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What is pairing-based cryptography? Abetion Varictes
for Pairing-Based
Cryptoggraphy

David Mandell
Freeman

» “Pairing-based cryptography” refers to protocols that use
a nondegenerate, bilinear map

Pairings and
Cryptography

62G1XG2—>GT

between finite, cyclic groups.

» Group operations and pairing need to be easily
computable.

» Need (DLP) in Gl,GQ,GT
to be infeasible.

» DLP: Given x, x?, compute a.




Example: Boneh-Lynn-Shacham signatures

» Setup:
» Bilinear pairing e : G; X G, — Gr.

Public P, Q € Gy.

Secret a € Z such that Q = P2.

Hash function H : {0,1}* — Go.

» Signature on message m is o = H(m)?.

» To verify signature: see if e(Q, H(m)) = e(P, o).
> If signature is correct, then both equal e(P, H(m))?.
» If DLP is infeasible, then signature cannot be forged.
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Useful pairings: Abelian varieties over finite fields

> For certain abelian varieties A/Fg, subgroups of A(Fg)
of prime order r have the desired properties.

» Pairings are
e Alr] X Alr] — pr C F:k
or
Tr 2 A(F g )[rI X A(F i)/ rA(F ) — F o /(F )" 2= e (Fge)

> k is the of A with respect to r.
» Smallest integer such that pu, C IE‘:,(
» If g, r are large, DLP is infeasible in A[r] and IF‘;k.

> If A= Pic%(C), pairings can be computed efficiently via
Miller's algorithm.
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Need to "balance” security on variety and in finite [y

for Pairing-Based

-FI e | d Cryptography
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» Best DLP algorithm in A[r] is exponential-time.
» Best DLP algorithm in IE‘:k is subexponential-time. T
» For comparable security before and after pairing, need
qk >r.
» How much larger depends on desired security level:

Security levels for g-dimensional abelian varieties

r g* | Embedding degree k | Secure until
(bits) | (bits) (if r = g%) year
160 | 1024 6g 2010
224 | 2048 10g 2030
256 | 3072 12g 2050




The Problem

» Find primes g and abelian varieties A/F, having

1. a subgroup of large prime order r, and
2. prescribed (small) embedding degree k
with respect to r.

> In practice, want r > 2% and k < 50.
» We call such varieties

» Want to be able to control the number of bits of r to
construct varieties at varying security levels.
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“Random’ abelian varieties not useful for
pairing-based cryptography

» Embedding degree k is the order of q in (Z/rZ)*.

» Embedding degree of random A/F, with order-r
subgroup will be =~ r.
» Precise formulation for elliptic curves by Bal.-Koblitz.

» Typical r > 2160 so pairing on random A can't even be
computed.

» Conclusion: pairing-friendly abelian varieties are
“special.”
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Constructing

Supersingular abelian varieties are always Abelian Varieties

for Pairing-Based

pairing-friendly Cryptography
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> An elliptic curve E/F is if #E[p] =1.
» A g-dimensional abelian variety A/F is if

@ty o

A is isogenous (over [Fy) to a product of g supersingular | asiu
elliptic curves.
» Supersingular AV are easy to construct.

» Menezes-Okamoto-Vanstone: supersingular elliptic
curves have embedding degree k € {1,2,3,4,6}.

» k = 4,6 only possible in char 2,3, respectively.
» Galbraith: If A/F, is supersingular, then k is bounded
by constant ko(g).

» Rubin-Silverberg: If g < 6 then ko(g) < 7.5g.




Ordinary abelian varieties

» If we want k > 7.5g we must use non-supersingular
(usually, ) abelian varieties.

> An abelian variety A/F is if #A[p] = p5.

» Assume from now on that A is ordinary and simple.

» lgnore intermediate cases #A[p] = p°, 0 < e < g.
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Complex multiplication: the basics

» For ordinary, simple, g-dimensional A/IFq,

End(A)@Qis a K of degree 2g.
» K = imaginary quadratic extension of totally real field.
> (X, Xn) — (X7, x0)

satisfies f(m) = 0 for f € Z[x] monic of degree 2g.
» Honda-Tate theory: K = End(A) ® Q = Q[x]/(f(x)).
» Furthermore, 7 is a in Ok.
» All embeddings K — C have 77 = q.
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Constructing

Properties of Frobenius make A/F, Abehian Varictes

for Pairing-Based
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» Number of points given by
#AFq) = (1) = Nk jg(m —1).
» Embedding degree k is order of g = 77 in (Z/rZ)*.
» A has embedding degree k with respect to prime r ¢ kq R
iff elimtien
1. A(Fg) has a subgroup of order r
& Ny jg(m—1) =0 (mod r)
2. g has order k in (Z/rZ)*
& Op(q) = Pu(n7) =0 (mod r)
(P = kth cyclotomic polynomial).
» Construction procedure:
1. Fix K, construct m € Ok with properties (1) and (2).
2. Use to produce an
explicit abelian variety over Fq with Frobenius
endomorphism 7 (g = 7).




