Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

David Mandell Freeman

Stanford University, USA
Eurocrypt 2010
Monaco, Monaco

31 May 2010

Composite-order bilinear groups: What are they?

- Cyclic groups $\mathbb{G}, \mathbb{G}_{t}$ of order $N=p_{1} \cdots p_{r}$;
- Nondegenerate, bilinear pairing $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{t}$;
- Useful for crypto if (some version of) the subgroup decision assumption holds in \mathbb{G} :

$$
\{x \stackrel{\mathrm{R}}{\leftarrow} \mathbb{G}: \operatorname{ord}(x)<N\} \quad \text { and } \quad\{x \stackrel{\mathrm{R}}{\leftarrow} \mathbb{G}\}
$$

computationally indistinguishable.

- In particular, factoring N must be infeasible.

Composite-order bilinear groups:
 What are they good for?

Used in recent years to solve many cryptographic problems:

- "Somewhat homomorphic" encryption [BGN05]
- Traitor tracing [BSW06]
- Ring and group signatures [BW07, SW07]
- NIZK proof systems [GOS06, GS08]
- Attribute-based encryption [KSW08, LOSTW10]
- Fully secure HIBE [W09, LW10]

Composite-order bilinear groups:
 Some drawbacks

Groups are instantiated using supersingular elliptic curves E over finite fields $\mathbb{F}_{q}, q \equiv-1(\bmod N)$ prime.

- Groups are very large: $N \approx 2^{1024}$ to prevent factoring attack.
- Pairings are very slow [Scott].

usual pairing-based crypto:	$\mathbb{G} \subset E\left(\mathbb{F}_{q}\right) \sim 160$ bits
(prime-order MNT curve)	$\mathbb{G}_{t} \subset \mathbb{F}_{q^{6}}^{*} \sim 1024$ bits
	~ 3 ms pairing
composite-order groups:	$\mathbb{G}_{1} \subset E\left(\mathbb{F}_{q}\right) \sim 1024$ bits
(supersingular curve)	$\mathbb{G}_{t} \subset \mathbb{F}_{q^{2}}^{*} \sim 2048$ bits
	~ 150 ms pairing

Conclusion: using composite-order elliptic curves negates many advantages of elliptic curve crypto.

Our goal:

Obtain functionality of composite-order group cryptosystems using infrastructure of prime-order bilinear groups:

small group sizes
fast pairing
well studied assumptions

- Want a general conversion method.
- Previous solutions [IP08, W09, LW10] ad-hoc (or at least opaque).

Our contribution

- Abstract framework that captures the cryptographic properties of composite-order bilinear groups.
- Instantiations of groups with these properties using prime-order bilinear groups.
- Method for converting cryptosystems from composite-order groups to prime-order groups.
- Not a black-box compiler; proofs need to be checked (fails for [LW10]).
- Conversion of
(1) "Somewhat homomorphic" encryption [BGN05];
(2) Traitor tracing [BSW06];
(3) Attribute-based encryption [KSW08].

Generalizing the subgroup decision assumption

Generalized subgroup decision problem:

- 5 groups $G_{1} \subset G, H_{1} \subset H, G_{t}$
- nondegenerate bilinear map e: $G \times H \rightarrow G_{t}$ (asymmetric)
- distinguish $\left\{x \stackrel{\mathrm{R}}{\leftarrow} G_{1}\right\}$ from $\{x \stackrel{\mathrm{R}}{\leftarrow} G\}$
or
distinguish $\left\{y \stackrel{R}{\leftarrow} H_{1}\right\}$ from $\{y \stackrel{R}{\leftarrow} H\}$.
If both problems computationally infeasible, then generalized subgroup decision assumption holds for ($G, G_{1}, H, H_{1}, G_{t}, e$).

A key observation [CS03, G04]

DDH is a subgroup decision problem!

- Given group \mathbb{G}_{1} of order p, define $G:=\mathbb{G}_{1} \times \mathbb{G}_{1}$.
- $G_{1}:=$ random linear subgroup $\left\langle\left(g, g^{x}\right)\right\rangle$.
- Then $\left(g^{y}, g^{z}\right) \in G_{1} \Leftrightarrow z=x y(\bmod p)$.

