Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

David Mandell Freeman

Stanford University, USA

Eurocrypt 2010 Monaco, Monaco

31 May 2010

Composite-order bilinear groups: What are they?

- Cyclic groups \mathbb{G}, \mathbb{G}_t of order $N = p_1 \cdots p_r$;
- Nondegenerate, bilinear pairing $e : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_t$;
- Useful for crypto if (some version of) the subgroup decision assumption holds in G:

$$\{x \stackrel{\scriptscriptstyle \mathrm{R}}{\leftarrow} \mathbb{G} : \operatorname{ord}(x) < N\}$$
 and $\{x \stackrel{\scriptscriptstyle \mathrm{R}}{\leftarrow} \mathbb{G}\}$

computationally indistinguishable.

• In particular, factoring N must be infeasible.

Composite-order bilinear groups: What are they good for?

Used in recent years to solve many cryptographic problems:

- "Somewhat homomorphic" encryption [BGN05]
- Traitor tracing [BSW06]
- Ring and group signatures [BW07, SW07]
- NIZK proof systems [GOS06, GS08]
- Attribute-based encryption [KSW08, LOSTW10]
- Fully secure HIBE [W09, LW10]

Composite-order bilinear groups: Some drawbacks

Groups are instantiated using supersingular elliptic curves *E* over finite fields \mathbb{F}_q , $q \equiv -1 \pmod{N}$ prime.

- Groups are very large: $N \approx 2^{1024}$ to prevent factoring attack.
- Pairings are very slow [Scott].

usual pairing-based crypto:	$\mathbb{G} \subset E(\mathbb{F}_q) \sim 160$ bits
(prime-order MNT curve)	$\mathbb{G}_t \subset \mathbb{F}_{q^6}^* \sim 1024$ bits
	\sim 3 ms pairing
composite-order groups:	$\mathbb{G} \subset E(\mathbb{F}_q) \sim 1024$ bits
(supersingular curve)	$\mathbb{G}_t \subset \mathbb{F}_{q^2}^* \sim$ 2048 bits
	$\sim 150~ms$ pairing

Conclusion: using composite-order elliptic curves negates many advantages of elliptic curve crypto.

Our goal:

Obtain *functionality* of composite-order group cryptosystems using *infrastructure* of prime-order bilinear groups:

small group sizes fast pairing well studied assumptions

- Want a general conversion method.
- Previous solutions [IP08, W09, LW10] ad-hoc (or at least opaque).

Our contribution

- Abstract framework that captures the cryptographic properties of composite-order bilinear groups.
- Instantiations of groups with these properties using prime-order bilinear groups.
- Method for converting cryptosystems from composite-order groups to prime-order groups.
 - Not a black-box compiler; proofs need to be checked (fails for [LW10]).
- Conversion of
 - "Somewhat homomorphic" encryption [BGN05];
 - 2 Traitor tracing [BSW06];
 - 3 Attribute-based encryption [KSW08].

Generalizing the subgroup decision assumption

Generalized subgroup decision problem:

- 5 groups $G_1 \subset G, \ H_1 \subset H, \ G_t$
- nondegenerate bilinear map $e: G \times H \rightarrow G_t$ (asymmetric)

• distinguish
$$\{x \stackrel{\mathbb{R}}{\leftarrow} G_1\}$$
 from $\{x \stackrel{\mathbb{R}}{\leftarrow} G\}$
or

distinguish $\{y \stackrel{\mathrm{R}}{\leftarrow} H_1\}$ from $\{y \stackrel{\mathrm{R}}{\leftarrow} H\}$.

If both problems computationally infeasible, then generalized subgroup decision assumption holds for (G, G_1, H, H_1, G_t, e) .

(本間) (本語) (本語) (語)

A key observation [CS03, G04]

DDH is a subgroup decision problem!

- Given group \mathbb{G}_1 of order p, define $G := \mathbb{G}_1 \times \mathbb{G}_1$.
- $G_1 :=$ random linear subgroup $\langle (g, g^{\chi}) \rangle$.
- Then $(g^y, g^z) \in G_1 \Leftrightarrow z = xy \pmod{p}$.

Extend to the (asymmetric) pairing setting:

- If $\hat{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_t$ is a pairing, define $H := \mathbb{G}_2 \times \mathbb{G}_2$.
- $H_1 :=$ random linear subgroup $\langle (h, h^{\times'}) \rangle$.
- Define $e \colon G \times H \to G_t = \mathbb{G}_t$ by

 $e((g,g'),(h,h')) := \hat{e}(g,h)^a \hat{e}(g,h')^b \hat{e}(g',h)^c \hat{e}(g',h')^d.$

• Can define pairing into $G_t = \mathbb{G}_t^m$ componentwise.

