Methods for Constructing Pairing-Friendly Elliptic Curves

David Freeman

University of California, Berkeley, USA

10th Workshop on Elliptic Curve Cryptography
Fields Institute, Toronto, Canada
19 September 2006
Outline

1. All about pairings
 - What is a pairing?
 - Pairings in cryptography
 - Pairings on elliptic curves

2. How to construct pairing-friendly ordinary elliptic curves
 - The MNT strategy
 - The Cocks-Pinch strategy
 - The Dupont-Enge-Morain strategy

3. The state of the art
All about pairings

- What is a pairing?
- Pairings in cryptography
- Pairings on elliptic curves

How to construct pairing-friendly ordinary elliptic curves

- The MNT strategy
- The Cocks-Pinch strategy
- The Dupont-Enge-Morain strategy

The state of the art
What is a pairing?

- Let G_1, G_2, G_T be finite cyclic groups used in cryptography.
- A *cryptographic pairing* is a bilinear, nondegenerate map

$$e : G_1 \times G_2 \rightarrow G_T.$$

- To be useful in applications, we need:
 1. the discrete logarithm problem (DLP) in $G_1, G_2,$ and G_T to be computationally infeasible, and
 2. the pairing to be easy to compute.

- Most common situation:
 - G_1, G_2 are prime-order subgroups of an elliptic curve E / \mathbb{F}_q;
 - G_T is a prime-order subgroup of \mathbb{F}_q^\times (for some k).
 - e is (a variant of) the *Weil pairing* or *Tate pairing* on E.

Uses of pairings in cryptography

- Attack on ECDLP for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map DLP on elliptic curve to (perhaps easier) DLP in finite field.
- One-round 3-way key exchange (Joux).
- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications...
 - Group signatures, batch signatures, aggregate signatures, threshold cryptography, authenticated encryption, broadcast encryption, etc.
Pairings on elliptic curves

- Elliptic curve pairings used in cryptography are of the form

$$e : E[r] \times E[r] \rightarrow \mathbb{F}_p^\times,$$

where E is an elliptic curve defined over a finite field \mathbb{F}_p.

- k is the embedding degree of E (with respect to r).
 - k is the smallest integer such that $r \mid p^k - 1$.
 - k is the order of p in $(\mathbb{Z}/r\mathbb{Z})^\times$.
 - Want k large enough so that DLP in \mathbb{F}_p^\times is computationally infeasible, but small enough so that pairing is easy to compute.

- r is a large prime dividing $\#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r$.
 - If keys, signatures, ciphertexts, etc. are elements of $E[r]$, we want ρ small to save bandwidth.
 - If curve has prime order, $\rho \approx 1$.

David Freeman
Methods for Constructing Pairing-Friendly Elliptic Curves
Bal., Kob.: If E/\mathbb{F}_p is a “random” elliptic curve with an order-r subgroup, then $k \sim r$.

- Pairing computation on random curves is totally infeasible:
 - If $r \sim p \sim 2^{160}$, pairing is computed in field of size $2^{2^{160}}$.

A **pairing-friendly curve** is an elliptic curve with a large prime-order subgroup ($\rho \leq 2$) and small embedding degree ($k < 40$).

Problem: construct pairing-friendly elliptic curves for specified values of k and number of bits in r.

- MOV: Supersingular elliptic curves always have $k \leq 6$ (and $k = 2$ if defined over a prime field).
- Pairing-friendly curves must be ordinary for $k > 6$ (and $k \neq 2$ if defined over a prime field).
Outline

1. All about pairings
 - What is a pairing?
 - Pairings in cryptography
 - Pairings on elliptic curves

2. How to construct pairing-friendly ordinary elliptic curves
 - The MNT strategy
 - The Cocks-Pinch strategy
 - The Dupont-Enge-Morain strategy

3. The state of the art
The CM Method of Curve Construction

- Main tool: Complex Multiplication method of curve construction (Atkin, Morain).
- For given square-free $D > 0$, CM method constructs elliptic curve with CM by $\mathbb{Q}(\sqrt{-D})$.
 - Used to construct curves with specified number of points.
- Running time depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the Hilbert class polynomial, a polynomial of degree h_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$.

David Freeman
Methods for Constructing Pairing-Friendly Elliptic Curves
Recall: The trace of E/F_q satisfies $\#E(F_q) = q + 1 - t$.

