Constructing Abelian Varieties for Pairing-Based Cryptography

David Freeman

Stanford University, USA

Foundations of Computational Mathematics: Workshop on Computational Number Theory 24 June 2008

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

What is pairing-based cryptography?

 "Pairing-based cryptography" refers to protocols that use a nondegenerate, bilinear map

$$\textbf{\textit{e}}:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_T$$

between finite, cyclic groups.

- Need *discrete logarithm problem* (DLP) in $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ to be infeasible.
- DLP: Given x, x^a , compute a.

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

Example: Boneh-Lynn-Shacham signatures

- Setup:
 - Bilinear pairing $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$.
 - Public $P, Q \in \mathbb{G}_1$.
 - Secret $a \in \mathbb{Z}$ such that $Q = P^a$.
 - Hash function $H: \{0,1\}^* \to \mathbb{G}_2$.
- Signature on message *m* is $\sigma = H(m)^a$.
- To verify signature: see if $e(Q, H(m)) = e(P, \sigma)$.
 - If signature is correct, then both equal $e(P, H(m))^a$.
 - If DLP is infeasible, then signature cannot be forged.

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

Useful pairings: Abelian varieties over finite fields

- For certain abelian varieties A/F_q, subgroups of A(F_q) of prime order r have the necessary properties.
- Pairings are Weil pairing

$$oldsymbol{e}_{\textit{weil}, r}: oldsymbol{A}[r] imes oldsymbol{A}[r] o \mu_r \subset \mathbb{F}_{oldsymbol{g}^k}^{ imes}$$

or Tate pairing (more complicated).

• *k* is the *embedding degree* of *A* with respect to *r*.

• Smallest integer such that $\mu_r \subset \mathbb{F}_{q^k}^{\times} \iff q^k \equiv 1 \mod r$).

- If q, r are large, DLP is infeasible in A[r] and $\mathbb{F}_{q^k}^{\times}$.
- Pairings can be computed efficiently via Miller's algorithm.

ヘロト 人間 ト ヘヨト ヘヨト

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

Need to "balance" security on variety and in finite field

- Best DLP algorithm in *A*[*r*] is exponential-time.
- Best DLP algorithm in $\mathbb{F}_{a^k}^{\times}$ is subexponential-time.
- For comparable security before and after pairing, need $q^k > r$.
- How much larger depends on desired security level:

r	q^k	Embedding degree k	Secure until		
(bits)	(bits)	(if $r pprox q$)	year		
160	1024	6	2010		
224	2048	10	2030		
256	3072	12	2050		

Common security levels for elliptic curves

The Problem

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

- Find primes q and abelian varieties A/\mathbb{F}_q having
 - \mathbf{Q} a subgroup of large prime order r, and
 - Prescribed (small) embedding degree k with respect to r.
 - In practice, want $r > 2^{160}$ and $k \le 50$.
- We call such varieties "pairing-friendly."
- Want to be able to control the number of bits of *r* to construct varieties at varying security levels.

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

"Random" abelian varieties not useful for pairing-based cryptography

- Embedding degree of random A/𝔽_q with order-*r* subgroup will be ≈ *r*.
- Typical $r \approx 2^{160}$, so pairing on random *A* can't even be computed.
- Conclusion: pairing-friendly abelian varieties are "special."

ヘロト 人間 ト ヘヨト ヘヨト

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

Some types of pairing-friendly abelian varieties

- Menezes-Okamoto-Vanstone, Galbraith, Rubin-Silverberg: supersingular A/F_g are always pairing-friendly.
 - If dimension $g \le 6$ then $k \le 7.5g$.
 - These k are only acceptable for the lowest security levels.
 - Higher security levels require non-supersingular (usually, ordinary) abelian vareities.

• Pairing-friendly ordinary elliptic curves (g = 1) well-studied.

- Many constructions with small k and $q < r^2$.
- Can construct elliptic curves with $k \in \{3, 4, 6, 10, 12\}$ and prime order $(q \approx r)$.

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

Higher dimensions: more difficult

- Galbraith-McKee-Valença, Hitt: existence results for non-supersingular pairing-friendly abelian surfaces (g = 2)
 No explicit construction.
- F. '07: explicit construction of ordinary abelian surfaces with arbitrary embedding degree.
- Kawazoe-Takahashi: construct ordinary abelian surfaces over smaller fields, but not absolutely simple.

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Results

Algorithms for constructing pairing-friendly A.V.