Extend to the (asymmetric) pairing setting:

- If $\hat{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{t}$ is a pairing, define $H:=\mathbb{G}_{2} \times \mathbb{G}_{2}$
- $H_{1}:=$ random linear subgroun $\left\langle\left(h, h^{x^{\prime}}\right)\right\rangle$
- Define e: $G \times H \rightarrow G_{t}=G_{t}$ by

- Can define pairing into $G_{t}=\mathbb{G}_{t}^{m}$ componentwise.

Theorem
If DDH assumption holds in \mathbb{G}_{1} and \mathbb{G}_{2}, then generalized subgroup decision assumption holds for ($G, G_{1}, H, H_{1}, G_{t}, e$)

A key observation [CS03, G04]

DDH is a subgroup decision problem!

- Given group \mathbb{G}_{1} of order p, define $G:=\mathbb{G}_{1} \times \mathbb{G}_{1}$.
- $G_{1}:=$ random linear subgroup $\left\langle\left(g, g^{x}\right)\right\rangle$.
- Then $\left(g^{y}, g^{z}\right) \in G_{1} \Leftrightarrow z=x y(\bmod p)$.

Extend to the (asymmetric) pairing setting:

- If $\hat{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{t}$ is a pairing, define $H:=\mathbb{G}_{2} \times \mathbb{G}_{2}$.
- $H_{1}:=$ random linear subgroup $\left\langle\left(h, h^{x^{\prime}}\right)\right\rangle$.
- Define e: $G \times H \rightarrow G_{t}=\mathbb{G}_{t}$ by

$$
e\left(\left(g, g^{\prime}\right),\left(h, h^{\prime}\right)\right):=\hat{e}(g, h)^{a} \hat{e}\left(g, h^{\prime}\right)^{b} \hat{e}\left(g^{\prime}, h\right)^{c} \hat{e}\left(g^{\prime}, h^{\prime}\right)^{d}
$$

- Can define pairing into $G_{t}=\mathbb{G}_{t}^{m}$ componentwise.
\qquad

A key observation [CS03, G04]

DDH is a subgroup decision problem!

- Given group \mathbb{G}_{1} of order p, define $G:=\mathbb{G}_{1} \times \mathbb{G}_{1}$.
- $G_{1}:=$ random linear subgroup $\left\langle\left(g, g^{x}\right)\right\rangle$.
- Then $\left(g^{y}, g^{z}\right) \in G_{1} \Leftrightarrow z=x y(\bmod p)$.

Extend to the (asymmetric) pairing setting:

- If $\hat{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{t}$ is a pairing, define $H:=\mathbb{G}_{2} \times \mathbb{G}_{2}$.
- $H_{1}:=$ random linear subgroup $\left\langle\left(h, h^{x^{\prime}}\right)\right\rangle$.
- Define e: $G \times H \rightarrow G_{t}=\mathbb{G}_{t}$ by

$$
e\left(\left(g, g^{\prime}\right),\left(h, h^{\prime}\right)\right):=\hat{e}(g, h)^{a} \hat{e}\left(g, h^{\prime}\right)^{b} \hat{e}\left(g^{\prime}, h\right)^{c} \hat{e}\left(g^{\prime}, h^{\prime}\right)^{d} .
$$

- Can define pairing into $G_{t}=\mathbb{G}_{t}^{m}$ componentwise.

Theorem

If $D D H$ assumption holds in \mathbb{G}_{1} and \mathbb{G}_{2}, then generalized subgroup decision assumption holds for $\left(G, G_{1}, H, H_{1}, G_{t}, e\right)$.

But wait...

Isn't DDH easy in groups with a pairing?

(1) Not necessarily:

- DDH believed to be hard on ordinan pairing-friendly elliptic curves when \mathbb{G}_{1} is the base field subgroup, \mathbb{G}_{2} is the
- Pairing is asymmetric (no efficient maps $\mathbb{G}_{1} \leftrightarrow \mathbb{G}_{2}$).
- Also called "SXDH" assumption.
(2) Yes, if $\mathbb{G}_{1}=\mathbb{G}_{2} \ldots$

But the k-linear assumption may still hold! (with $k \geq 2$)

- k-linear assumption [HK07, S07] generalizes DDH (is DDH when $k=1$), may hold in groups with k-linear map.
- Generalize DDH construction: $G=H=\mathbb{G}_{1}^{k+1}$, $G_{1}=H_{1}=$ random k-dimensional subgroup.
- k-linear assumption \Rightarrow subgroup decision assumption.

Solution (2) is less efficient: G is larger (more copies of \mathbb{G}_{1}) and not suited to high security levels (bounded embedding degree for symmetric pairings).