To apply the CM method: Fix D, k. Look for t, r, q (representing trace, order of subgroup, and size of field) satisfying

1. q, r prime;
2. r divides $q + 1 - t$ (formula for number of points);
3. r divides $q^k - 1$ (embedding degree k);
4. $Dy^2 = 4q - t^2$ for some integer y.

For such t, r, q, if h_D is not too large ($\sim 10^5$) we can construct an elliptic curve E over F_q with an order-r subgroup and embedding degree k.

Observations about the CM Method

- Barreto, Lynn, Scott: The embedding degree condition $r \mid q^k - 1$ can be replaced with $r \mid \Phi_k(t - 1)$, where Φ_k is the k-th cyclotomic polynomial. Why?
 - k smallest such that $r \mid q^k - 1$ implies $r \mid \Phi_k(q)$.
 - r divides $q + 1 - t$ implies $q \equiv t - 1 \pmod{r}$.

- To construct families of curves: Parametrize t, r, q as polynomials: $t(x), r(x), q(x)$. Construct curves by finding integer solutions (x, y) to the “CM equation”

$$Dy^2 = 4q(x) - t(x)^2 = 4h(x)r(x) - (t(x) - 2)^2.$$

- $h(x)$ is a “cofactor” satisfying $\#E(\mathbb{F}_q) = h(x)r(x)$.
3 different strategies

For fixed D, k, we look for polynomials $t(x), r(x), h(x)$ satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

for some (x, y).

1. **Miyaji-Nakabayashi-Takano**: Choose $t(x), h(x)$, compute $r(x)$ satisfying divisibility conditions, solve CM equation in 2 variables x, y.

2. **Cocks-Pinch**: Choose $r(x)$, compute $t(x), h(x)$ satisfying divisibility conditions, compute $y(x)$ satisfying CM equation.

3. **Dupont-Enge-Morain**: Choose D, y, use resultants to find t and r simultaneously, compute h such that CM equation is satisfied.
Outline

1. All about pairings
 - What is a pairing?
 - Pairings in cryptography
 - Pairings on elliptic curves

2. How to construct pairing-friendly ordinary elliptic curves
 - The MNT strategy
 - The Cocks-Pinch strategy
 - The Dupont-Enge-Morain strategy

3. The state of the art
Overview of the MNT strategy

- Recall: for fixed D, k, we are looking for polynomials $t(x), r(x), h(x)$ satisfying certain divisibility conditions and the CM equation

\[Dy^2 = 4h(x)r(x) - (t(x) - 2)^2 \]

for some (x, y).

- MNT strategy: Choose $t(x), h(x)$, compute $r(x)$ satisfying divisibility conditions, solve CM equation in 2 variables x, y.

- Good for constructing curves of prime order.
- Only 5 possible embedding degrees: $k = 3, 4, 6, 10, 12$.
- Curves are usually sparse.
The MNT strategy

- **Strategy 1:** First used by Miyaji-Nakabayashi-Takano; also used by Scott-Barreto, Barreto-Naehrig, F.
 1. Fix D, k, and choose polynomials $t(x)$, $h(x)$.
 - $h(x) = 1$ if searching for curves of prime order.
 2. Choose $r(x)$ an irreducible factor of $\Phi_k(t(x) - 1)$.
 3. Compute $q(x) = h(x)r(x) + t(x) - 1$.
 4. Find integer solutions (x, y) to CM equation $Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$.
 5. If $q(x)$, $r(x)$ are both prime, use CM method to construct elliptic curve over $\mathbb{F}_{q(x)}$ with $h(x)r(x)$ points.

- For the rest of this section, we will assume $h(x)$ is a constant.
Obstacles to the MNT strategy

- Step 4 is the difficult part: finding integer solutions \((x, y)\) to
 \[Dy^2 = 4hr(x) - (t(x) - 2)^2. \]
- If \(f(x) = 4hr(x) - (t(x) - 2)^2\) has degree \(\geq 3\) and no multiple roots, then \(Dy^2 = f(x)\) has only a finite number of integer solutions! (Siegel’s Theorem)
- Upshot: need to choose \(t(x), r(x)\) so that \(f(x)\) is quadratic or has multiple roots.
- This is hard to do for \(k > 6\), since \(\text{deg } r(x)\) must be a multiple of \(\text{deg } \Phi_k > 2\).
The MNT solution for $k = 3, 4, 6$

- Goal: Choose $t(x)$, find factor $r(x)$ of $\Phi_k(t(x) - 1)$, such that $f(x) = 4hr(x) - (t(x) - 2)^2$ is quadratic.