Theorem

If DDH assumption holds in \mathbb{G}_1 and \mathbb{G}_2 , then generalized subgroup decision assumption holds for (G, G_1, H, H_1, G_t, e) .

A key observation [CS03, G04]

DDH is a subgroup decision problem!

- Given group \mathbb{G}_1 of order p, define $G := \mathbb{G}_1 \times \mathbb{G}_1$.
- $G_1 :=$ random linear subgroup $\langle (g, g^{\chi}) \rangle$.
- Then $(g^y, g^z) \in G_1 \Leftrightarrow z = xy \pmod{p}$.

Extend to the (asymmetric) pairing setting:

- If $\hat{e} \colon \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_t$ is a pairing, define $H := \mathbb{G}_2 \times \mathbb{G}_2$.
- $H_1 :=$ random linear subgroup $\langle (h, h^{x'}) \rangle$.
- Define $e \colon G \times H \to G_t = \mathbb{G}_t$ by

 $e((g,g'),(h,h')):=\hat{e}(g,h)^{a}\hat{e}(g,h')^{b}\hat{e}(g',h)^{c}\hat{e}(g',h')^{d}.$

• Can define pairing into $G_t = \mathbb{G}_t^m$ componentwise.

Theorem

If DDH assumption holds in \mathbb{G}_1 and \mathbb{G}_2 , then generalized subgroup decision assumption holds for (G, G_1, H, H_1, G_t, e) .

A key observation [CS03, G04]

DDH is a subgroup decision problem!

- Given group \mathbb{G}_1 of order p, define $G := \mathbb{G}_1 \times \mathbb{G}_1$.
- G₁ := random linear subgroup $\langle (g, g^{\chi}) \rangle$.
- Then $(g^y, g^z) \in G_1 \Leftrightarrow z = xy \pmod{p}$.

Extend to the (asymmetric) pairing setting:

- If $\hat{e} \colon \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_t$ is a pairing, define $H := \mathbb{G}_2 \times \mathbb{G}_2$.
- $H_1 :=$ random linear subgroup $\langle (h, h^{x'}) \rangle$.
- Define $e \colon G \times H \to G_t = \mathbb{G}_t$ by

 $e((g,g'),(h,h')):=\hat{e}(g,h)^{a}\hat{e}(g,h')^{b}\hat{e}(g',h)^{c}\hat{e}(g',h')^{d}.$

• Can define pairing into $G_t = \mathbb{G}_t^m$ componentwise.

Theorem

If DDH assumption holds in \mathbb{G}_1 and \mathbb{G}_2 , then generalized subgroup decision assumption holds for (G, G_1, H, H_1, G_t, e) .

But wait... Isn't DDH easy in groups with a pairing?

In the second second

- DDH believed to be hard on *ordinary* pairing-friendly elliptic curves when \mathbb{G}_1 is the *base field subgroup*, \mathbb{G}_2 is the *trace-zero subgroup*.
- Pairing is asymmetric (no efficient maps $\mathbb{G}_1 \leftrightarrow \mathbb{G}_2).$
- Also called "SXDH" assumption.
- 2 Yes, if $\mathbb{G}_1 = \mathbb{G}_2...$

But the *k*-linear assumption may still hold! (with $k \ge 2$)

- *k*-linear assumption [HK07, S07] generalizes DDH (*is* DDH when *k* = 1), may hold in groups with *k*-linear map.
- Generalize DDH construction: $G = H = \mathbb{G}_1^{k+1}$, $G_{k} = H_{k} = random k dimensional subgroup$
- *k*-linear assumption ⇒ subgroup decision assumption.

But wait...

Isn't DDH easy in groups with a pairing?

Not necessarily:

- DDH believed to be hard on *ordinary* pairing-friendly elliptic curves when \mathbb{G}_1 is the *base field subgroup*, \mathbb{G}_2 is the *trace-zero subgroup*.
- Pairing is asymmetric (no efficient maps $\mathbb{G}_1 \leftrightarrow \mathbb{G}_2$).
- Also called "SXDH" assumption.
- 2 Yes, if $\mathbb{G}_1 = \mathbb{G}_2...$

But the *k-linear assumption* may still hold! (with $k \ge 2$)

- *k*-linear assumption [HK07, S07] generalizes DDH (*is* DDH when *k* = 1), may hold in groups with *k*-linear map.
- Generalize DDH construction: $G = H = \mathbb{G}_1^{k+1}$,
 - $G_1 = H_1 =$ random k-dimensional subgroup.
- k-linear assumption \Rightarrow subgroup decision assumption.

