vectors in } \mathbb{Z}^m\},\ R := \mathbb{Z}^m \mod \Lambda \cong \mathbb{Z}_q^n.$
 - GPV: define a preimage-samplable trapdoor function φ: D → R by

$$\phi(\mathbf{v}) := \mathbf{v} \mod \Lambda = \mathbf{A} \cdot \mathbf{v} \mod q$$

- Λ ⊂ Z^m a lattice (full-rank subgroup), defined by matrix A ∈ Z^{n×m}_q (n < m):
- $\Lambda = \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{A} \cdot \mathbf{v} = 0 \bmod q \}$
 - $D := \{\text{short vectors in } \mathbb{Z}^m\},\ R := \mathbb{Z}^m \mod \Lambda \cong \mathbb{Z}_q^n.$
 - GPV: define a preimage-samplable trapdoor function φ: D → R by

$$\phi(\mathbf{v}) := \mathbf{v} \mod \Lambda = \mathbf{A} \cdot \mathbf{v} \mod q$$

For any w ∈ R, can sample short vectors in φ⁻¹(w) = Λ + w given a "short" basis of Λ.

- Λ ⊂ Z^m a lattice (full-rank subgroup), defined by matrix A ∈ Z^{n×m}_q (n < m):
- $\Lambda = \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{A} \cdot \mathbf{v} = 0 \bmod q \}$
 - $D := \{\text{short vectors in } \mathbb{Z}^m\},\ R := \mathbb{Z}^m \mod \Lambda \cong \mathbb{Z}_q^n.$
 - GPV: define a preimage-samplable trapdoor function φ: D → R by

$$\phi(\mathbf{v}) := \mathbf{v} \mod \Lambda = \mathbf{A} \cdot \mathbf{v} \mod q$$

For any w ∈ R, can sample short vectors in φ⁻¹(w) = Λ + w given a "short" basis of Λ.

- Λ ⊂ Z^m a lattice (full-rank subgroup), defined by matrix A ∈ Z^{n×m}_q (n < m):
- $\Lambda = \Lambda_q^{\perp}(\mathbf{A}) := \{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{A} \cdot \mathbf{v} = 0 mod q \}$
 - $D := \{\text{short vectors in } \mathbb{Z}^m\},\ R := \mathbb{Z}^m \mod \Lambda \cong \mathbb{Z}_q^n.$
 - GPV: define a preimage-samplable trapdoor function φ: D → R by

$$\phi(\mathbf{v}) := \mathbf{v} \mod \Lambda = \mathbf{A} \cdot \mathbf{v} \mod q$$

- For any w ∈ R, can sample short vectors in φ⁻¹(w) = Λ + w given a "short" basis of Λ.
- Sampling short vectors in Λ + w without short basis is hard.

GPV sign/verify algorithms: $H: \{0,1\}^* \to \mathbb{Z}_q^n$

$$\begin{array}{ll} pk = \mathbf{A} \in \mathbb{Z}_q^{n \times m} & sk = \text{short basis of } \Lambda_q^{\perp}(\mathbf{A}) \\ \text{Sign}(\mathbf{v}) & := & \text{short vector in} & (\Lambda_q^{\perp}(\mathbf{A}) + H(\mathbf{v})) \\ \text{Verify}(\sigma) & := & 1 & \text{iff} & \sigma \text{ is short, } \mathbf{A} \cdot \sigma \mod q = H(\mathbf{v}) \end{array}$$

GPV sign/verify algorithms: $H: \{0,1\}^* \to \mathbb{Z}_q^n$

 $\begin{array}{ll} pk = \mathbf{A} \in \mathbb{Z}_q^{n \times m} & sk = \text{short basis of } \Lambda_q^{\perp}(\mathbf{A}) \\ \text{Sign}(\mathbf{v}) & := & \text{short vector in} & (\Lambda_q^{\perp}(\mathbf{A}) + H(\mathbf{v})) \\ \text{Verify}(\sigma) & := & 1 & \text{iff} & \sigma \text{ is short, } \mathbf{A} \cdot \sigma \mod q = H(\mathbf{v}) \end{array}$

Idea: instead of hashing, use lattice $\Lambda_{2q}^{\perp}(\mathbf{A})$ defined mod 2q:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_2^n$.
- mod *q* part encodes solution to a hard problem.

