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Linearly Homomorphic Signatures

allow users to
of a given ambient space.

é sianed Server

J—> V= CiV;
vectors Vi | o1 2 oV
L., c || e =f{enai)

Vi | Ok

?sk
v; € Fj v € span(vy,..., V)
oj = signature on v; o = signature on v

@ Security: no adversary can authenticate any vector
v* outside span(vy, ..., V).
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Motivation: Network Coding

routing mechanism [ACLY00]:
@ Interpret data as vectors in Fp.

@ Routers send random linear combinations of received vectors,
along with coefficients.

@ Recipient reconstructs file from full-rank system.
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Motivation: Network Coding

routing mechanism [ACLY00]:
@ Interpret data as vectors in Fp.

@ Routers send random linear combinations of received vectors,
along with coefficients.

@ Recipient reconstructs file from full-rank system.

Problem: susceptible to pollution attacks.
@ Recipient can’t distinguish good packets from bad ones.

Solution: linearly homomorphic signatures
[KFM04,ZKMH07,CJL09,BFKW09,GKKR10]

@ Routers derive signature on lin. combinations; recipient verifies.

Current solutions authenticate vectors over [F, for large p.
For efficiency, we want to use vectors defined over F».
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Our Contributions

@ Linearly homomorphic signatures over F».
— Secure under lattice assumptions, private unconditionally.

— Primitive that can be constructed via lattice techniques,
but not (currently) via dlog or factoring.
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Our Contributions

@ Linearly homomorphic signatures over F».
— Secure under lattice assumptions, private unconditionally.

— Primitive that can be constructed via lattice techniques,
but not (currently) via dlog or factoring.

@ New tools for lattice-based cryptography.

— New k-SIS assumption; reduction to worst-case lattice
assumptions (used for security result).

— Result on distributions of sums of discrete Gaussian
samples (used for privacy result).

— Tight length bounds for discrete Gaussian samples.

@ k-time signature scheme without random oracles.
— Application of new k-SIS assumption.
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Building Block: GPV Trapdoor Function

@ A C Z™ alattice (full-rank subgroup),
defined by matrix A € Zg*™ (n < m):

A=N:(A):={veZ":A-v=0mod g} Ty

*
O

Dan Boneh and David Mandell Freeman Linearly Homomorphic Signatures over Fo 412



Building Block: GPV Trapdoor Function

@ A C Z™ alattice (full-rank subgroup),
defined by matrix A € Zg*™ (n < m):

A=NAL(A)={vezZm™: A-v=0mod q} T, I
@ D := {short vectors in Z™}, ///‘ \\\ *
o | \\
L] \0
} ||
[o) 1 }
L] ./
/
L] / L]

Dan Boneh and David Mandell Freeman Linearly Homomorphic Signatures over Fo 412



Building Block: GPV Trapdoor Function

@ A C Z™ alattice (full-rank subgroup),
defined by matrix A € Zg*™ (n < m):

A=NAL(A)={vezZm™: A-v=0mod q} . 7
¢ /
@ D := {short vectors in Z™}, . L)
R:=Z"mod A = Zj. */
"t/ }
(@]

Dan Boneh and David Mandell Freeman Linearly Homomorphic Signatures over Fo 412



Building Block: GPV Trapdoor Function

@ A C Z™ alattice (full-rank subgroup),
defined by matrix A € Zg*™ (n < m):
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Building Block: GPV Trapdoor Function

@ A C Z™ alattice (full-rank subgroup),
defined by matrix A € Zg*™ (n < m):

A=NAL(A)={vezZm™: A-v=0mod q} . 7
¢ /
@ D := {short vectors in Z™}, . L)
R:=Z"mod A =Zg. 1 W
@ GPV: define a . // .
¢:D—R by o i
¢(v):=vmodA = A-vmodq ° t

@ For any w € R, can sample short
vectors in ¢~ (w) = A +w given a
“short” basis of A.