- Result #1 (ANTS-VIII, with P. Stevenhagen & M. Streng)
 - Method for constructing primes q and ordinary A/F_q that have a subgroup of order r and prescribed embedding degree k.
 - Works for abitrary *k*, nearly arbitrary *r*.
 - Field sizes are large.
 - Best cases: $q \approx r^4$ for dim A = 2, $q \approx r^6$ for dim A = 3.
- Result #2 (Pairing '08)
 - Method for constructing primes q and ordinary A/F_q that have a subgroup of order r and prescribed embedding degree k.
 - Works for more restricted set of *k* and *r*.
 - Field sizes are not as large.
 - Best cases: $q \approx r^2$ for dim A = 2, $q \approx r^4$ for dim A = 3.

・ロト ・ 同ト ・ ヨト ・ ヨト

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

Algorithm #1 for constructing pairing-friendly A.V.

- Inputs: embedding degree *k*, *CM field K*, prime subgroup order *r*.
- Algorithm constructs a π ∈ O_K with certain properties modulo *r*.
- The element π corresponds (in the sense of Honda-Tate theory) to the *Frobenius endomorphism* of an A/F_q that has embedding degree k with respect to r.
- A can be constructed explicitly using *CM methods*.

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

Complex multiplication: the basics

- For ordinary, simple, g-dimensional A/F_q, End(A) ⊗ Q is a CM field K of degree 2g.
 - K = imaginary quadratic extension of totally real field.
- Frobenius endomorphism π is a *q*-Weil number in $\mathcal{O}_{\mathcal{K}}$.
 - All embeddings $K \hookrightarrow \overline{K}$ have $\pi \overline{\pi} = q$.

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

Properties of Frobenius make A/\mathbb{F}_q pairing-friendly

- Number of points given by $#A(\mathbb{F}_q) = N_{\mathcal{K}/\mathbb{Q}}(\pi 1).$
- Embedding degree k is order of $q = \pi \overline{\pi}$ in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- A has embedding degree k with respect to r iff

$$N_{\mathcal{K}/\mathbb{Q}}(\pi-1) \equiv 0 \pmod{r}$$
 (1)

$$\Phi_k(\pi\overline{\pi}) \equiv 0 \pmod{r} \tag{2}$$

 $(\Phi_k = k$ th cyclotomic polynomial).

• Goal: construct a $\pi \in \mathcal{O}_{\mathcal{K}}$ with properties (1) and (2).

イロン イボン イヨン イヨン

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

Main idea: A modular approach

- Easiest case: K Galois cyclic, degree 2g, Gal(K/ℚ) = ⟨σ⟩.
- Subgroup order *r* is a prime that splits completely in *K*.
- Pick a prime \mathfrak{r} over r in \mathcal{O}_K , and write

$$r\mathcal{O}_{K} = \mathfrak{r} \cdot \mathfrak{r}^{\sigma} \cdots \mathfrak{r}^{\sigma^{g-1}} \cdot \overline{\mathfrak{r}} \cdot \overline{\mathfrak{r}}^{\sigma} \cdots \overline{\mathfrak{r}}^{\sigma^{g-1}}$$

(note $\sigma^g = \text{complex conjugation}$).

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

Constructing a π with prescribed residues

$$r\mathcal{O}_{K} = \mathbf{r} \cdot \mathbf{r}^{\sigma} \cdots \mathbf{r}^{\sigma^{g-1}} \cdot \overline{\mathbf{r}} \cdot \overline{\mathbf{r}}^{\sigma} \cdots \overline{\mathbf{r}}^{\sigma^{g-1}}$$

Given $\xi \in \mathcal{O}_{\mathcal{K}}$, write residues of ξ modulo primes over r as

$$(\alpha_1, \alpha_2, \ldots, \alpha_g, \beta_1, \ldots, \beta_g) \in \mathbb{F}_r^{2g}.$$

Then residues of $\xi^{\sigma^{-1}}$ are

$$(\alpha_2, \alpha_3, \ldots, \beta_1, \beta_2, \ldots, \alpha_1) \in \mathbb{F}_r^{2g},$$

and so on for each $\xi^{\sigma^{-i}},$ until residues of $\xi^{\sigma^{g-1}}$ are

$$(\alpha_g, \beta_1, \ldots, \beta_{g-1}, \beta_g, \ldots, \alpha_{g-1}) \in \mathbb{F}_r^{2g}.$$

Define $\pi = \prod_{i=0}^{g-1} \xi^{\sigma^{-i}}$. Then $\pi \mod \mathfrak{r} = \prod_{i=1}^{g} \alpha_i \in \mathbb{F}_r$, and $\pi \mod \overline{\mathfrak{r}} = \prod_{i=1}^{g} \beta_i \in \mathbb{F}_r$.

