Methods for Constructing Pairing-Friendly Elliptic Curves

David Freeman

University of California, Berkeley, USA

10th Workshop on Elliptic Curve Cryptography Fields Institute, Toronto, Canada 19 September 2006

< □ > < 同 > < 回 > < 回

Outline

- What is a pairing?
- Pairings in cryptography
- Pairings on elliptic curves

Provide the second struct the second structure of t

- The MNT strategy
- The Cocks-Pinch strategy
- The Dupont-Enge-Morain strategy

3 The state of the art

All about pairings

How to construct pairing-friendly ordinary elliptic curves The state of the art What is a pairing? Pairings in cryptography Pairings on elliptic curves

Outline

1 All about pairings

- What is a pairing?
- Pairings in cryptography
- Pairings on elliptic curves

2 How to construct pairing-friendly ordinary elliptic curves

- The MNT strategy
- The Cocks-Pinch strategy
- The Dupont-Enge-Morain strategy

3 The state of the art

< A

What is a pairing? Pairings in cryptography Pairings on elliptic curves

What is a pairing?

- Let $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_7$ be finite cyclic groups used in cryptography.
- A cryptographic pairing is a bilinear, nondegenerate map

 $e:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_{\mathcal{T}}.$

- To be useful in applications, we need:
 - the discrete logarithm problem (DLP) in G₁, G₂, and G₇ to be computationally infeasible, and
 - the pairing to be easy to compute.
- Most common situation:
 - G₁, G₂ are prime-order subgroups of an elliptic curve E/𝔽q;
 - \mathbb{G}_T is a prime-order subgroup of $\mathbb{F}_{a^k}^{\times}$ (for some *k*).
 - e is (a variant of) the Weil pairing or Tate pairing on E.

・ロト ・ ア・ ・ ヨト ・ ヨト

What is a pairing? Pairings in cryptography Pairings on elliptic curves

Uses of pairings in cryptography

- Attack on ECDLP for supersingular elliptic curves (Menezes-Okamoto-Vanstone).
 - Map DLP on elliptic curve to (perhaps easier) DLP in finite field.
- One-round 3-way key exchange (Joux).
- Identity-based encryption (Sakai-Ohgishi-Kasahara; Boneh-Franklin).
- Short digital signatures (Boneh-Lynn-Shacham).
- Many other applications...
 - Group signatures, batch signatures, aggregate signatures, threshold cryptography, authenticated encryption, broadcast encryption, etc.

What is a pairing? Pairings in cryptography Pairings on elliptic curves

Pairings on elliptic curves

• Elliptic curve pairings used in cryptography are of the form

$$e: E[r] \times E[r] \to \mathbb{F}_{p^k}^{\times},$$

where *E* is an elliptic curve defined over a finite field \mathbb{F}_{ρ} .

- *k* is the *embedding degree* of *E* (with respect to *r*).
 - *k* is the smallest integer such that $r | p^k 1$.
 - *k* is the order of *p* in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- *r* is a large prime dividing $#E(\mathbb{F}_p)$
 - Define $\rho = \log p / \log r$.
 - If keys, signatures, ciphertexts, etc. are elements of *E*[*r*], we want *ρ* small to save bandwidth.
 - If curve has prime order, $\rho \approx 1$.

A B > 4
 B > 4
 B

What is a pairing? Pairings in cryptography Pairings on elliptic curves

Pairing-friendly elliptic curves

- Bal., Kob.: If *E*/𝔽_p is a "random" elliptic curve with an order-*r* subgroup, then *k* ∼ *r*.
 - Pairing computation on random curves is totally infeasible: If $r \sim p \sim 2^{160}$, pairing is computed in field of size $2^{2^{160}}$.
- A pairing-friendly curve is an elliptic curve with a large prime-order subgroup (ρ ≤ 2) and small embedding degree (k < 40).
- Problem: construct pairing-friendly elliptic curves for specified values of *k* and number of bits in *r*.
 - MOV: Supersingular elliptic curves always have k ≤ 6 (and k = 2 if defined over a prime field).
 - Pairing-friendly curves must be ordinary for k > 6 (and k ≠ 2 if defined over a prime field).