But wait...
Isn't DDH easy in groups with a pairing?
(1) Not necessarily:

- DDH believed to be hard on ordinary pairing-friendly elliptic curves when \mathbb{G}_{1} is the base field subgroup, \mathbb{G}_{2} is the trace-zero subgroup.
- Pairing is asymmetric (no efficient maps $\mathbb{G}_{1} \leftrightarrow \mathbb{G}_{2}$).
- Also called "SXDH" assumption.

Solution (2) is less efficient: G is larger (more copies of \mathbb{G}_{1}) and not suited to high security levels (bounded embedding degree for symmetric pairings)

But wait...

Isn't DDH easy in groups with a pairing?

(1) Not necessarily:

- DDH believed to be hard on ordinary pairing-friendly elliptic curves when \mathbb{G}_{1} is the base field subgroup, \mathbb{G}_{2} is the trace-zero subgroup.
- Pairing is asymmetric (no efficient maps $\mathbb{G}_{1} \leftrightarrow \mathbb{G}_{2}$).
- Also called "SXDH" assumption.
(2) Yes, if $\mathbb{G}_{1}=\mathbb{G}_{2} \ldots$

But the k-linear assumption may still hold! (with $k \geq 2$)

- k-linear assumption [HK07, S07] generalizes DDH (is DDH when $k=1$), may hold in groups with k-linear map.
- Generalize DDH construction: $G=H=\mathbb{G}_{1}^{k+1}$, $G_{1}=H_{1}=$ random k-dimensional subgroup.
- k-linear assumption \Rightarrow subgroup decision assumption.

Solution (2) is less efficient: G is larger (more copies of \mathbb{G}_{1}) and not suited to high security levels (bounded embedding degree for symmetric pairings)

But wait...

Isn't DDH easy in groups with a pairing?

(1) Not necessarily:

- DDH believed to be hard on ordinary pairing-friendly elliptic curves when \mathbb{G}_{1} is the base field subgroup, \mathbb{G}_{2} is the trace-zero subgroup.
- Pairing is asymmetric (no efficient maps $\mathbb{G}_{1} \leftrightarrow \mathbb{G}_{2}$).
- Also called "SXDH" assumption.
(2) Yes, if $\mathbb{G}_{1}=\mathbb{G}_{2} \ldots$

But the k-linear assumption may still hold! (with $k \geq 2$)

- k-linear assumption [HK07, S07] generalizes DDH (is DDH when $k=1$), may hold in groups with k-linear map.
- Generalize DDH construction: $G=H=\mathbb{G}_{1}^{k+1}$, $G_{1}=H_{1}=$ random k-dimensional subgroup.
- k-linear assumption \Rightarrow subgroup decision assumption.

Solution (2) is less efficient: G is larger (more copies of \mathbb{G}_{1}) and not suited to high security levels (bounded embedding degree for symmetric pairings).

What about the pairing?

Can't use just any pairing e on product groups G and H - cryptosystems require certain properties for correctness.

pairing:

pairing:

In systems: use G_{1} to "blind" elements of G; remove blinding by applying π_{1} (projecting) or pairing with elements of H_{2} (cancelling)

What about the pairing?

Can't use just any pairing e on product groups G and H - cryptosystems require certain properties for correctness.
(1) Projecting pairing:
maps: $\quad \pi_{1}: G \rightarrow G, \quad \pi_{2}: H \rightarrow H, \quad \pi_{t}: G_{t} \rightarrow G_{t}$
kernels: $\quad G_{1} \subset \operatorname{ker} \pi_{1}, \quad H_{1} \subset \operatorname{ker} \pi_{2}, \quad G_{t}^{\prime} \subset \operatorname{ker} \pi_{t}$
pairing: $\quad e\left(\pi_{1}(g), \pi_{2}(h)\right)=\pi_{t}(e(g, h))$pairing

What about the pairing?