New sign/verify algorithms: $\mathbf{v} \in \mathbb{F}_2^n$, q odd

$$\begin{array}{ll} pk = \mathbf{A} \in \mathbb{Z}_{2q}^{n \times m} & sk = \text{short basis of } \Lambda_{2q}^{\perp}(\mathbf{A}) \\ \text{Sign}(\mathbf{v}) & := & \text{short vector in} & (\Lambda_{2q}^{\perp}(\mathbf{A}) + q \cdot \mathbf{v}) \\ \text{Verify}(\sigma) & := & 1 & \text{iff} \quad \sigma \text{ is short, } \mathbf{A} \cdot \sigma = \begin{cases} \mathbf{v} \mod 2 \\ 0 \mod q \end{cases} \end{array}$$

Idea: instead of hashing, use lattice $\Lambda_{2q}^{\perp}(\mathbf{A})$ defined mod 2q:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_2^n$.
- mod *q* part encodes solution to a hard problem.

New sign/verify algorithms: $\mathbf{v} \in \mathbb{F}_2^n$, q odd

$$\begin{array}{ll} pk = \mathbf{A} \in \mathbb{Z}_{2q}^{n \times m} & sk = \text{short basis of } \Lambda_{2q}^{\perp}(\mathbf{A}) \\ \text{Sign}(\mathbf{v}) & := & \text{short vector in} & (\Lambda_{2q}^{\perp}(\mathbf{A}) + q \cdot \mathbf{v}) \\ \text{Verify}(\sigma) & := & 1 & \text{iff} \quad \sigma \text{ is short, } \mathbf{A} \cdot \sigma = \begin{cases} \mathbf{v} \mod 2 \\ 0 \mod q \end{cases} \end{array}$$

Idea: instead of hashing, use lattice $\Lambda_{2q}^{\perp}(\mathbf{A})$ defined mod 2q:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_2^n$.
- mod *q* part encodes solution to a hard problem.

Homomorphic property: "mod 2q" is a linear map, so adding signatures corresponds to adding messages.

New sign/verify algorithms: $\mathbf{v} \in \mathbb{F}_2^n$, q odd

$$\begin{array}{ll} pk = \mathbf{A} \in \mathbb{Z}_{2q}^{n \times m} & sk = \text{short basis of } \Lambda_{2q}^{\perp}(\mathbf{A}) \\ \text{Sign}(\mathbf{v}) & := & \text{short vector in} & (\Lambda_{2q}^{\perp}(\mathbf{A}) + q \cdot \mathbf{v}) \\ \text{Verify}(\sigma) & := & 1 & \text{iff} \quad \sigma \text{ is short, } \mathbf{A} \cdot \sigma = \begin{cases} \mathbf{v} \mod 2 \\ 0 \mod q \end{cases} \end{array}$$

Idea: instead of hashing, use lattice $\Lambda_{2q}^{\perp}(\mathbf{A})$ defined mod 2q:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_2^n$.
- mod *q* part encodes solution to a hard problem.

Homomorphic property: "mod 2q" is a linear map, so adding signatures corresponds to adding messages.

• Suppose σ_1, σ_2 are signatures on $\mathbf{v}_1, \mathbf{v}_2$ $\Rightarrow \sigma_i$ short, $\mathbf{A} \cdot \sigma_i \mod 2q = q \cdot \mathbf{v}_i$.