All about pairings The MNT strategy How to construct pairing-friendly ordinary elliptic curves The Cocks-Pinch strategy The state of the art The Dupont-Enge-Morain strategy

Outline

All about pairings

- What is a pairing?
- Pairings in cryptography
- Pairings on elliptic curves

Provide the second struct the second structure of t

- The MNT strategy
- The Cocks-Pinch strategy
- The Dupont-Enge-Morain strategy

3 The state of the art

The CM Method of Curve Construction

- Main tool: Complex Multiplication method of curve construction (Atkin, Morain).
- For given square-free D > 0, CM method constructs elliptic curve with CM by Q(√−D).
 - Used to construct curves with specified number of points.
- Running time depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the Hilbert class polynomial, a polynomial of degree h_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$.

ヘロト ヘアト ヘビト ヘビト

he MNT strategy he Cocks-Pinch strategy he Dupont-Enge-Morain strategy

How to generate pairing-friendly curves

- Recall: The *trace* of E/\mathbb{F}_q satisfies $\#E(\mathbb{F}_q) = q + 1 t$.
- To apply the CM method: Fix *D*, *k*. Look for *t*, *r*, *q* (representing trace, order of subgroup, and size of field) satisfying
 - q, r prime;
 - 2 *r* divides q + 1 t (formula for number of points);
 - 3 *r* divides $q^k 1$ (embedding degree *k*);
 - $Dy^2 = 4q t^2$ for some integer y.
- For such *t*, *r*, *q*, if *h_D* is not too large (~ 10⁵) we can construct an elliptic curve *E* over 𝔽_{*q*} with an order-*r* subgroup and embedding degree *k*.

イロン 不同 とくほ とくほ とう

he MNT strategy he Cocks-Pinch strategy he Dupont-Enge-Morain strategy

Observations about the CM Method

- Barreto, Lynn, Scott: The embedding degree condition
 r | q^k 1 can be replaced with r | Φ_k(t 1), where Φ_k is
 the k-th cyclotomic polynomial. Why?
 - *k* smallest such that $r | q^k 1$ implies $r | \Phi_k(q)$.
 - *r* divides q + 1 t implies $q \equiv t 1 \pmod{r}$.
- To construct families of curves: Parametrize t, r, q as polynomials: t(x), r(x), q(x). Construct curves by finding integer solutions (x, y) to the "CM equaton"

$$Dy^2 = 4q(x) - t(x)^2 = 4h(x)r(x) - (t(x) - 2)^2.$$

• h(x) is a "cofactor" satisfying $\#E(\mathbb{F}_q) = h(x)r(x)$.

ヘロト ヘワト ヘビト ヘビト

he MNT strategy he Cocks-Pinch strategy he Dupont-Enge-Morain strategy

3 different strategies

• For fixed *D*, *k*, we look for polynomials *t*(*x*), *r*(*x*), *h*(*x*) satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

for some (x, y).

- Miyaji-Nakabayashi-Takano: Choose t(x), h(x), compute r(x) satisfying divisibility conditions, solve CM equation in 2 variables x, y.
- Cocks-Pinch: Choose r(x), compute t(x), h(x) satisfying divisibility conditions, compute y(x) satisfying CM equation.
- Oupont-Enge-Morain: Choose D, y, use resultants to find t and r simultaneously, compute h such that CM equation is satisfied.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Outline

All about pairings

- What is a pairing?
- Pairings in cryptography
- Pairings on elliptic curves

Provide the second struct and the second structures and the second structures and the second structures and the second structures are second structures.

The MNT strategy

- The Cocks-Pinch strategy
- The Dupont-Enge-Morain strategy

3 The state of the art

< 🗇 🕨

< ∃ >

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Overview of the MNT strategy

• Recall: for fixed *D*, *k*, we are looking for polynomials t(x), r(x), h(x) satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

for some (x, y).

- MNT strategy: Choose t(x), h(x), compute r(x) satisfying divisibility conditions, solve CM equation in 2 variables x, y.
 - Good for constructing curves of prime order.
 - Only 5 possible embedding degrees: k = 3, 4, 6, 10, 12.
 - Curves are usually sparse.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

The MNT strategy

- Strategy 1: First used by Miyaji-Nakabayashi-Takano; also used by Scott-Barreto, Barreto-Naehrig, F.
 - **()** Fix *D*, *k*, and choose polynomials t(x), h(x).
 - h(x) = 1 if searching for curves of prime order.
 - 2 Choose r(x) an irreducible factor of $\Phi_k(t(x) 1)$.
 - 3 Compute q(x) = h(x)r(x) + t(x) 1.
 - Find integer solutions (x, y) to CM equation $Dy^2 = 4h(x)r(x) (t(x) 2)^2$.
 - Solution If q(x), r(x) are both prime, use CM method to construct elliptic curve over $\mathbb{F}_{q(x)}$ with h(x)r(x) points.
- For the rest of this section, we will assume *h*(*x*) is a constant.