But wait...

Isn't DDH easy in groups with a pairing?

Not necessarily:

- DDH believed to be hard on *ordinary* pairing-friendly elliptic curves when \mathbb{G}_1 is the *base field subgroup*, \mathbb{G}_2 is the *trace-zero subgroup*.
- Pairing is asymmetric (no efficient maps $\mathbb{G}_1 \leftrightarrow \mathbb{G}_2$).
- Also called "SXDH" assumption.
- 2 Yes, if $\mathbb{G}_1 = \mathbb{G}_2...$

But the *k*-linear assumption may still hold! (with $k \ge 2$)

- *k*-linear assumption [HK07, S07] generalizes DDH (*is* DDH when *k* = 1), may hold in groups with *k*-linear map.
- Generalize DDH construction: $G = H = \mathbb{G}_1^{k+1}$, $G_1 = H_1 = \text{random } k\text{-dimensional subgroup.}$
 - $G_1 = H_1 =$ random k-dimensional subgroup.
- k-linear assumption \Rightarrow subgroup decision assumption.

But wait...

Isn't DDH easy in groups with a pairing?

Not necessarily:

- DDH believed to be hard on *ordinary* pairing-friendly elliptic curves when \mathbb{G}_1 is the *base field subgroup*, \mathbb{G}_2 is the *trace-zero subgroup*.
- Pairing is asymmetric (no efficient maps $\mathbb{G}_1 \leftrightarrow \mathbb{G}_2$).
- Also called "SXDH" assumption.
- 2 Yes, if $\mathbb{G}_1 = \mathbb{G}_2...$

But the *k*-linear assumption may still hold! (with $k \ge 2$)

- *k*-linear assumption [HK07, S07] generalizes DDH (*is* DDH when *k* = 1), may hold in groups with *k*-linear map.
- Generalize DDH construction: $G = H = \mathbb{G}_1^{k+1}$, $G_1 = H_1 = \text{random } k\text{-dimensional subgroup.}$
- k-linear assumption \Rightarrow subgroup decision assumption.

Can't use just any pairing e on product groups G and H — cryptosystems require certain properties for correctness.

• *Projecting* pairing:

 $\begin{array}{ll} \text{maps:} & \pi_1 \colon G \to G, \quad \pi_2 \colon H \to H, \quad \pi_t \colon G_t \to G_t \\ \text{ternels:} & G_1 \subset \ker \pi_1, \quad H_1 \subset \ker \pi_2, \quad G_t' \subset \ker \pi_t \\ \text{pairing:} & e(\pi_1(g), \pi_2(h)) = \pi_t(e(g, h)) \end{array}$

2 *Cancelling* pairing:

groups: $G \cong G_1 \times \cdots \times G_r$, $H \cong H_1 \times \cdots \times H_r$ pairing: $e(G_i, H_j) = 1$ for $i \neq j$.

ロト (同) (三) (三) (つ) (つ)

Eurocrypt 2010

10 / 14

In systems: use G_1 to "blind" elements of G; remove blinding by applying π_1 (projecting) or pairing with elements of H_2 (cancelling).

David Mandell Freeman (Stanford) Converting Pairing-Based Cryptosystems

Can't use just any pairing e on product groups G and H — cryptosystems require certain properties for correctness.

Projecting pairing:

$$\begin{array}{ll} \text{maps:} & \pi_1 \colon G \to G, \quad \pi_2 \colon H \to H, \quad \pi_t \colon G_t \to G_t \\ \text{kernels:} & G_1 \subset \ker \pi_1, \quad H_1 \subset \ker \pi_2, \quad G_t' \subset \ker \pi_t \\ \text{pairing:} & e(\pi_1(g), \pi_2(h)) = \pi_t(e(g, h)) \end{array}$$

2 Cancelling pairing:

groups: $G \cong G_1 \times \cdots \times G_r$, $H \cong H_1 \times \cdots \times H_r$ pairing: $e(G_i, H_j) = 1$ for $i \neq j$.