New sign/verify algorithms: $\mathbf{v} \in \mathbb{F}_2^n$, q odd

$$\begin{array}{ll} pk = \mathbf{A} \in \mathbb{Z}_{2q}^{n \times m} & sk = \text{short basis of } \Lambda_{2q}^{\perp}(\mathbf{A}) \\ \text{Sign}(\mathbf{v}) & := & \text{short vector in} & (\Lambda_{2q}^{\perp}(\mathbf{A}) + q \cdot \mathbf{v}) \\ \text{Verify}(\sigma) & := & 1 & \text{iff} \quad \sigma \text{ is short, } \mathbf{A} \cdot \sigma = \begin{cases} \mathbf{v} \mod 2 \\ 0 \mod q \end{cases} \end{array}$$

Idea: instead of hashing, use lattice $\Lambda_{2q}^{\perp}(\mathbf{A})$ defined mod 2q:

- mod 2 part encodes a vector $\mathbf{v} \in \mathbb{F}_2^n$.
- mod *q* part encodes solution to a hard problem.

Homomorphic property: "mod 2q" is a linear map, so adding signatures corresponds to adding messages.

- Suppose σ_1, σ_2 are signatures on $\mathbf{v}_1, \mathbf{v}_2$ $\Rightarrow \sigma_i$ short, $\mathbf{A} \cdot \sigma_i \mod 2q = q \cdot \mathbf{v}_i$.
- Define signature on $\mathbf{v}_1 + \mathbf{v}_2$ to be $\sigma := \sigma_1 + \sigma_2$. $\Rightarrow \sigma$ is short, $\mathbf{A} \cdot \sigma \mod 2q = q \cdot (\mathbf{v}_1 + \mathbf{v}_2)$.

Goal: Reduce system's security to the following problem.

$SIS_{q,m,\beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find an $\mathbf{v}^* \in \Lambda_a^{\perp}(\mathbf{A})$ with $\|\mathbf{v}^*\| < \beta$.

Goal: Reduce system's security to the following problem.

$SIS_{q,m,\beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find an $\mathbf{v}^* \in \Lambda_q^{\perp}(\mathbf{A})$ with $\|\mathbf{v}^*\| < \beta$.

Theorem [MR04,GPV08]: An algorithm that solves SIS can be used to solve worst-case lattice problems (e.g., GapSVP, SIVP).

Goal: Reduce system's security to the following problem.

$SIS_{q,m,\beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find an $\mathbf{v}^* \in \Lambda_a^{\perp}(\mathbf{A})$ with $\|\mathbf{v}^*\| < \beta$.

Theorem [MR04,GPV08]: An algorithm that solves SIS can be used to solve worst-case lattice problems (e.g., GapSVP, SIVP).

Problem: signatures are already short vectors in Λ[⊥]_q(A), so can't simulate in a reduction.

Goal: Reduce system's security to the following problem.

$SIS_{q,m,\beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find an $\mathbf{v}^* \in \Lambda_a^{\perp}(\mathbf{A})$ with $\|\mathbf{v}^*\| < \beta$.

Theorem [MR04,GPV08]: An algorithm that solves SIS can be used to solve worst-case lattice problems (e.g., GapSVP, SIVP).

- Problem: signatures are already short vectors in Λ[⊥]_q(A), so can't simulate in a reduction.
- Solution: Make a new assumption! (and then reduce it to a standard assumption).

Goal: Reduce system's security to the following problem.

k-SIS_{q,m,β} Problem

Given random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and k short vectors $\mathbf{e}_1, \ldots, \mathbf{e}_k \in \Lambda_q^{\perp}(\mathbf{A})$ find an $\mathbf{v}^* \in \Lambda_q^{\perp}(\mathbf{A})$ with $\|\mathbf{v}^*\| < \beta$ and $\mathbf{e}^* \notin \mathbb{Q}$ -span $(\mathbf{e}_1, \ldots, \mathbf{e}_k)$.