イロン 不同 とくほ とくほ とう

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Obstacles to the MNT strategy

• Step 4 is the difficult part: finding integer solutions (x, y) to

$$Dy^2 = 4hr(x) - (t(x) - 2)^2.$$

- If f(x) = 4hr(x) (t(x) 2)² has degree ≥ 3 and no multiple roots, then Dy² = f(x) has only a finite number of integer solutions! (Siegel's Theorem)
- Upshot: need to choose t(x), r(x) so that f(x) is quadratic or has multiple roots.
- This is hard to do for k > 6, since deg r(x) must be a multiple of deg Φ_k > 2.

イロン イボン イヨン イヨン

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

The MNT solution for k = 3, 4, 6

- Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) 1)$, such that $f(x) = 4hr(x) (t(x) 2)^2$ is quadratic.
- Solution:
 - O Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - Use standard algorithms to find solutions (x, y) to $Dy^2 = f(x)$.
 - If no solutions of appropriate size, or q(x) or r(x) not prime, choose different *D* and try again.
- Since construction depends on solving a Pell-like equation, MNT curves of prime order are sparse (Luca-Shparlinski).
- Scott-Barreto extend MNT idea by allowing "cofactor" h(x) ≠ 1, so that #E(𝔽_q) = h(x)r(x).
 - Find many more suitable curves than original MNT construction.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

The Barreto-Naehrig solution for k = 12

- Goal: Choose t(x), find factor r(x) of Φ₁₂(t(x) − 1), such that f(x) = 4r(x) − (t(x) − 2)² has a multiple root.
 - All irred. factors of $\Phi_{12}(t(x) 1)$ must have 4 | degree.
 - No obvious solutions if *t*(*x*) linear.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{12}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired multiple root!
 - CM equation becomes $Dy^2 = 3(6x^2 + 4x + 1)^2$.
- BN curves are not sparse; i.e. easy to specify bit size of q.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Our solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.
 - Like MNT curves, k = 10 curves are expected to be sparse.

ヘロト ヘアト ヘビト ヘビト

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Outline

All about pairings

- What is a pairing?
- Pairings in cryptography
- Pairings on elliptic curves

Provide the second struct the second structure of t

- The MNT strategy
- The Cocks-Pinch strategy
- The Dupont-Enge-Morain strategy

3 The state of the art

< 🗇 🕨

< ∃ >

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Overview of the Cocks-Pinch strategy

 Recall: for fixed D, k, we are looking for polynomials t(x), r(x), h(x) satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

for some (x, y).

- CP strategy: Choose r(x), compute t(x), h(x) satisfying divisibility conditions, compute y(x) satisfying CM equation for any x.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Many curves possible, easy to specify bit sizes.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

The Cocks-Pinch strategy

- Strategy 2, as first suggested by Cocks-Pinch:
 - **()** Fix D, k, and choose a prime r.
 - Require that k divides r 1 and -D is a square mod r.
 - 2 Compute $t = 1 + x^{(r-1)/k}$ for x a generator of $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - 3 Compute $y = (t 2)/\sqrt{-D} \pmod{r}$.

• Compute
$$q = (t^2 + Dy^2)/4$$
 (in \mathbb{Q}).

- Solution If q is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_q with an order-r subgroup.
- y is constructed so that CM equation $Dy^2 = 4hr (t-2)^2$ is automatically satisfied.
- Since *t*, *y* are essentially random integers in [0, *r*), *q* ≈ *r*², so *ρ* ≈ 2.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Extending the Cocks-Pinch strategy

- Idea of Barreto-Lynn-Scott, Brezing-Weng: do same construction with r(x), q(x), t(x) polynomials.
 - Fix D, k, and choose an irreducible polynomial r(x).
 - Let K be the number field $\mathbb{Q}[x]/(r(x))$.
 - Require that $\zeta_k, \sqrt{-D} \in K$.
 - 2 Choose t(x) to be a polynomial representing $1 + \zeta_k \in K$.
 - Set y(x) to be a polynomial representing $(t(x) 2)/\sqrt{-D} \in K$.
 - Compute $q(x) = (t(x)^2 + Dy(x)^2)/4$ (in $\mathbb{Q}[x]$).
 - If q(x) is an integer and q(x), r(x) are prime, use CM method to construct elliptic curve over F_{q(x)} with an order-r(x) subgroup.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Advantages of the extended Cocks-Pinch method