The Complex Multiplication Method
(Atkin, Morain)

» Given a Frobenius element 7 in a CM field K:

1. List the abelian varieties in characteristic zero with CM
by OK.

2. Reduce modulo primes over g = 7.

3. Some twist of one of the reduced varieties has
Frobenius endomorphism 7. Use (probabilistic) point
counting to find it.

» Method is exponential in the discriminant of K and is
only well-developed for dimension 1 and 2.

» In practice: choose K for which CM method is known to
be feasible, and construct m € K.
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Some Properties of Ordinary Elliptic Curves Abetion Varictes
for Pairing-Based
Cryptography

v

7 satisfies x2 — tx +qg=0, where t =7 + 7. David Mandell

Freeman
Can write m = 3(—t £ \/t2 — 4q).

Hasse: t> — 4q = —Dy? for D > 0 square-free.
This is the

CM field K is Q(7) = Q(\/t2 — 4q) = Q(v/-D).

v

v

>
» Choosing a quadratic CM field K is equivalent to MINT Type
choosing a square-free D > 0. Methods
» #E(Fq) = g+ 1 — t. Consequences:

1. Embedding degree condition r | ®4(g) can be replaced
with r | ®,(t —1).
> rdivides g+ 1—t impliesg=t—1 (mod r).
2. Can rewrite CM equation as Dy? = 4hr — (t — 2)?
> his a “"cofactor” satisfying #E(Fq) = hr.
> Set h =1 if we want #E(F,) to be prime.
(Assume h =1 from now on.)




Overview of the Miyaji-Nakabayashi-Takano
Method

» For fixed D, k, we are looking for t, r, q, y satisfying
certain divisibility conditions and the CM equation

Dy? = 4r — (t — 2)°.

> |dea: Parametrize t,r, q as polynomials t(x), r(x), g(x).

» MNT method: Choose t(x), compute r(x) satisfying
divisibility conditions, solve CM equation in 2 variables

X, Y.
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The MNT Method

For fixed D, k, find t,r, g,y with

o s~ b=

r = g+1-—t
ro | ®u(t—-1)
Dy?> = 4r—(t—2)?

Fix k and (small) D, and choose polynomial t(x).
Choose r(x) an irreducible factor of ®,(t(x) —1).
Compute g(x) = r(x) + t(x) — 1.

Find integer solutions (xp, o) to CM equation (3).

If g(x0), r(xo) are both prime for some xg, use CM
method to construct elliptic curve with Frobenius

7w = 3(—t(x0) + yov/—D).
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Obstacles to the MNT Method

» Step 4 is the difficult part: finding integer solutions
(%0, Y0) to

Dy? = 4r(x) — (t(x) — 2)2.

> If f(x) = 4r(x) — (t(x) — 2)? has degree > 3 and no
multiple roots, then Dy? = f(x) has only a finite
number of integer solutions! (Siegel's theorem)

» Consequence: need to choose t(x), r(x) so that f(x) is
quadratic or has multiple roots.

» This is hard to do for k > 6, since deg r(x) must be a
multiple of p(k) > 2.
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The MNT Solution for k = 3,4,6

» Goal: Choose t(x), find factor r(x) of ®,(t(x) — 1),
such that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
» Solution when (k) = 2:

1. Choose t(x) linear = r(x) is quadratic = so is f(x).

2. Use standard algorithms to find solutions (xp, yo) to
Dy? = f(x).

3. If no solutions of appropriate size, or g(x) or r(x) not
prime, choose different D and try again.

» Construction depends on finding integer solutions to a
“Pell-like equation” z? — D'y? = C.
» Solutions grow exponentially = MNT curves of prime
order are sparse (Luca-Shparlinski).
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Extending the MNT method

» Galbraith-McKee-Valenga: extend MNT idea by allowing
cofactor h # 1, so that #E(F,) = h- r(x).
» Find many more suitable curves than original MNT
construction.
» h =4 allows curves to be put in Edwards form
(see Vercauteren, Naehrig talks).

Constructing
Abelian Varieties
for Pairing-Based

Cryptography

David Mandell
Freeman

Extending the
MNT Method




F. Solution for k = 10 e e

for Pairing-Based
Cryptography

David Mandell

Goal: Choose t(x), find factor r(x) of ®1o(t(x) — 1), Freeman
such that f(x) = 4r(x) — (t(x) — 2)? is quadratic.