Can't use just any pairing e on product groups G and H - cryptosystems require certain properties for correctness.
(1) Projecting pairing:
maps: $\quad \pi_{1}: G \rightarrow G, \quad \pi_{2}: H \rightarrow H, \quad \pi_{t}: G_{t} \rightarrow G_{t}$
kernels: $\quad G_{1} \subset \operatorname{ker} \pi_{1}, \quad H_{1} \subset \operatorname{ker} \pi_{2}, \quad G_{t}^{\prime} \subset \operatorname{ker} \pi_{t}$
pairing: $\quad e\left(\pi_{1}(g), \pi_{2}(h)\right)=\pi_{t}(e(g, h))$
(2) Cancelling pairing:
groups: $\quad G \cong G_{1} \times \cdots \times G_{r}, \quad H \cong H_{1} \times \cdots \times H_{r}$
pairing: $\quad e\left(G_{i}, H_{j}\right)=1$ for $i \neq j$.
In systems: use G_{1} to "blind" elements of G; remove blinding by applying
π_{1} (projecting) or pairing with elements of H_{2} (cancelling)

What about the pairing?

Can't use just any pairing e on product groups G and H - cryptosystems require certain properties for correctness.
(1) Projecting pairing:

$$
\begin{aligned}
\text { maps: } & \pi_{1}: G \rightarrow G, \quad \pi_{2}: H \rightarrow H, \quad \pi_{t}: G_{t} \rightarrow G_{t} \\
\text { kernels: } & G_{1} \subset \operatorname{ker} \pi_{1}, \quad H_{1} \subset \operatorname{ker} \pi_{2}, \quad G_{t}^{\prime} \subset \operatorname{ker} \pi_{t} \\
\text { pairing: } & e\left(\pi_{1}(g), \pi_{2}(h)\right)=\pi_{t}(e(g, h))
\end{aligned}
$$

(2) Cancelling pairing:
groups: $\quad G \cong G_{1} \times \cdots \times G_{r}, \quad H \cong H_{1} \times \cdots \times H_{r}$
pairing: $\quad e\left(G_{i}, H_{j}\right)=1$ for $i \neq j$.
In systems: use G_{1} to "blind" elements of G; remove blinding by applying π_{1} (projecting) or pairing with elements of H_{2} (cancelling).

Projecting and cancelling pairings on product groups

View group elements as vectors $g^{\vec{v}}=\left(g^{\nu_{1}}, g^{V_{2}}\right)$. Do linear algebra in the exponent.

Projecting and cancelling pairings on product groups

View group elements as vectors $g^{\vec{v}}=\left(g^{\nu_{1}}, g^{v_{2}}\right)$.
Do linear algebra in the exponent.
(1) Projecting pairing takes tensor product of vectors:

- Define e: $G \times H \rightarrow G_{t}:=\mathbb{G}_{t}^{4}$ to be vector of all 4 componentwise pairings \hat{e} on $\mathbb{G}_{1} \times \mathbb{G}_{2}$.
- $\pi_{1}, \pi_{2}, \pi_{t}$ do linear projection in the exponent (details in paper).
- Define e so that
- Define subgroups using orthogonal vectors:

with $\vec{v} \cdot \vec{w}^{\prime}=\vec{w} \cdot \vec{v}^{\prime}=0$.

Projecting and cancelling pairings on product groups

View group elements as vectors $g^{\vec{v}}=\left(g^{\nu_{1}}, g^{v_{2}}\right)$.
Do linear algebra in the exponent.
(1) Projecting pairing takes tensor product of vectors:

- Define e: $G \times H \rightarrow G_{t}:=\mathbb{G}_{t}^{4}$ to be vector of all 4 componentwise pairings \hat{e} on $\mathbb{G}_{1} \times \mathbb{G}_{2}$.
- $\pi_{1}, \pi_{2}, \pi_{t}$ do linear projection in the exponent (details in paper).
(2) Cancelling pairing takes dot product of vectors:
- Define e so that

$$
e\left(g^{\vec{v}}, h^{\vec{w}}\right)=\hat{e}(g, h)^{\vec{v} \cdot \vec{w}} .
$$

- Define subgroups using orthogonal vectors:

$$
\begin{aligned}
& \quad G_{1}=\left\langle g^{\vec{v}}\right\rangle, G_{2}=\left\langle g^{\vec{w}}\right\rangle, \quad H_{1}=\left\langle h^{\vec{v}^{\prime}}\right\rangle, H_{2}=\left\langle h^{\vec{w}^{\prime}}\right\rangle \\
& \text { with } \vec{v} \cdot \vec{w}^{\prime}=\vec{w} \cdot \vec{v}^{\prime}=0 \text {. }
\end{aligned}
$$

How to convert a composite-order cryptosystem to prime-order groups

(1) Write the system using our abstract group framework, with appropriate type of pairing.