@ Sampling short vectors in A +w
without short basis is hard.
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Linearly Homomorphic Signatures: Key Ideas

GPV sign/verify algorithms: ~ H: {0,1}* — Zg

pk = A € Zg*™ sk = short basis of A (A)
Sign(v) := shortvectorin (A (A)+ H(v))
Verify(c) = 1 iff oisshort, A-omodq= H(v)
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Linearly Homomorphic Signatures: Key Ideas

New sign/verify algorithms: v € '], g odd
pk = A € Z5;™ sk = short basis of A3 (A)

Sign(v) u short vectorin (A, (A) +q- V)
. . . v mod 2
Verify(c) = 1 iff oisshort, A-o = { 0 mod g

Idea: instead of hashing, use lattice /\ziq(A) defined mod 2q:
@ mod 2 part encodes a vector v € F7.
@ mod g part encodes solution to a hard problem.

Homomorphic property: “mod 2q” is a linear map, so adding
signatures corresponds to adding messages.

@ Suppose o1, 02 are signatures on vy, Vs
= g; short, A- o, mod 29 = q - v;.

@ Define signature on vy + vy tobe o :=0¢ + 0».
= o is short, A-oc mod 2g = q - (V1 + V2).
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Security Analysis

Goal: Reduce system’s security to the following problem.

SISy,m 3 Problem

Given random A € Zg*",
find an v* € AZ(A) with |[v*|| < 3.
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Security Analysis

Goal: Reduce system’s security to the following problem.

SISy,m 3 Problem

Given random A € Zg*",
find an v* € AZ(A) with |[v*|| < 3.

Theorem [MR04,GPV08]: An algorithm that solves SIS can be
used to solve worst-case lattice problems (e.g., GapSVP,
SIVP).

@ Problem: signatures are already short vectors in Aj(A), SO
can’t simulate in a reduction.

@ Solution: Make a new assumption!
(and then reduce it to a standard assumption).
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Security Analysis

Goal: Reduce system’s security to the following problem.

k-SISg,m s Problem

Given random A € Zg*™ and k short vectors 1, ..., ex € Az (A)
find an v* e /\é(A) with |v*|| < g and e* € Q-span(eq,...,ek).

Theorem: An adversary that forges a signature (in the random
oracle model) can be used to solve the k-SISg m 3 problem.

Theorem: An algorithm that solves the k-SISq m 3 problem can
be used to solve SISy m_k .
Sadly, the k-SIS-to-SIS reduction is exponential in k:
B~ kl-nk2.3.
But this is OK if k = O(1).

Dan Boneh and David Mandell Freeman Linearly Homomorphic Signatures over F» 6/12



Idea of the k-SIS-to-SIS Reduction

Given SIS challenge A € Zg"*"™, do:

@ Choose ey, ..., e, from Gaussians over Z™k.
@ Define B by appending k random columns to A such that
| |
A by - by
, , -lej| =0modqg foralli
B
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Idea of the k-SIS-to-SIS Reduction

Given SIS challenge A € Zg"*"™, do:

@ Choose ey, ..., e, from Gaussians over Z™k.
@ Define B by appending k random columns to A such that
| |
A by - by
, , -lej| =0modqg foralli
B

(B,eq,...,ex) produced in this way is statistically
indistinguishable from a k-SIS challenge in dimension m + K.

Real k-SIS challenge: fix B, then choose e; € A5 (B).
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k-SIS-t0-SIS Reduction, Continued

Given simulated k-SIS challenge (B, ey, ..., e)
| |
A b; --- by
| | ey - ex =0mod q
B
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Given simulated k-SIS challenge (B, ey, ..., e)
| |
A b; --- by
| | -ley - e e | =0modq
B

k-SIS adversary produces e* /\qL(B) notin Q-span(e; ..., e).
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| | |
A by --- by v*
| , = 0 mod q
0
B 0
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@ Use Gaussian elimination over Z to find short nonzero
v* € Z-span(ey, ..., ek, e*) with last k entries 0.
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k-SIS-t0-SIS Reduction, Continued

Given simulated k-SIS challenge (B, ey, ..., e)
| | |
A by --- by v*
| , = 0 mod q
0
B 0

k-SIS adversary produces e* € /\é(B) notin Q-span(e; ..., e).