> All factors of ®10(t(x) — 1) must have 4 | degree.
» Key observation: Need to choose r(x), t(x) such that
the leading terms of 4r and t? cancel out.

» Smallest possible case: degr =4, degt = 2.

v

> Galbraith-McKee-Valenga: Characterized quadratic t(x)
such that ®10(t(x) — 1) factors into two quartics.

Extending the
MNT Method

» One of these t(x) gives the desired cancellation!

» Construct curves via Pell-like equation as in MNT
solution.
» Like MNT curves, k = 10 curves are sparse.
» Can't be extended to allow cofactors h # 1.




MNT Method in Higher Dimensions? Abetion Varictes

for Pairing-Based

Cryptography
» MNT method depends essentially on finding integral David Mandel
points on the variety defined by the CM equation

Dy? = f(x).
» CM equation relates CM field K = Q(7) to number of
points on pairing-friendly variety.
» In elliptic curve case, CM equation defines a plane curve
» Lots of points if genus 0; otherwise not enough.

» Analogous equations in dimension 2 (F. ‘07) define a d
much more complicated variety. MNT Method

» No idea how to find integral points.
» Nothing known in dimension > 3.

» Conclusion: in dimension > 2 we have no idea how to
construct pairing-friendly ordinary abelian varieties with
a prime number of points!
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Overview of the Cocks-Pinch Method

» Recall: for an elliptic curve with embedding degree k
and Frobenius element 7 € K = Q(v/—D) we want

Nkg(m —1) = 0 (mod r)
Oy (77) = 0 (mod r)

for some prime subgroup order r.

» Suppose r factors as tt in Ok, and
m = 1 (modr)

Ck (mod T)
(&7 = ¢ (modt))

s

for a primitive kth root of unity {, € IF,.
» Then (1) and (2) are satisfied!
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The Cocks-Pinch Construction

1. Choose CM field K = Q(v/—D), embedding degree k,
and prime r =1 (mod k) with r = ¢t in Ok.

2. Use Chinese Remainder thm to construct m € Ok with

= 1 (modr)
m = (k (mod¥)

3. Add elements of rOk until g = 7 is prime.

4. The resulting 7 is the Frobenius of an elliptic curve
E/F, that has embedding degree k with respect to a
subgroup of order r.

5. Use CM method to determine equation for E.

Constructing
Abelian Varieties
for Pairing-Based

Cryptography

David Mandell
Freeman

The Cocks-Pinch
Metho




Analyzing the Cocks-Pinch Construction

» 7 is “randomish” element of Ok /rOk

= 7 should have norm g = 77 ~ r2.

> g is “randomish” integer &~ r?, so we expect to try

~ 2log r different lifts 7 to find one with prime norm.

» How efficient are Cocks-Pinch curves?

logqg  #bits of g

logr  #bits of r’

If keys, signatures, ciphertexts, etc. are elements of
E[r], we want p small to save bandwidth.

» If curve has prime order, p = 1.

» Cocks-Pinch curves have p ~ 2.

» Define p =

v

» Can we do better?
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The

Brezing-Weng ldea

Cocks-Pinch construction: CM field K = Q(+/—D),
embedding degree k, prime r, with

1. r=rtin Ok,
2. w C(Z/r7)* .
Brezing-Weng idea: choose r to be an
irreducible polynomial r(x) € Q[x] with
1. r(x) = t(x)t(x) in K[x],
2. e C Q[x]/(r(x)).
Use Chinese Remainder theorem in K|[x] to construct
7(x) € K[x] with

m(x) = 1mod t(x)

m(x) = (x mod¥(x)

Evaluate m(x) at xp to get Frobenius element 7 € Ok.
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Analyzing the Brezing-Weng Method

» Method produces 7(x) € K[x] such that for many
X0 € Z, m(xp) € Ok satisfies the pairing-friendly
conditions.

» Choose integers xg until g(xg) = 7(x0)7(x0) is prime
and r(xp) is (nearly) prime.

» Use CM method to construct £ /Fq(,,) with
Frobenius 7(xp).

» Key observation: deg 7rgx) < deg r(x),
therefore g(xp) < r(xo)”.

» Can always obtain p < 2, improving on Cocks-Pinch
method.
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How to choose Brezing-Weng Parameters?