Goal: Reduce system's security to the following problem.

k-SIS_{q,m,β} Problem

Given random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and k short vectors $\mathbf{e}_1, \ldots, \mathbf{e}_k \in \Lambda_q^{\perp}(\mathbf{A})$ find an $\mathbf{v}^* \in \Lambda_q^{\perp}(\mathbf{A})$ with $\|\mathbf{v}^*\| < \beta$ and $\mathbf{e}^* \notin \mathbb{Q}$ -span $(\mathbf{e}_1, \ldots, \mathbf{e}_k)$.

Theorem: An adversary that forges a signature (in the random oracle model) can be used to solve the k-SIS $_{q,m,\beta}$ problem.

Goal: Reduce system's security to the following problem.

k-SIS $_{q,m,\beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and k short vectors $\mathbf{e}_1, \ldots, \mathbf{e}_k \in \Lambda_q^{\perp}(\mathbf{A})$ find an $\mathbf{v}^* \in \Lambda_q^{\perp}(\mathbf{A})$ with $\|\mathbf{v}^*\| < \beta$ and $\mathbf{e}^* \notin \mathbb{Q}$ -span $(\mathbf{e}_1, \ldots, \mathbf{e}_k)$.

Theorem: An adversary that forges a signature (in the random oracle model) can be used to solve the k-SIS $_{q,m,\beta}$ problem.

Theorem: An algorithm that solves the *k*-SIS_{*q*,*m*, β} problem can be used to solve SIS_{*q*,*m*-*k*, β' .}

Goal: Reduce system's security to the following problem.

k-SIS $_{q,m,\beta}$ Problem

Given random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and k short vectors $\mathbf{e}_1, \ldots, \mathbf{e}_k \in \Lambda_q^{\perp}(\mathbf{A})$ find an $\mathbf{v}^* \in \Lambda_q^{\perp}(\mathbf{A})$ with $\|\mathbf{v}^*\| < \beta$ and $\mathbf{e}^* \notin \mathbb{Q}$ -span $(\mathbf{e}_1, \ldots, \mathbf{e}_k)$.

Theorem: An adversary that forges a signature (in the random oracle model) can be used to solve the k-SIS $_{q,m,\beta}$ problem.

Theorem: An algorithm that solves the k-SIS $_{q,m,\beta}$ problem can be used to solve SIS $_{q,m-k,\beta'}$.

Sadly, the k-SIS-to-SIS reduction is exponential in k:

 $\beta' \approx k! \cdot n^{k/2} \cdot \beta.$

But this is OK if k = O(1).

Idea of the k-SIS-to-SIS Reduction

Given SIS challenge $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, do:

- Choose $\mathbf{e}_1, \ldots, \mathbf{e}_k$ from Gaussians over \mathbb{Z}^{m+k} .
- Define **B** by appending k random columns to **A** such that

$$\underbrace{\begin{pmatrix} \mathbf{A} & \| \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ \mathbf{B} & & \end{pmatrix}}_{\mathbf{B}} \cdot \begin{pmatrix} | \\ \mathbf{e}_i \\ | \end{pmatrix} = 0 \mod q \text{ for all } i$$

Idea of the k-SIS-to-SIS Reduction

Given SIS challenge $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, do:

- Choose $\mathbf{e}_1, \ldots, \mathbf{e}_k$ from Gaussians over \mathbb{Z}^{m+k} .
- Define **B** by appending k random columns to **A** such that

$$\underbrace{\begin{pmatrix} \mathbf{A} & \| \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ \mathbf{B} & \mathbf{B} & \mathbf{b}_1 & \mathbf{b}_1 \\ \mathbf{b}_1 \mathbf{b}_1 & \mathbf{b}_1$$

Theorem

 $(\mathbf{B}, \mathbf{e}_1, \dots, \mathbf{e}_k)$ produced in this way is statistically indistinguishable from a k-SIS challenge in dimension m + k.

Real *k*-SIS challenge: fix **B**, then choose $\mathbf{e}_i \in \Lambda_a^{\perp}(\mathbf{B})$.