▲掃▶ ▲臣▶ ▲臣▶ 三臣 - のへで

10 / 14

Eurocrypt 2010

In systems: use G_1 to "blind" elements of G; remove blinding by applying π_1 (projecting) or pairing with elements of H_2 (cancelling).

David Mandell Freeman (Stanford) Converting Pairing-Based Cryptosystems

Can't use just any pairing e on product groups G and H — cryptosystems require certain properties for correctness.

Projecting pairing:

$$\begin{array}{ll} \text{maps:} & \pi_1 \colon G \to G, \quad \pi_2 \colon H \to H, \quad \pi_t \colon G_t \to G_t \\ \text{kernels:} & G_1 \subset \ker \pi_1, \quad H_1 \subset \ker \pi_2, \quad G_t' \subset \ker \pi_t \\ \text{pairing:} & e(\pi_1(g), \pi_2(h)) = \pi_t(e(g, h)) \end{array}$$

2 Cancelling pairing:

groups: $G \cong G_1 \times \cdots \times G_r$, $H \cong H_1 \times \cdots \times H_r$ pairing: $e(G_i, H_j) = 1$ for $i \neq j$.

In systems: use G_1 to "blind" elements of G; remove blinding by applying π_1 (projecting) or pairing with elements of H_2 (cancelling).

David Mandell Freeman (Stanford) Converting Pairing-Based Cryptosystems

Can't use just any pairing e on product groups G and H — cryptosystems require certain properties for correctness.

Projecting pairing:

$$\begin{array}{ll} \text{maps:} & \pi_1 \colon G \to G, \quad \pi_2 \colon H \to H, \quad \pi_t \colon G_t \to G_t \\ \text{kernels:} & G_1 \subset \ker \pi_1, \quad H_1 \subset \ker \pi_2, \quad G_t' \subset \ker \pi_t \\ \text{pairing:} & e(\pi_1(g), \pi_2(h)) = \pi_t(e(g, h)) \end{array}$$

2 Cancelling pairing:

groups: $G \cong G_1 \times \cdots \times G_r$, $H \cong H_1 \times \cdots \times H_r$ pairing: $e(G_i, H_j) = 1$ for $i \neq j$.

In systems: use G_1 to "blind" elements of G; remove blinding by applying π_1 (projecting) or pairing with elements of H_2 (cancelling).

▶ ▲ 토 ▶ = • • • • • •

Projecting and cancelling pairings on product groups

View group elements as vectors $g^{\vec{v}} = (g^{v_1}, g^{v_2})$. Do linear algebra in the exponent.

- Projecting pairing takes tensor product of vectors:
 - Define e: G × H → G_t := G⁴_t to be vector of all 4 componentwise pairings ê on G₁ × G₂.
 - π_1, π_2, π_t do linear projection in the exponent (details in paper).
- 2 Cancelling pairing takes dot product of vectors:
 - Define *e* so that

$$e(g^{\vec{v}},h^{\vec{w}})=\hat{e}(g,h)^{\vec{v}\cdot\vec{w}}.$$

• Define subgroups using orthogonal vectors:

$$G_1 = \langle g^{\vec{v}} \rangle, G_2 = \langle g^{\vec{w}} \rangle, \quad H_1 = \langle h^{\vec{v}'} \rangle, H_2 = \langle h^{\vec{w}'} \rangle$$

with
$$\vec{v} \cdot \vec{w}' = \vec{w} \cdot \vec{v}' = 0$$
.

Eurocrypt 2010

イロト イポト イヨト イヨト

Projecting and cancelling pairings on product groups

View group elements as vectors $g^{\vec{v}} = (g^{v_1}, g^{v_2})$. Do linear algebra in the exponent.

- Projecting pairing takes tensor product of vectors:
 - Define e: G × H → G_t := 𝔅⁴_t to be vector of all 4 componentwise pairings ê on 𝔅₁ × 𝔅₂.
 - π_1, π_2, π_t do linear projection in the exponent (details in paper).
- 2 Cancelling pairing takes dot product of vectors:
 - Define *e* so that

$$e(g^{\vec{v}},h^{\vec{w}})=\hat{e}(g,h)^{\vec{v}\cdot\vec{w}}.$$

• Define subgroups using orthogonal vectors:

$$G_1 = \langle g^{\vec{v}} \rangle, G_2 = \langle g^{\vec{w}} \rangle, \quad H_1 = \langle h^{\vec{v}'} \rangle, H_2 = \langle h^{\vec{w}'} \rangle$$

with
$$\vec{v} \cdot \vec{w}' = \vec{w} \cdot \vec{v}' = 0$$
.

