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Composite-order bilinear groups Background

Composite-order bilinear groups:
What are they?

Cyclic groups G,Gt of order N = p1 · · · pr ;
Nondegenerate, bilinear pairing e : G×G→ Gt ;
Useful for crypto if (some version of) the
subgroup decision assumption holds in G:

{x R← G : ord(x) < N} and {x R← G}

computationally indistinguishable.
In particular, factoring N must be infeasible.
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Composite-order bilinear groups Background

Composite-order bilinear groups:
What are they good for?

Used in recent years to solve many cryptographic problems:
“Somewhat homomorphic” encryption [BGN05]
Traitor tracing [BSW06]
Ring and group signatures [BW07, SW07]
NIZK proof systems [GOS06, GS08]
Attribute-based encryption [KSW08, LOSTW10]
Fully secure HIBE [W09, LW10]
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Composite-order bilinear groups Background

Composite-order bilinear groups:
Some drawbacks

Groups are instantiated using supersingular elliptic curves E over finite
fields Fq, q ≡ −1 (mod N) prime.

Groups are very large: N ≈ 21024 to prevent factoring attack.
Pairings are very slow [Scott].

usual pairing-based crypto: G ⊂ E (Fq) ∼ 160 bits
(prime-order MNT curve) Gt ⊂ F∗q6 ∼ 1024 bits

∼ 3 ms pairing
composite-order groups: G ⊂ E (Fq) ∼ 1024 bits

(supersingular curve) Gt ⊂ F∗q2 ∼ 2048 bits
∼ 150 ms pairing

Conclusion: using composite-order elliptic curves negates many advantages
of elliptic curve crypto.
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Composite-order bilinear groups Our contribution

Our goal:

Obtain functionality of composite-order group cryptosystems using
infrastructure of prime-order bilinear groups:

small group sizes
fast pairing

well studied assumptions

Want a general conversion method.
Previous solutions [IP08, W09, LW10] ad-hoc (or at least opaque).
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Composite-order bilinear groups Our contribution

Our contribution

Abstract framework that captures the cryptographic properties of
composite-order bilinear groups.
Instantiations of groups with these properties using prime-order
bilinear groups.
Method for converting cryptosystems from composite-order groups to
prime-order groups.

Not a black-box compiler; proofs need to be checked (fails for [LW10]).
Conversion of

1 “Somewhat homomorphic” encryption [BGN05];
2 Traitor tracing [BSW06];
3 Attribute-based encryption [KSW08].
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A generalized framework Subgroup decision problems

Generalizing the subgroup decision assumption

Generalized subgroup decision problem:
5 groups G1 ⊂ G , H1 ⊂ H, Gt

nondegenerate bilinear map e : G × H → Gt (asymmetric)
distinguish {x R← G1} from {x

R← G}
or

distinguish {y R← H1} from {y
R← H}.

If both problems computationally infeasible, then generalized subgroup
decision assumption holds for (G ,G1,H,H1,Gt , e).
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A generalized framework Subgroup decision problems

A key observation [CS03, G04]

DDH is a subgroup decision problem!
Given group G1 of order p, define G := G1 ×G1.
G1 := random linear subgroup 〈(g , g x)〉.
Then (g y , g z) ∈ G1 ⇔ z = xy (mod p).

Extend to the (asymmetric) pairing setting:
If ê : G1 ×G2 → Gt is a pairing, define H := G2 ×G2.
H1 := random linear subgroup 〈(h, hx ′

)〉.
Define e : G × H → Gt = Gt by

e((g , g ′), (h, h′)) := ê(g , h)aê(g , h′)b ê(g ′, h)c ê(g ′, h′)d .

Can define pairing into Gt = Gm
t componentwise.

Theorem
If DDH assumption holds in G1 and G2, then generalized subgroup decision
assumption holds for (G ,G1,H,H1,Gt , e).
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If ê : G1 ×G2 → Gt is a pairing, define H := G2 ×G2.
H1 := random linear subgroup 〈(h, hx ′

)〉.
Define e : G × H → Gt = Gt by

e((g , g ′), (h, h′)) := ê(g , h)aê(g , h′)b ê(g ′, h)c ê(g ′, h′)d .

Can define pairing into Gt = Gm
t componentwise.

Theorem
If DDH assumption holds in G1 and G2, then generalized subgroup decision
assumption holds for (G ,G1,H,H1,Gt , e).

David Mandell Freeman (Stanford) Converting Pairing-Based Cryptosystems Eurocrypt 2010 8 / 14



A generalized framework Subgroup decision problems

But wait...
Isn’t DDH easy in groups with a pairing?