- Solution:
 1. Choose $t(x)$ linear; then $r(x)$ is quadratic, and so is $f(x)$.
 2. Use standard algorithms to find solutions (x, y) to $Dy^2 = f(x)$.
 3. If no solutions of appropriate size, or $q(x)$ or $r(x)$ not prime, choose different D and try again.

- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).

- Scott-Barreto extend MNT idea by allowing “cofactor” $h(x) \neq 1$, so that $\#E(\mathbb{F}_q) = h(x)r(x)$.
 - Find many more suitable curves than original MNT construction.
Goal: Choose $t(x)$, find factor $r(x)$ of $\Phi_{12}(t(x) - 1)$, such that $f(x) = 4r(x) - (t(x) - 2)^2$ has a multiple root.
 - All irreducible factors of $\Phi_{12}(t(x) - 1)$ must have $4 \mid$ degree.
 - No obvious solutions if $t(x)$ linear.

Galbraith-McKee-Valença: Characterized quadratic $t(x)$ such that $\Phi_{12}(t(x) - 1)$ factors into two quartics.
One of these $t(x)$ gives the desired multiple root!
 - CM equation becomes $Dy^2 = 3(6x^2 + 4x + 1)^2$.

BN curves are not sparse; i.e. easy to specify bit size of q.
Our solution for $k = 10$

- Goal: Choose $t(x)$, find factor $r(x)$ of $\Phi_{10}(t(x) - 1)$, such that $f(x) = 4r(x) - (t(x) - 2)^2$ is quadratic.
 - All irreducible factors of $\Phi_{10}(t(x) - 1)$ must have $4 \mid$ degree.
- Key observation: Need to choose $r(x)$, $t(x)$ such that the leading terms of $4r$ and t^2 cancel out.
 - Smallest possible case: $\text{deg } r = 4$, $\text{deg } t = 2$.
- Galbraith-McKee-Valença: Characterized quadratic $t(x)$ such that $\Phi_{10}(t(x) - 1)$ factors into two quartics.
 - One of these $t(x)$ gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, $k = 10$ curves are expected to be sparse.
Outline

1. All about pairings
 - What is a pairing?
 - Pairings in cryptography
 - Pairings on elliptic curves

2. How to construct pairing-friendly ordinary elliptic curves
 - The MNT strategy
 - The Cocks-Pinch strategy
 - The Dupont-Enge-Morain strategy

3. The state of the art
Overview of the Cocks-Pinch strategy

- Recall: for fixed D, k, we are looking for polynomials $t(x)$, $r(x)$, $h(x)$ satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

for some (x, y).

- CP strategy: Choose $r(x)$, compute $t(x)$, $h(x)$ satisfying divisibility conditions, compute $y(x)$ satisfying CM equation for any x.
 - Good for constructing curves with arbitrary k.
 - Can’t construct curves of prime order; usually $\rho \approx 2$.
 - Many curves possible, easy to specify bit sizes.
Strategy 2, as first suggested by Cocks-Pinch:

1. Fix D, k, and choose a prime r.
 - Require that k divides $r - 1$ and $-D$ is a square mod r.
2. Compute $t = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^\times$.
3. Compute $y = (t - 2)/\sqrt{-D}$ (mod r).
4. Compute $q = (t^2 + Dy^2)/4$ (in \mathbb{Q}).
5. If q is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_q with an order-r subgroup.

y is constructed so that CM equation $Dy^2 = 4hr - (t - 2)^2$ is automatically satisfied.

Since t, y are essentially random integers in $[0, r)$, $q \approx r^2$, so $\rho \approx 2$.
Extending the Cocks-Pinch strategy

- Idea of Barreto-Lynn-Scott, Brezing-Weng: do same construction with $r(x)$, $q(x)$, $t(x)$ polynomials.

1. Fix D, k, and choose an irreducible polynomial $r(x)$.
 - Let K be the number field $\mathbb{Q}[x]/(r(x))$.
 - Require that $\zeta_k, \sqrt{-D} \in K$.
2. Choose $t(x)$ to be a polynomial representing $1 + \zeta_k \in K$.
3. Set $y(x)$ to be a polynomial representing $(t(x) - 2)/\sqrt{-D} \in K$.
4. Compute $q(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
5. If $q(x)$ is an integer and $q(x)$, $r(x)$ are prime, use CM method to construct elliptic curve over $\mathbb{F}_{q(x)}$ with an order-$r(x)$ subgroup.
Advantages of the extended Cocks-Pinch method