- For large *x*, $\rho \approx \deg q / \deg r$.
- Working modulo r(x), we can choose t(x), y(x) such that deg t, deg y < deg r, so deg q ≤ 2 deg r − 2.
 - Can always get ρ < 2, improving on basic method.
 - With clever choices of r(x), t(x), ρ can be decreased even further.
 - Best current results (F.): $\rho = \frac{k+1}{k-1}$ for k prime \equiv 3 (mod 4).
- No restrictions on *k*, and many values of *x*, *D* produce curves.
 - Compare with MNT strategy: *k* ≤ 12, and curves are sparse.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

Outline

All about pairings

- What is a pairing?
- Pairings in cryptography
- Pairings on elliptic curves

Provide the second struct the second structure of t

- The MNT strategy
- The Cocks-Pinch strategy
- The Dupont-Enge-Morain strategy

3 The state of the art

< 🗇 🕨

-∢ ≣ ▶

All about pairings
The MNT strategy
The volume to construct pairing-friendly ordinary elliptic curves
The state of the art
The Dupont-Enge-Morain strategy
The State of the art

Overview of the Dupont-Enge-Morain strategy

 Recall: for fixed D, k, we are looking for polynomials t(x), r(x), h(x) satisfying certain divisibility conditions and the CM equation

$$Dy^2 = 4h(x)r(x) - (t(x) - 2)^2$$

for some (x, y).

- DEM strategy: Choose *D*, *y*, use resultants to find *t* and *r* simultaneously, compute *h* such that CM equation is satisfied.
 - Good for constructing curves with arbitrary *k*.
 - Can't construct curves of prime order; usually $\rho \approx$ 2.
 - Has not been generalized to produce families of curves.

The MNT strategy The Cocks-Pinch strategy The Dupont-Enge-Morain strategy

The Dupont-Enge-Morain strategy

Strategy 3, as proposed by Dupont-Enge-Morain:

Choose D, y, compute resultant

$$\operatorname{Res}_{t}(\Phi_{k}(t-1), Dy^{2}-(t-2)^{2}).$$

- If resultant has a large prime factor *r*, then can compute *t* such that $\Phi_k(t-1) \equiv Dy^2 (t-2) \equiv 0 \pmod{r}$.
- 3 Compute $q = (t^2 + Dy^2)/4$.
- If *q* is an integer and prime, use CM method to construct elliptic curve over \mathbb{F}_q with an order-*r* subgroup.
- Since *t* is essentially random in [0, r), $q \approx r^2$, so $\rho \approx 2$.
- Not yet generalized to find polynomials t(x), r(x), q(x) producing families of curves.

Outline

All about pairings

- What is a pairing?
- Pairings in cryptography
- Pairings on elliptic curves

2 How to construct pairing-friendly ordinary elliptic curves

- The MNT strategy
- The Cocks-Pinch strategy
- The Dupont-Enge-Morain strategy

3 The state of the art

3 different strategies

MNT strategy:

- Good for constructing curves of prime order.
- Only 5 possible embedding degrees (k = 3, 4, 6, 10, 12).
- Curves are usually sparse.

OP strategy:

- Good for constructing curves with arbitrary k.
- Can't construct curves of prime order (1 < $\rho \leq$ 2).
- Many curves possible, easy to specify bit sizes.
- OEM strategy:
 - Constructs same types of curves as CP strategy.
 - No generalization to produce curves with ρ < 2.

• • • • • • • • • • • • •

The state of the art for various k

Smallest known ρ value for even embedding degrees k (limit as $q, r \to \infty$):

k	ρ	Strategy	k	ρ	Strategy
4	1	MNT	22	13/10	CP
6	1	MNT	24	5/4	CP
8	5/4	CP	26	7/6*	CP
10	1	MNT	28	4/3*	CP
12	1	MNT	30	3/2	CP
14	4/3*	CP	32	17/16*	CP
16	11/8*	CP	34	9/8*	CP
18	19/12*	CP	36	17/12	CP
20	11/8	CP	38	7/6	CP

* Indicates improvement over best previously published results (work in progress, joint with Mike Scott).