Projecting and cancelling pairings on product groups

View group elements as vectors $g^{\vec{v}} = (g^{v_1}, g^{v_2})$. Do linear algebra in the exponent.

- Projecting pairing takes tensor product of vectors:
 - Define e: G × H → G_t := 𝔅⁴_t to be vector of all 4 componentwise pairings ê on 𝔅₁ × 𝔅₂.
 - π_1, π_2, π_t do linear projection in the exponent (details in paper).
- ② Cancelling pairing takes dot product of vectors:
 - Define e so that

$$e(g^{\vec{v}},h^{\vec{w}})=\hat{e}(g,h)^{\vec{v}\cdot\vec{w}}.$$

• Define subgroups using orthogonal vectors:

$$G_1 = \langle g^{\vec{v}} \rangle, G_2 = \langle g^{\vec{w}} \rangle, \quad H_1 = \langle h^{\vec{v}'} \rangle, H_2 = \langle h^{\vec{w}'} \rangle$$

with
$$\vec{v} \cdot \vec{w}' = \vec{w} \cdot \vec{v}' = 0$$
.

Eurocrypt 2010

How to convert a composite-order cryptosystem to prime-order groups

- Write the system using our abstract group framework, with appropriate type of pairing.
 - Transfer to asymmetric groups for greatest generality.
- **2** Translate security assumption to general framework.
 - Check the security proof!
- Instantiate system and assumption using groups G, H constructed from G₁, G₂.
 - e.g. generalized subgroup decision assumption instantiated as DDH.

不得下 不当下 不当下 一百

- PK: $G = \mathbb{G}_1^2$, $G_1 = \langle (g, g^{\chi}) \rangle$, $\hat{g} = (g^{\chi}, g^{\chi})$, + similar in $H = \mathbb{G}_2^2$. SK: x, y, z + analogues for H.
- Encryption in G: encode msg using \hat{g} , blind with random elt of G_1 .

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
 - Use projecting pairing *e* (vector of 4 pairings).
- Decryption in G:
 - Compute $\pi_1(C) = (g^{ym+r})^{\times} \cdot (g^{zm+xr})^{-1} = (g^{xy-z})^m$.
 - 2 Take discrete log base $\pi_1(\hat{g}) = g^{xy-z}$ (requires small message space).

イロト イポト イヨト イヨト

= nar

- PK: $G = \mathbb{G}_1^2$, $G_1 = \langle (g, g^x) \rangle$, $\hat{g} = (g^y, g^z)$, + similar in $H = \mathbb{G}_2^2$. SK: x, y, z + analogues for H.
- Encryption in G: encode msg using \hat{g} , blind with random elt of G_1 .

$$Enc(m): r \stackrel{\text{\tiny R}}{\leftarrow} \mathbb{F}_p; \quad C = (g^y, g^z)^m (g, g^x)^r = (g^{ym+r}, g^{zm+xr})$$

Encryption in H similar.

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
 Use projecting pairing *e* (vector of 4 pairings).
- Decryption in G:
 - Compute $\pi_1(C) = (g^{ym+r})^{\times} \cdot (g^{zm+xr})^{-1} = (g^{xy-z})^m$.
 - 2) Take discrete log base $\pi_1(\hat{g}) = g^{xy-z}$ (requires small message space).

Decryption in H similar; decryption in ${\it G}_t={\mathbb G}_t^4$ more complicated.

DDH in $\mathbb{G}_1, \mathbb{G}_2 \Rightarrow$ subgp decision in $(G, G_1, H, H_1, e) \Rightarrow$ semantic security.

ヘロト 不得下 不可下 不可下

= 900

- PK: $G = \mathbb{G}_1^2$, $G_1 = \langle (g, g^{\times}) \rangle$, $\hat{g} = (g^{\vee}, g^{\vee})$, + similar in $H = \mathbb{G}_2^2$. SK: x, y, z + analogues for H.
- Encryption in G: encode msg using \hat{g} , blind with random elt of G_1 .

$$Enc(m): r \stackrel{\text{\tiny R}}{\leftarrow} \mathbb{F}_p; \quad C = (g^y, g^z)^m (g, g^x)^r = (g^{ym+r}, g^{zm+xr})$$

Encryption in H similar.