@ Use Gaussian elimination over Z to find short nonzero
v* € Z-span(ey, ..., ek, e*) with last k entries 0.

@ First m entries of v* are in /\g(A) — solves SIS problem!

Gaussian elimination blows up length by a factor ~ k! - n*/2. J
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Privacy property: derived signature on v =) ¢;v; reveals
nothing about vy, ..., v, beyond value of v.
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Privacy property: derived signature on v =) ¢;v; reveals
nothing about vy, ..., v, beyond value of v.

Specifically: given two vector spaces
V = span(vy,..., V), W = span(wy, ..., W)
and a set of coefficients {¢;} with

Z CiVj = Z Ciwj,

even unbounded adversary cannot distinguish derived
signature on }_ c;v; from derived signature on > c;w;.
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New Tool Used to Prove Privacy

Lete; € Z™ be sampled from a discrete Gaussian over A\ + t;
with parameter . Let ¢; € {0,1}. Then for sufficiently large o,
the distribution of > c;e; is a discrete Gaussian*over \ + > cit,.

“up to negligible statistical distance
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New Tool Used to Prove Privacy

Lete; € Z™ be sampled from a discrete Gaussian over A\ + t;
with parameter . Let ¢; € {0,1}. Then for sufficiently large o,
the distribution of > c;e; is a discrete Gaussian*over \ + > cit,.

Corollary: Linearly homomorphic signatures over F» are private.J

Proof idea:

@ Sigs on v; sampled from discrete Gaussian distribution,
derived sigs are linear combinations.

@ By theorem, distribution of derived signature on v = ¢;v;
depends only on {¢;} and v, not on the v;.

e If Y civi = > cjwj, derived sig distributions are identical*.

Theorem generalizes to tuples of discrete Gaussians.

“up to negligible statistical distance
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Other Contributions

A k-time signature scheme without random oracles:
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@ Sign/Verify algorithms same as in homomorphic scheme:
Sign(v) := Gaussian sample from (Aqu(A) +q-V)
Verify(c) = 1 iff |o||<pB, A-oc=qg-vmod2q.
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Other Contributions

A k-time signature scheme without random oracles:
@ Sign/Verify algorithms same as in homomorphic scheme:
Sign(v) := Gaussian sample from (Aqu(A) +q-V)
Verify(c) = 1 iff |o||<pB, A-oc=qg-vmod2q.

@ Eliminate homomorphic property by choosing small 3:
o1 + o2 now too long to verify for vy + vs.

@ Requires tight bound on length of Gaussian samples.

Lete € Z" be sampled from a discrete Gaussian with
parameter o. Then for any ¢ > 0 we have w.h.p.

(1-¢)-oy/n/2n < |le| < (1+¢)-ov/n/2m.

Best previous result was |je|| < ov/n.
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Open Problems

@ Find a better k-SIS — SIS reduction.
e Current reduction is exponential in k.
e System can only sign k = O(1) vectors while maintaining
security based on worst-case problems.
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Open Problems

@ Find a better k-SIS — SIS reduction.

e Current reduction is exponential in k.
e System can only sign k = O(1) vectors while maintaining
security based on worst-case problems.

© Homomorphic signatures over F» with worst-case security
for k = poly(n).
e Achieved in BF eprint 2011/018:
“Homomorphic Signatures for Polynomial Functions.”

© Remove random oracle from security proof.
e Adapt techniques from the next talk to lattice setting?

© Find other applications of the k-SIS tool.

Thank you!
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