1 Not necessarily:
DDH believed to be hard on ordinary pairing-friendly elliptic curves
when G1 is the base field subgroup, G2 is the trace-zero subgroup.
Pairing is asymmetric (no efficient maps G1 ↔ G2).
Also called “SXDH” assumption.

2 Yes, if G1 = G2...
But the k-linear assumption may still hold! (with k ≥ 2)

k-linear assumption [HK07, S07] generalizes DDH (is DDH when k = 1),
may hold in groups with k-linear map.
Generalize DDH construction: G = H = Gk+1

1 ,
G1 = H1 = random k-dimensional subgroup.
k-linear assumption ⇒ subgroup decision assumption.

Solution (2) is less efficient: G is larger (more copies of G1) and not suited
to high security levels (bounded embedding degree for symmetric pairings).
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A generalized framework Types of pairings

What about the pairing?

Can’t use just any pairing e on product groups G and H — cryptosystems
require certain properties for correctness.

1 Projecting pairing:

maps: π1 : G → G , π2 : H → H, πt : Gt → Gt

kernels: G1 ⊂ ker π1, H1 ⊂ ker π2, G ′t ⊂ ker πt

pairing: e(π1(g), π2(h)) = πt(e(g , h))

2 Cancelling pairing:

groups: G ∼= G1 × · · · × Gr , H ∼= H1 × · · · × Hr

pairing: e(Gi ,Hj) = 1 for i 6= j .

In systems: use G1 to “blind” elements of G ; remove blinding by applying
π1 (projecting) or pairing with elements of H2 (cancelling).
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A generalized framework Types of pairings

Projecting and cancelling pairings on product groups

View group elements as vectors g~v = (g v1 , g v2).
Do linear algebra in the exponent.

1 Projecting pairing takes tensor product of vectors:
Define e : G × H → Gt := G4

t to be vector of all 4 componentwise
pairings ê on G1 ×G2.
π1, π2, πt do linear projection in the exponent (details in paper).

2 Cancelling pairing takes dot product of vectors:
Define e so that

e(g~v , h~w ) = ê(g , h)~v ·~w .

Define subgroups using orthogonal vectors:

G1 = 〈g~v 〉,G2 = 〈g ~w 〉, H1 = 〈h~v ′
〉,H2 = 〈h~w ′

〉

with ~v · ~w ′ = ~w · ~v ′ = 0.
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The conversion process Our framework

How to convert a composite-order cryptosystem to
prime-order groups

1 Write the system using our abstract group framework, with
appropriate type of pairing.

Transfer to asymmetric groups for greatest generality.
2 Translate security assumption to general framework.

Check the security proof!
3 Instantiate system and assumption using groups G ,H constructed

from G1,G2.
e.g. generalized subgroup decision assumption instantiated as DDH.
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The conversion process An example

Instantiating BGN Encryption in DDH groups G1, G2:

PK: G = G2
1, G1 = 〈(g , g x)〉, ĝ = (g y , g z), + similar in H = G2

2.
SK: x , y , z + analogues for H.
Encryption in G : encode msg using ĝ , blind with random elt of G1.

Enc(m) : r R← Fp; C = (g y , g z)m(g , g x)r = (g ym+r , g zm+xr )

Encryption in H similar.
Add by multiplying ciphertexts; multiply once by pairing ciphertexts.

Use projecting pairing e (vector of 4 pairings).
Decryption in G :

1 Compute π1(C ) = (g ym+r )x · (g zm+xr )−1 = (g xy−z)m.
2 Take discrete log base π1(ĝ) = g xy−z (requires small message space).

Decryption in H similar; decryption in Gt = G4
t more complicated.

DDH in G1,G2 ⇒ subgp decision in (G ,G1,H,H1, e)⇒ semantic security.
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2 Take discrete log base π1(ĝ) = g xy−z (requires small message space).

Decryption in H similar; decryption in Gt = G4
t more complicated.

DDH in G1,G2 ⇒ subgp decision in (G ,G1,H,H1, e)⇒ semantic security.

David Mandell Freeman (Stanford) Converting Pairing-Based Cryptosystems Eurocrypt 2010 13 / 14



The conversion process Conclusion

Other systems

We also applied our conversion process to BSW traitor tracing and KSW
attribute-based encryption.

Groups become smaller and pairing computations become much faster.
Security assumptions remain of comparable complexity.
Efficiency improvement is greater at higher security levels:

Bit size of BGN ciphertexts
Security level composite-order prime-order
80-bit 1024 1020
128-bit 3072 1536
256-bit 15360 6400

Conclusion: Most things that can be done using composite-order bilinear
groups can be done more efficiently using prime-order bilinear groups.
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