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
 - Use projecting pairing *e* (vector of 4 pairings).
- Decryption in G:
 - Compute $\pi_1(C) = (g^{ym+r})^{\times} \cdot (g^{zm+xr})^{-1} = (g^{xy-z})^m$.
 - 2 Take discrete log base $\pi_1(\hat{g}) = g^{xy-z}$ (requires small message space).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うのの

- PK: $G = \mathbb{G}_1^2$, $G_1 = \langle (g, g^{\times}) \rangle$, $\hat{g} = (g^{Y}, g^{Z})$, + similar in $H = \mathbb{G}_2^2$. SK: x, y, z + analogues for H.
- Encryption in G: encode msg using \hat{g} , blind with random elt of G_1 .

$$Enc(m): r \stackrel{\scriptscriptstyle \mathrm{R}}{\leftarrow} \mathbb{F}_{p}; \quad C = (g^{y}, g^{z})^{m} (g, g^{x})^{r} = (g^{ym+r}, g^{zm+xr})$$

Encryption in H similar.

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
 - Use projecting pairing *e* (vector of 4 pairings).
- Decryption in G:
 - Compute $\pi_1(C) = (g^{ym+r})^x \cdot (g^{zm+xr})^{-1} = (g^{xy-z})^m$.
 - 2 Take discrete log base $\pi_1(\hat{g}) = g^{xy-z}$ (requires small message space).

Decryption in *H* similar; decryption in $G_t = \mathbb{G}_t^4$ more complicated.

(ロ) 《酒 》 《 目) 《 目) (回) へ ()

13 / 14

- PK: $G = \mathbb{G}_1^2$, $G_1 = \langle (g, g^{\times}) \rangle$, $\hat{g} = (g^{Y}, g^{Z})$, + similar in $H = \mathbb{G}_2^2$. SK: x, y, z + analogues for H.
- Encryption in G: encode msg using \hat{g} , blind with random elt of G_1 .

$$Enc(m): r \stackrel{\scriptscriptstyle \mathrm{R}}{\leftarrow} \mathbb{F}_{p}; \quad C = (g^{y}, g^{z})^{m} (g, g^{x})^{r} = (g^{ym+r}, g^{zm+xr})$$

Encryption in H similar.

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
 - Use projecting pairing *e* (vector of 4 pairings).
- Decryption in G:
 - Compute $\pi_1(C) = (g^{ym+r})^x \cdot (g^{zm+xr})^{-1} = (g^{xy-z})^m$.
 - 2 Take discrete log base $\pi_1(\hat{g}) = g^{xy-z}$ (requires small message space). Decryption in *H* similar; decryption in $G_t = \mathbb{G}_t^4$ more complicated.

DDH in $\mathbb{G}_1, \mathbb{G}_2 \Rightarrow$ subgp decision in $(G, G_1, H, H_1, e) \Rightarrow$ semantic security.

Other systems

We also applied our conversion process to BSW traitor tracing and KSW attribute-based encryption.

- Groups become smaller and pairing computations become much faster.
- Security assumptions remain of comparable complexity.
- Efficiency improvement is greater at higher security levels:

	Bit size of BGN ciphertexts	
Security level	composite-order	prime-order
80-bit	1024	1020
128-bit	3072	1536
256-bit	15360	6400

Conclusion: Most things that can be done using composite-order bilinear groups can be done more efficiently using prime-order bilinear groups.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Other systems

We also applied our conversion process to BSW traitor tracing and KSW attribute-based encryption.

- Groups become smaller and pairing computations become much faster.
- Security assumptions remain of comparable complexity.
- Efficiency improvement is greater at higher security levels:

	Bit size of BGN ciphertexts	
Security level	composite-order	prime-order
80-bit	1024	1020
128-bit	3072	1536
256-bit	15360	6400

Conclusion: Most things that can be done using composite-order bilinear groups can be done more efficiently using prime-order bilinear groups.

Other systems

We also applied our conversion process to BSW traitor tracing and KSW attribute-based encryption.

- Groups become smaller and pairing computations become much faster.
- Security assumptions remain of comparable complexity.
- Efficiency improvement is greater at higher security levels:

	Bit size of BGN ciphertexts	
Security level	composite-order	prime-order
80-bit	1024	1020
128-bit	3072	1536
256-bit	15360	6400

Conclusion: Most things that can be done using composite-order bilinear groups can be done more efficiently using prime-order bilinear groups.

(ロト (伺) くきり くきり