Given simulated *k*-SIS challenge
$$(\mathbf{B}, \mathbf{e}_1, \dots, \mathbf{e}_k)$$

$$\underbrace{\begin{pmatrix} \mathbf{A} & \| \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ \mathbf{b}_1 & \cdots & \mathbf{b}_k \end{pmatrix}}_{\mathbf{B}} \cdot \begin{pmatrix} | & | & | \\ \mathbf{e}_1 & \cdots & \mathbf{e}_k & \mathbf{e}^* \\ | & | & | \end{pmatrix} = 0 \mod q$$

k-SIS adversary produces $\mathbf{e}^* \in \Lambda_q^{\perp}(\mathbf{B})$ not in \mathbb{Q} -span $(\mathbf{e}_1 \dots, \mathbf{e}_k)$.

Given simulated *k*-SIS challenge $(\mathbf{B}, \mathbf{e}_1, \ldots, \mathbf{e}_k)$

$$\underbrace{\begin{pmatrix} \mathbf{A} & \| & | & \cdots & | \\ \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ | & | & | \end{pmatrix}}_{\mathbf{B}} \cdot \begin{pmatrix} | \\ \mathbf{v}^* \\ | \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} = 0 \mod q$$

k-SIS adversary produces $\mathbf{e}^* \in \Lambda_q^{\perp}(\mathbf{B})$ not in \mathbb{Q} -span $(\mathbf{e}_1 \dots, \mathbf{e}_k)$.

Use Gaussian elimination over Z to find short nonzero
 v^{*} ∈ Z-span(e₁,..., e_k, e^{*}) with last k entries 0.

Given simulated *k*-SIS challenge $(\mathbf{B}, \mathbf{e}_1, \ldots, \mathbf{e}_k)$

$$\underbrace{\begin{pmatrix} \mathbf{A} & \| & | & \cdots & | \\ \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ | & | & | \end{pmatrix}}_{\mathbf{B}} \cdot \begin{pmatrix} | \\ \mathbf{v}^* \\ | \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} = 0 \mod q$$

k-SIS adversary produces $\mathbf{e}^* \in \Lambda_q^{\perp}(\mathbf{B})$ not in \mathbb{Q} -span $(\mathbf{e}_1 \dots, \mathbf{e}_k)$.

- Use Gaussian elimination over Z to find short nonzero
 v^{*} ∈ Z-span(e₁,..., e_k, e^{*}) with last k entries 0.
- First *m* entries of \mathbf{v}^* are in $\Lambda_a^{\perp}(\mathbf{A})$ solves SIS problem!

Given simulated *k*-SIS challenge $(\mathbf{B}, \mathbf{e}_1, \ldots, \mathbf{e}_k)$

$$\underbrace{\begin{pmatrix} \mathbf{A} & \| & | & \cdots & | \\ \mathbf{b}_1 & \cdots & \mathbf{b}_k \\ | & | & | \end{pmatrix}}_{\mathbf{B}} \cdot \begin{pmatrix} | \\ \mathbf{v}^* \\ | \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} = 0 \mod q$$

k-SIS adversary produces $\mathbf{e}^* \in \Lambda_q^{\perp}(\mathbf{B})$ not in \mathbb{Q} -span $(\mathbf{e}_1 \dots, \mathbf{e}_k)$.

- Use Gaussian elimination over Z to find short nonzero
 v^{*} ∈ Z-span(e₁,..., e_k, e^{*}) with last k entries 0.
- First *m* entries of \mathbf{v}^* are in $\Lambda_q^{\perp}(\mathbf{A})$ solves SIS problem!

Gaussian elimination blows up length by a factor $\approx k! \cdot n^{k/2}$.

Privacy property: derived signature on $\mathbf{v} = \sum c_i \mathbf{v}_i$ reveals nothing about $\mathbf{v}_1, \ldots, \mathbf{v}_k$ beyond value of \mathbf{v} .