- Transfer to asymmetric groups for greatest generality.
(2) Translate security assumption to general framework.
- Check the security proof!
(3) Instantiate system and assumption using groups G, H constructed from $\mathbb{G}_{1}, \mathbb{G}_{2}$.
- e.g. generalized subgroup decision assumption instantiated as DDH.

Instantiating BGN Encryption in DDH groups $\mathbb{G}_{1}, \mathbb{G}_{2}$:

- PK: $G=\mathbb{G}_{1}^{2}, G_{1}=\left\langle\left(g, g^{x}\right)\right\rangle, \hat{g}=\left(g^{y}, g^{z}\right),+$ similar in $H=\mathbb{G}_{2}^{2}$. SK: $x, y, z+$ analogues for H.
- Encryption in G : encode msg using \hat{g}, blind with random elt of G_{1} $\operatorname{Enc}(m): r \stackrel{\mathrm{R}}{\leftarrow} \mathbb{F}_{p} ; \quad C=\left(g^{y}, g^{z}\right)^{m}\left(g, g^{x}\right)^{r}=\left(g^{y m+r}, g^{z m+x r}\right)$

Encryption in H similar

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
- Use projecting pairing e (vector of 4 pairings)
- Decryption in G
(1) Compute $\pi_{1}(C)=\left(g^{y m+r}\right)^{x} \cdot\left(g^{z m+x r}\right)^{-1}=\left(g^{x y-z}\right)^{m}$.
(2) Take discrete log base $\pi_{1}(\hat{\mathrm{~g}})=g^{x y-z}$ (requires small message space) Decryption in H similar; decryption in $G_{t}=\mathbb{G}_{t}^{4}$ more complicated

DDH in $\mathbb{G}_{1}, \mathbb{G}_{2} \Rightarrow$ subgp decision in $\left(G, G_{1}, H, H_{1}, e\right) \Rightarrow$ semantic security.

Instantiating BGN Encryption in DDH groups $\mathbb{G}_{1}, \mathbb{G}_{2}$:

- PK: $G=\mathbb{G}_{1}^{2}, G_{1}=\left\langle\left(g, g^{x}\right)\right\rangle, \hat{g}=\left(g^{y}, g^{z}\right),+$ similar in $H=\mathbb{G}_{2}^{2}$. SK: $x, y, z+$ analogues for H.
- Encryption in G : encode msg using \hat{g}, blind with random elt of G_{1}.

$$
\operatorname{Enc}(m): r \stackrel{\mathrm{R}}{\leftarrow} \mathbb{F}_{p} ; \quad C=\left(g^{y}, g^{z}\right)^{m}\left(g, g^{x}\right)^{r}=\left(g^{y m+r}, g^{z m+x r}\right)
$$

Encryption in H similar.

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.

$$
\text { - Use projecting pairing e (vector of } 4 \text { pairings). }
$$

- Decryption in G
 Decryption in H similar; decryption in $G_{t}=\mathbb{G}_{t}^{4}$ more complicated DDH in $\mathbb{G}_{1}, \mathbb{G}_{2} \Rightarrow$ subgn decision in $\left(G, G, H, H_{1}, e\right) \Rightarrow$ semantic security

Instantiating BGN Encryption in DDH groups $\mathbb{G}_{1}, \mathbb{G}_{2}$:

- PK: $G=\mathbb{G}_{1}^{2}, G_{1}=\left\langle\left(g, g^{x}\right)\right\rangle, \hat{g}=\left(g^{y}, g^{z}\right),+$ similar in $H=\mathbb{G}_{2}^{2}$. SK: $x, y, z+$ analogues for H.
- Encryption in G : encode msg using \hat{g}, blind with random elt of G_{1}.

$$
\operatorname{Enc}(m): r \stackrel{\mathrm{R}}{\leftarrow} \mathbb{F}_{p} ; \quad C=\left(g^{y}, g^{z}\right)^{m}\left(g, g^{x}\right)^{r}=\left(g^{y m+r}, g^{z m+x r}\right)
$$

Encryption in H similar.