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

Imposing the pairing-friendly conditions

• Given $\xi \in \mathcal{O}_K$ with residues α_i, β_i , we construct π with

 $\pi \mod \mathfrak{r} = \prod_{i=1}^{g} \alpha_i, \quad \pi \mod \overline{\mathfrak{r}} = \overline{\pi} \mod \mathfrak{r} = \prod_{i=1}^{g} \beta_i.$

- Choose α_i, β_i in advance so that
 - $\bigcirc \prod_{i=1}^{g} \alpha_i = 1 \text{ in } \mathbb{F}_r,$
 - 2 $\prod_{i=1}^{g} \beta_i$ is a primitive *k*th root of unity in \mathbb{F}_r ,

and construct ξ via Chinese Remainder theorem.

Then

Conclusion: if *q* = ππ̄ = *N*_{K/Q}(ξ) is prime, then abelian varieties *A*/𝔽_{*q*} with Frobenius endomorphism π have embedding degree *k* with respect to a subgroup of order *r*.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

The FSS Algorithm (for K Galois cyclic)

- Fix CM field K (degree 2g), prime subgroup size r, embedding degree k.
- 2 Requirements: *r* splits completely in *K* and $k \equiv 1 \pmod{r}$.
- Shoose random $\alpha_1, \ldots, \alpha_{g-1}, \beta_1, \ldots, \beta_{g-1} \in \mathbb{F}_r^{\times}$.
- Choose $\alpha_g, \beta_g \in \mathbb{F}_r$ such that $\prod_{i=1}^{g} \alpha_i = 1$, and $\prod_{i=1}^{g} \beta_i$ is a primitive *k*th root of unity.
- Solution Use Chinese remainder theorem to construct $\xi \in \mathcal{O}_{\mathcal{K}}$ with residues α_i, β_i modulo primes over *r* in $\mathcal{O}_{\mathcal{K}}$.

• Let
$$\pi = \prod_{i=0}^{g-1} \xi^{\sigma^{-i}}, q = \pi \overline{\pi} = N_{\mathcal{K}/\mathbb{Q}}(\xi).$$

If q is prime return q and π ; otherwise go to (3).

ヘロン ヘアン ヘビン ヘビン

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

Algorithm outputs a pairing-friendly Frobenius element

- For fixed K, expected running time to output prime q and π ∈ O_K is (heuristically) polynomial in log r.
- Use *CM methods* to construct pairing-friendly abelian variety *A*/F_q with Frobenius element *π*.
 - Methods construct abelian varieties in characteristic zero with prescribed endomorphism ring.
 - Only developed for $g \leq 3$.
 - Only practical when K is "small."
 - For further details, see talks by Kohel and Stevenhagen.

Constructing Pairing-Friendly Frobenius Elements The Algorithm Analyzing and Extending the Algorithm

Generalize to arbitrary CM fields using type norm

- A *CM type* of *K* is a set Φ = {φ₁,..., φ_g} of half of the embeddings *K* → *K*, one from each complex conjugate pair.
- The *reflex type* of (K, Φ) is a CM-type Ψ = {ψ₁,...,ψ_g} of a certain CM-subfield K of the Galois closure of K.
 K = K if K is Galois; in general ĝ ≫ g.
- The *type norm* of Ψ is the map

$$N_{\Psi}: \xi \mapsto \prod_{i=1}^{\widehat{g}} \psi_i(\xi).$$

- Theorem (Shimura): N_{Ψ} maps $\mathcal{O}_{\widehat{K}}$ to $\mathcal{O}_{\mathcal{K}}$.
- To generalize construction, factor *r* in O_κ, construct
 ξ ∈ O_κ with prescribed residues, and let π = N_Ψ(ξ) ∈ O_κ.

Algorithm #2 for constructing pairing-friendly A.V.

- Main idea (Brezing-Weng & others): Fix CM field K, embedding degree k; parametrize subgroup order r as polynomial r(x) ∈ Z[x].
- Algorithm constructs π(x) ∈ K[x] with certain properties modulo r(x).
- For certain x₀ ∈ Z, π(x₀) is Frobenius element of an A/F_q that has embedding degree k with respect to r(x₀).
- A can be constructed explicitly using CM methods.