Privacy property: derived signature on $\mathbf{v} = \sum c_i \mathbf{v}_i$ reveals nothing about $\mathbf{v}_1, \ldots, \mathbf{v}_k$ beyond value of \mathbf{v} .

Specifically: given two vector spaces

$$V = \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_k), \qquad W = \operatorname{span}(\mathbf{w}_1, \ldots, \mathbf{w}_k)$$

and a set of coefficients $\{c_i\}$ with

$$\sum c_i \mathbf{v}_i = \sum c_i \mathbf{w}_i,$$

even unbounded adversary cannot distinguish derived signature on $\sum c_i \mathbf{v}_i$ from derived signature on $\sum c_i \mathbf{w}_i$.

Theorem

Let $\mathbf{e}_i \in \mathbb{Z}^m$ be sampled from a discrete Gaussian over $\Lambda + \mathbf{t}_i$ with parameter σ . Let $c_i \in \{0, 1\}$. Then for sufficiently large σ , the distribution of $\sum c_i \mathbf{e}_i$ is a discrete Gaussian* over $\Lambda + \sum c_i \mathbf{t}_i$.

*up to negligible statistical distance

Theorem

Let $\mathbf{e}_i \in \mathbb{Z}^m$ be sampled from a discrete Gaussian over $\Lambda + \mathbf{t}_i$ with parameter σ . Let $c_i \in \{0, 1\}$. Then for sufficiently large σ , the distribution of $\sum c_i \mathbf{e}_i$ is a discrete Gaussian* over $\Lambda + \sum c_i \mathbf{t}_i$.

Corollary: Linearly homomorphic signatures over \mathbb{F}_2 are private.

Proof idea:

- Sigs on **v**_i sampled from discrete Gaussian distribution, derived sigs are linear combinations.
- By theorem, distribution of derived signature on v = ∑ c_iv_i depends only on {c_i} and v, not on the v_i.
- If $\sum c_i \mathbf{v}_i = \sum c_i \mathbf{w}_i$, derived sig distributions are identical*.

*up to negligible statistical distance

Theorem

Let $\mathbf{e}_i \in \mathbb{Z}^m$ be sampled from a discrete Gaussian over $\Lambda + \mathbf{t}_i$ with parameter σ . Let $c_i \in \{0, 1\}$. Then for sufficiently large σ , the distribution of $\sum c_i \mathbf{e}_i$ is a discrete Gaussian* over $\Lambda + \sum c_i \mathbf{t}_i$.

Corollary: Linearly homomorphic signatures over \mathbb{F}_2 are private.

Proof idea:

- Sigs on **v**_i sampled from discrete Gaussian distribution, derived sigs are linear combinations.
- By theorem, distribution of derived signature on v = ∑ c_iv_i depends only on {c_i} and v, not on the v_i.
- If $\sum c_i \mathbf{v}_i = \sum c_i \mathbf{w}_i$, derived sig distributions are identical*.

Theorem generalizes to tuples of discrete Gaussians.

*up to negligible statistical distance

A *k*-time signature scheme without random oracles:

A *k*-time signature scheme without random oracles:

• Sign/Verify algorithms same as in homomorphic scheme:

Sign(\mathbf{v}) := Gaussian sample from $(\Lambda_{2q}^{\perp}(\mathbf{A}) + q \cdot \mathbf{v})$ Verify(σ) := 1 iff $||\sigma|| < \beta$, $\mathbf{A} \cdot \sigma = q \cdot \mathbf{v} \mod 2q$.

A *k*-time signature scheme without random oracles:

• Sign/Verify algorithms same as in homomorphic scheme:

Sign(\mathbf{v}) := Gaussian sample from $(\Lambda_{2q}^{\perp}(\mathbf{A}) + q \cdot \mathbf{v})$ Verify(σ) := 1 iff $||\sigma|| < \beta$, $\mathbf{A} \cdot \sigma = q \cdot \mathbf{v} \mod 2q$.