- For large x, $\rho \approx \deg q / \deg r$.
- Working modulo $r(x)$, we can choose $t(x), y(x)$ such that $\deg t, \deg y < \deg r$, so $\deg q \leq 2 \deg r - 2$.
 - Can always get $\rho < 2$, improving on basic method.
 - With clever choices of $r(x), t(x)$, ρ can be decreased even further.
 - Best current results (F.): $\rho = \frac{k+1}{k-1}$ for k prime $\equiv 3$ (mod 4).
- No restrictions on k, and many values of x, D produce curves.
 - Compare with MNT strategy: $k \leq 12$, and curves are sparse.
1. All about pairings
 - What is a pairing?
 - Pairings in cryptography
 - Pairings on elliptic curves

2. How to construct pairing-friendly ordinary elliptic curves
 - The MNT strategy
 - The Cocks-Pinch strategy
 - The Dupont-Enge-Morain strategy

3. The state of the art
Overview of the Dupont-Enge-Morain strategy

- Recall: for fixed D, k, we are looking for polynomials $t(x), r(x), h(x)$ satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

for some (x, y).

- DEM strategy: Choose D, y, use resultants to find t and r simultaneously, compute h such that CM equation is satisfied.
 - Good for constructing curves with arbitrary k.
 - Can’t construct curves of prime order; usually $\rho \approx 2$.
 - Has not been generalized to produce families of curves.
Strategy 3, as proposed by Dupont-Enge-Morain:

1. Choose D, y, compute resultant

\[
\text{Res}_t(\Phi_k(t - 1), Dy^2 - (t - 2)^2).
\]

2. If resultant has a large prime factor r, then can compute t such that $\Phi_k(t - 1) \equiv Dy^2 - (t - 2) \equiv 0 \pmod{r}$.

3. Compute $q = (t^2 + Dy^2)/4$.

4. If q is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_q with an order-r subgroup.

Since t is essentially random in $[0, r)$, $q \approx r^2$, so $\rho \approx 2$.

Not yet generalized to find polynomials $t(x), r(x), q(x)$ producing families of curves.
Outline

1. All about pairings
 - What is a pairing?
 - Pairings in cryptography
 - Pairings on elliptic curves

2. How to construct pairing-friendly ordinary elliptic curves
 - The MNT strategy
 - The Cocks-Pinch strategy
 - The Dupont-Enge-Morain strategy

3. The state of the art
3 different strategies

1. **MNT strategy:**
 - Good for constructing curves of prime order.
 - Only 5 possible embedding degrees ($k = 3, 4, 6, 10, 12$).
 - Curves are usually sparse.

2. **CP strategy:**
 - Good for constructing curves with arbitrary k.
 - Can’t construct curves of prime order ($1 < \rho \leq 2$).
 - Many curves possible, easy to specify bit sizes.

3. **DEM strategy:**
 - Constructs same types of curves as CP strategy.
 - No generalization to produce curves with $\rho < 2$.
The state of the art for various k

Smallest known ρ value for even embedding degrees k (limit as $q, r \to \infty$):

<table>
<thead>
<tr>
<th>k</th>
<th>ρ</th>
<th>Strategy</th>
<th>k</th>
<th>ρ</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>MNT</td>
<td>22</td>
<td>13/10</td>
<td>CP</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>MNT</td>
<td>24</td>
<td>5/4</td>
<td>CP</td>
</tr>
<tr>
<td>8</td>
<td>5/4</td>
<td>CP</td>
<td>26</td>
<td>7/6*</td>
<td>CP</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>MNT</td>
<td>28</td>
<td>4/3*</td>
<td>CP</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>MNT</td>
<td>30</td>
<td>3/2</td>
<td>CP</td>
</tr>
<tr>
<td>14</td>
<td>4/3*</td>
<td>CP</td>
<td>32</td>
<td>17/16*</td>
<td>CP</td>
</tr>
<tr>
<td>16</td>
<td>11/8*</td>
<td>CP</td>
<td>34</td>
<td>9/8*</td>
<td>CP</td>
</tr>
<tr>
<td>18</td>
<td>19/12*</td>
<td>CP</td>
<td>36</td>
<td>17/12</td>
<td>CP</td>
</tr>
<tr>
<td>20</td>
<td>11/8</td>
<td>CP</td>
<td>38</td>
<td>7/6</td>
<td>CP</td>
</tr>
</tbody>
</table>

* Indicates improvement over best previously published results (work in progress, joint with Mike Scott).