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
- Use projecting pairing e (vector of 4 pairings).
- Decryption in G:
(1) Compute $\pi_{1}(C)=\left(g^{y m+r}\right)^{x} \cdot\left(g^{z m+x r}\right)^{-1}=\left(g^{x y-z}\right)^{m}$.
(2) Take discrete log base $\pi_{1}(\hat{g})=g^{x y-z}$ (requires small message space) Decryption in H similar; decryption in $G_{t}=\mathbb{G}_{t}^{4}$ more complicated

Instantiating BGN Encryption in DDH groups $\mathbb{G}_{1}, \mathbb{G}_{2}$:

- PK: $G=\mathbb{G}_{1}^{2}, G_{1}=\left\langle\left(g, g^{x}\right)\right\rangle, \hat{g}=\left(g^{y}, g^{z}\right),+$ similar in $H=\mathbb{G}_{2}^{2}$. SK: $x, y, z+$ analogues for H.
- Encryption in G : encode msg using \hat{g}, blind with random elt of G_{1}.

$$
\operatorname{Enc}(m): r \stackrel{\mathrm{R}}{\leftarrow} \mathbb{F}_{p} ; \quad C=\left(g^{y}, g^{z}\right)^{m}\left(g, g^{x}\right)^{r}=\left(g^{y m+r}, g^{z m+x r}\right)
$$

Encryption in H similar.

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
- Use projecting pairing e (vector of 4 pairings).
- Decryption in G:
(1) Compute $\pi_{1}(C)=\left(g^{y m+r}\right)^{x} \cdot\left(g^{z m+x r}\right)^{-1}=\left(g^{x y-z}\right)^{m}$.
(2) Take discrete log base $\pi_{1}(\hat{g})=g^{x y-z}$ (requires small message space).

Decryption in H similar; decryption in $G_{t}=\mathbb{G}_{t}^{4}$ more complicated.

Instantiating BGN Encryption in DDH groups $\mathbb{G}_{1}, \mathbb{G}_{2}$:

- PK: $G=\mathbb{G}_{1}^{2}, G_{1}=\left\langle\left(g, g^{x}\right)\right\rangle, \hat{g}=\left(g^{y}, g^{z}\right),+$ similar in $H=\mathbb{G}_{2}^{2}$. SK: $x, y, z+$ analogues for H.
- Encryption in G : encode msg using \hat{g}, blind with random elt of G_{1}.

$$
\operatorname{Enc}(m): r \stackrel{\mathrm{R}}{\leftarrow} \mathbb{F}_{p} ; \quad C=\left(g^{y}, g^{z}\right)^{m}\left(g, g^{x}\right)^{r}=\left(g^{y m+r}, g^{z m+x r}\right)
$$

Encryption in H similar.

- Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
- Use projecting pairing e (vector of 4 pairings).
- Decryption in G:
(1) Compute $\pi_{1}(C)=\left(g^{y m+r}\right)^{x} \cdot\left(g^{z m+x r}\right)^{-1}=\left(g^{x y-z}\right)^{m}$.
(2) Take discrete log base $\pi_{1}(\hat{g})=g^{x y-z}$ (requires small message space).

Decryption in H similar; decryption in $G_{t}=\mathbb{G}_{t}^{4}$ more complicated.
DDH in $\mathbb{G}_{1}, \mathbb{G}_{2} \Rightarrow$ subgp decision in $\left(G, G_{1}, H, H_{1}, e\right) \Rightarrow$ semantic security.

Other systems

We also applied our conversion process to BSW traitor tracing and KSW attribute-based encryption.

- Groups become smaller and pairing computations become much faster.
- Security assumptions remain of comparable complexity.
- Efficiency improvement is greater at higher security levels:

	Bit size of BGN ciphertexts	
Security level	composite-order	prime-order
80-bit	1024	1020
128-bit	3072	1536
256-bit	15360	6400

Conclusion: Most things that can be done using composite-order bilinear groups can be done more efficiently using prime-order bilinear groups.

Other systems

We also applied our conversion process to BSW traitor tracing and KSW attribute-based encryption.

- Groups become smaller and pairing computations become much faster.
- Security assumptions remain of comparable complexity.
- Efficiency improvement is greater at higher security levels:

	Bit size of BGN ciphertexts	
Security level	composite-order	prime-order
80-bit	1024	1020
128-bit	3072	1536
256-bit	15360	6400

Other systems

We also applied our conversion process to BSW traitor tracing and KSW attribute-based encryption.

- Groups become smaller and pairing computations become much faster.
- Security assumptions remain of comparable complexity.
- Efficiency improvement is greater at higher security levels:

Security level	Bit size of BGN ciphertexts	
composite-order	prime-order	
$80-$ bit	1024	1020
128 -bit	3072	1536
256 -bit	15360	6400

Conclusion: Most things that can be done using composite-order bilinear groups can be done more efficiently using prime-order bilinear groups.