・ロト ・ ア・ ・ ヨト ・ ヨト

Generalizing Method 1 to Polynomials Reducing the Field Size

How it works (if K Galois cyclic)

- Choose K and r(x) so that L = Q(x)/(r(x)) is a Galois number field containing K and μ_k.
- Pick a factor *s*(*x*) of *r*(*x*) in *K*[*x*], and write

$$r(x) = \mathbf{s}(x) \cdot \mathbf{s}(x)^{\sigma} \cdots \mathbf{s}(x)^{\sigma^{g-1}} \cdot \overline{\mathbf{s}(x)} \cdot \overline{\mathbf{s}(x)}^{\sigma} \cdots \overline{\mathbf{s}(x)}^{\sigma^{g-1}}$$

 $(\sigma \in \operatorname{Gal}(K/\mathbb{Q}) \text{ acts on } s(x) \in K[x] \text{ by acting on its coefficients}).$

Given ξ ∈ K[x], write residues of ξ modulo factors of r(x) in K[x] as

$$(\alpha_1,\ldots,\alpha_g,\beta_1,\ldots,\beta_g)\in L^{2g}$$

Generalizing Method 1 to Polynomials Reducing the Field Size

Imposing the pairing-friendly conditions

- Let $\pi(x) = \prod_{i=0}^{g-1} \xi^{\sigma^{-i}}$ (σ acts on coefficients of ξ).
- σ permutes residues of ξ as before, so

 $\pi(x) \mod s(x) = \prod_{i=1}^{g} \alpha_i, \quad \overline{\pi(x)} \mod s(x) = \prod_{i=1}^{g} \beta_i.$

• Choose α_i, β_i in advance so that

$$\prod_{i=1}^{g} \alpha_i = 1 \text{ in } L,$$

2 $\prod_{i=1}^{g} \beta_i$ is a primitive *k*th root of unity in *L*,

and construct ξ via Chinese remainder theorem.

Then

•
$$\pi(x) - 1 \equiv 0 \pmod{s(x)},$$

• so " $N_{K/\mathbb{Q}}$ "($\pi(x) - 1$) $\equiv 0 \pmod{s(x)};$

• $\Phi_k(\pi(x)\overline{\pi}(x)) \equiv 0 \pmod{s(x)}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Generalizing Method 1 to Polynomials Reducing the Field Size

Finding an individual variety

- We've constructed $\pi(x) \in K[x]$ that satisfies the pairing-friendly conditions for polynomials.
- To find individual varieties: look for $x_0 \in \mathbb{Z}$ such that
 - $q(x_0) = \pi(x_0)\overline{\pi}(x_0)$ is an integer prime,
 - $r(x_0)$ is (nearly) prime.
- Then π(x₀) is the Frobenius endomorphism of an abelian variety A/F_q that has embedding degree k with respect to a subgroup of order r(x₀).
- Use CM methods to construct A explicitly.
- Adapt method to general CM fields *K* using *extended type norm*.

ヘロン 人間 とくほ とくほ とう

Generalizing Method 1 to Polynomials Reducing the Field Size

Measuring the field size

- To maximize efficiency in applications, want to make *q* as small as possible for fixed *r*.
- Ratio of full group order q (in bits) to subgroup order r (in bits) measured by

$$\rho = \frac{\log_2 q^g}{\log_2 r}$$

• Method #1 with Galois K gives $q \approx r^{2g} \Rightarrow \rho \approx 2g^2$.

• $q = N_{K/\mathbb{Q}}(\xi)$ is a product of 2*g* "randomish" residues mod *r*.

• Experimental evidence supports this conclusion:

92% of abelian surfaces produced have 7.9 $< \rho <$ 8.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Method #2 (polynomials) gives smaller field sizes

- $\xi \in K[x]$ constructed via CRT has degree $< \deg r(x)$.
- π(x) has degree < g deg r(x) (since it's a product of g conjugates of ξ).
- If $q = \pi(x_0)\overline{\pi}(x_0)$ and $r = r(x_0)$, then for large x_0

$$ho pprox rac{2g \deg \pi(x)}{\deg r(x)} < 2g^2.$$

 If r(x) and residues of ξ are chosen cleverly, can obtain significantly better ρ-values.

Generalizing Method 1 to Polynomials Reducing the Field Size

Best results for selected k

• Best results when $r(x) = \Phi_k(x), K \subset \mathbb{Q}(\zeta_k)$.

Dimension $g =$ 2				Dimension $g = 3$			
k	ρ	CM field					
5	4	$\mathbb{Q}(\zeta_5)$	ſ	k	ρ	CM field	
10	6	$\mathbb{Q}(\zeta_5)$	ľ	7	12	$\mathbb{Q}(\zeta_7)$	
13	6.7	$\left \mathbb{Q}(\sqrt{-13}+2\sqrt{13}) \right $		9	15	$\mathbb{Q}(\zeta_9)$	
16	7	$\mathbb{Q}(\sqrt{-2+\sqrt{2}})$		18	15	$\mathbb{Q}(\zeta_9)$	
20	6	$\mathbb{Q}(\zeta_5)$					

- Compare with $\rho = 8$ for g = 2 and $\rho = 18$ for g = 3.
- Ultimate goal: varieties of prime order ($\rho = 1$).
 - Not there yet, but this is a start!

ヘロト 人間 ト ヘヨト ヘヨト