 Eliminate homomorphic property by choosing small β: σ₁ + σ₂ now too long to verify for **v**₁ + **v**₂.

A *k*-time signature scheme without random oracles:

• Sign/Verify algorithms same as in homomorphic scheme:

Sign(\mathbf{v}) := Gaussian sample from $(\Lambda_{2q}^{\perp}(\mathbf{A}) + q \cdot \mathbf{v})$ Verify(σ) := 1 iff $||\sigma|| < \beta$, $\mathbf{A} \cdot \sigma = q \cdot \mathbf{v} \mod 2q$.

- Eliminate homomorphic property by choosing small β: σ₁ + σ₂ now too long to verify for v₁ + v₂.
- Requires tight bound on length of Gaussian samples.

A *k*-time signature scheme without random oracles:

• Sign/Verify algorithms same as in homomorphic scheme:

Sign(\mathbf{v}) := Gaussian sample from $(\Lambda_{2q}^{\perp}(\mathbf{A}) + q \cdot \mathbf{v})$ Verify(σ) := 1 iff $||\sigma|| < \beta$, $\mathbf{A} \cdot \sigma = q \cdot \mathbf{v} \mod 2q$.

- Eliminate homomorphic property by choosing small β: σ₁ + σ₂ now too long to verify for **v**₁ + **v**₂.
- Requires tight bound on length of Gaussian samples.

Theorem

Let $\mathbf{e} \in \mathbb{Z}^n$ be sampled from a discrete Gaussian with parameter σ . Then for any $\epsilon > 0$ we have w.h.p.

$$(1-\epsilon)\cdot\sigma\sqrt{n/2\pi}\leq \|oldsymbol{e}\|\leq (1+\epsilon)\cdot\sigma\sqrt{n/2\pi}.$$

Best previous result was $\|\mathbf{e}\| \leq \sigma \sqrt{n}$.

- Find a better k-SIS \rightarrow SIS reduction.
 - Current reduction is exponential in k.
 - System can only sign k = O(1) vectors while maintaining security based on worst-case problems.

- Find a better k-SIS \rightarrow SIS reduction.
 - Current reduction is exponential in k.
 - System can only sign k = O(1) vectors while maintaining security based on worst-case problems.
- let Homomorphic signatures over \mathbb{F}_2 with worst-case security for k = poly(n).
 - Achieved in BF eprint 2011/018:
 - "Homomorphic Signatures for Polynomial Functions."

- Find a better k-SIS \rightarrow SIS reduction.
 - Current reduction is exponential in *k*.
 - System can only sign k = O(1) vectors while maintaining security based on worst-case problems.
- let Homomorphic signatures over \mathbb{F}_2 with worst-case security for k = poly(n).
 - Achieved in BF eprint 2011/018: "Homomorphic Signatures for Polynomial Functions."
- Remove random oracle from security proof.
 - Adapt techniques from the next talk to lattice setting?

- Find a better k-SIS \rightarrow SIS reduction.
 - Current reduction is exponential in *k*.
 - System can only sign k = O(1) vectors while maintaining security based on worst-case problems.
- let Homomorphic signatures over \mathbb{F}_2 with worst-case security for k = poly(n).
 - Achieved in BF eprint 2011/018: "Homomorphic Signatures for Polynomial Functions."
- Remove random oracle from security proof.
 - Adapt techniques from the next talk to lattice setting?
- Find other applications of the *k*-SIS tool.

- Find a better k-SIS \rightarrow SIS reduction.
 - Current reduction is exponential in k.
 - System can only sign k = O(1) vectors while maintaining security based on worst-case problems.
- let Homomorphic signatures over \mathbb{F}_2 with worst-case security for k = poly(n).
 - Achieved in BF eprint 2011/018: "Homomorphic Signatures for Polynomial Functions."
- Remove random oracle from security proof.
 - Adapt techniques from the next talk to lattice setting?
- Find other applications of the *k*-SIS tool.

Thank you!