» Choices: CM field K = Q(v/—D), embedding degree k,
polynomial r(x)
> Need Q(v—D, (k) C L= Q[x]/(r(x)).
> Best success when L is a cyclotomic field, D small.
Examples:
1. Brezing-Weng: D =1,2,3, r(x) = ®4(x).
> Achieve e.g., p =5/4 for k =24 with D =3
2. Barreto-Naehrig: Cleverly choose u(x) such that
&k (u(x)) factors into r(x)r(—x).
> Achieve p =1 (prime order!) for k =12 with D = 3.
3. Kachisa-Schaefer-Scott: Brute-force search in space of
polynomials defining Q(x).
> Achieve e.g., p = 9/8 for k = 32 with D = 1.

» See F.-Scott-Teske,
“A Taxonomy of Pairing-Friendly Elliptic Curves.”
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Generalizing the Cocks-Pinch Method Abelion Varietes
for Pairing-Based

(F.-Stevenhagen-Streng) Emrr
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» Want to construct g-dimensional pairing-friendly
ordinary abelian varieties.

» Easiest case: CM field K Galois cyclic, degree 2g,
Gal(K/Q) = (o).
» Subgroup order r is a prime that splits completely in K.

» Pick a prime t over r in Ok, and write

g—1 _ _ _~8—1
rOK:t‘tU“‘ta .t.ta...ta

(note 08 = complex conjugation).

Extending to
Higher Dimensions




Constructing a m with prescribed residues Abelion Varietes
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g—1 _ _ _o8—1
rOK:t'ta"'tJ .t.ta...to-

Given £ € Ok, write residues of £ modulo primes over r as
(()41, Qg,...,0g, B, ... ,ﬁg) S Fgg.

Then residues of €7 are
(042, asz,...,01,02,... ,051) S F%g,

and so on for each €7, until residues of €5 " are

% 2
((’Yg7ﬁla - Mg—1, ‘Jg7 s 7O‘g71) € IE‘rg'

i

. 1 =
Define 7 =[], €7 . Then: ;
- - B Extending to
mmodr=T[%,a; €F, and 7 mod t =[[%; ; € F,. Higher Dimensions




Imposing the pairing-friendly conditions Abetion Varictes
for Pairing-Based
Cryptoggraphy

> Given £ € Ok with residues «;, 8;, we construct m with Raudih el

Freeman
amodv=[[% @, 7modt=7modr=][[%,0.

» Choose «j, §; in advance so that
1[I ,0;=1inF,,
2. 1%, Bi is a primitive kth root of unity in F,,
and construct £ via Chinese Remainder theorem.
» Then
1. 7=1 (mod t), so Ni/g(m —1) =0 (mod t),
2. ¢Oy(n7) =0 (mod t).
» Conclusion: if g = 77 = Nk /g(€) is prime, then abelian
varieties A/IFq with Frobenius 7 have embedding degree
k with respect to a subgroup of order r. Fahar BSrionsions

» Use CM methods to construct A/F, with Frobenius 7.




Generalizing the FSS Method (F.)

| 2

>
>

FSS method with Galois K leads to varieties with
p~ 2g°.

Apply Brezing-Weng idea: parametrize subgroup order r
as polynomial r(x) € Z[x].

Use decomposition of r(x) in K[x] to construct
7(x) € K[x] with pairing-friendly properties modulo
r(x).

For certain xo € Z, m(xo) is Frobenius element of an
A/Fq that has embedding degree k with respect to
r(Xo).

A can be constructed explicitly using CM methods.
Can produce families with smaller p-values:

» g =2 best result: p =4 for k =5.
» g =3 best result: p =12 for k = 7.
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An alternative method for g = 2

» Main idea: find A that is simple over F but isogenous
to E x E over Fa for small d.
» Can deduce conditions on Frobenius 7 for E that make
A/F g pairing-friendly.
» Use Cocks-Pinch type methods to construct a 7
satisfying these conditions.
» Use CM method to find j-invariant of E,
then find equation for A.
» Kawazoe-Takahashi: examples with j(E) = 8000.
» Best result: p = 3 for k = 24.
» F.-Satoh: construction for general E.
> Best result: p =8/3 for k =9.
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Summary: Pairing-Friendly Abelian Varieties

1. MNT Method:

>

>
>
>

Only 4 possible embedding degrees (k = 3,4, 6,10).
No generalization to higher dimension.

Good for constructing elliptic curves of prime order.
Curves are rare.

2. Cocks-Pinch Method:

v

>
>
»

Works for arbitrary embedding degree k.
Generalizes to higher dimensions.

Can't construct varieties of prime order (p ~ 2g2).
Many varieties possible, easy to specify bit sizes.

3. Brezing-Weng Method:

>

>

>

Works for many embedding degrees k.
Generalizes to higher dimensions.
Usually can’t construct varieties of prime order
(g <p<2g?).
> Exception: Barreto-Naehrig elliptic curves with k = 12.

Many varieties possible, easy to specify bit sizes.
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