Constructing Abelian Varieties for
Pairing-Based Cryptography

David Freeman

Stanford University, USA

Foundations of Computational Mathematics:
Workshop on Computational Number Theory
24 June 2008

David Freeman Constructing Abelian Varieties for Pairing-Based Cryptography



Abelian Varieties and Pairing-Based Cryptography Pairing-Based Cryptography
Pairing-friendly Abelian Varieties
Our Results

What is pairing-based cryptography?

@ “Pairing-based cryptography” refers to protocols that use a
nondegenerate, bilinear map

e:Gy xGy— Gt

between finite, cyclic groups.

@ Need (DLP) in G1,G>,G71 to be
infeasible.

@ DLP: Given x, x2, compute a.
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Example: Boneh-Lynn-Shacham signatures

@ Setup:
e Bilinear pairing e : G1 x G2 — Gr.
e Public P, Q € Gy.
e Secret a € Z such that Q = P4.
e Hash function H : {0,1}* — Go.
@ Signature on message mis o = H(m)?2.
@ To verify signature: see if e(Q, H(m)) = e(P, o).
e If signature is correct, then both equal e(P, H(m))?2.
o If DLP is infeasible, then signature cannot be forged.
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Useful pairings: Abelian varieties over finite fields

@ For certain abelian varieties A/IFq, subgroups of A(Fg) of
prime order r have the necessary properties.

@ Pairings are
ewe/'[Vr . A[r] X A[I’] — Mr C Fz;k

or (more complicated).
@ kisthe of A with respect to r.
o Smallest integer such that s, C Fpi (& g =1 mod r).

@ If g, r are large, DLP is infeasible in A[r] and ]F;k.
@ Pairings can be computed efficiently via Miller’s algorithm.
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Need to “balance” security on variety and in finite field

@ Best DLP algorithm in A[r] is exponential-time.
@ Best DLP algorithm in Fz;k is subexponential-time.

@ For comparable security before and after pairing, need
gk >r.
@ How much larger depends on desired security level:

Common security levels for elliptic curves

r g* | Embedding degree k | Secure until
(bits) | (bits) (if r = q) year
160 | 1024 6 2010
224 | 2048 10 2030
256 | 3072 12 2050
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The Problem

@ Find primes g and abelian varieties A/F4 having

@ a subgroup of large prime order r, and
@ prescribed (small) embedding degree k with respect to r.

@ In practice, want r > 2'%° and k < 50.
@ We call such varieties “pairing-friendly.”

@ Want to be able to control the number of bits of r to
construct varieties at varying security levels.
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“Random” abelian varieties not useful for
pairing-based cryptography

@ Embedding degree of random A/FF, with order-r subgroup
will be ~ r.

@ Typical r ~ 260, so pairing on random A can’t even be
computed.

@ Conclusion: pairing-friendly abelian varieties are “special.”
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Some types of pairing-friendly abelian varieties

@ Menezes-Okamoto-Vanstone, Galbraith, Rubin-Silverberg:
A/Fq are always pairing-friendly.
e If dimension g < 6 then k <7.5g.
e These k are only acceptable for the lowest security levels.
e Higher security levels require non-supersingular
(usually, ) abelian vareities.

@ Pairing-friendly ordinary elliptic curves (g = 1) well-studied.

e Many constructions with small k and g < r?.
e Can construct elliptic curves with k € {3,4,6,10,12} and
prime order (q = r).
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Higher dimensions: more difficult

@ Galbraith-McKee-Valenca, Hitt: existence results for
non-supersingular pairing-friendly abelian surfaces (g = 2)

o No explicit construction.
@ F. ‘07: explicit construction of ordinary abelian surfaces
with arbitrary embedding degree.
@ Kawazoe-Takahashi: construct ordinary abelian surfaces
over smaller fields, but not absolutely simple.
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Algorithms for constructing pairing-friendly A.\V.

@ Result #1 (ANTS-VIII, with P. Stevenhagen & M. Streng)
e Method for constructing primes g and ordinary A/F, that
have a subgroup of order r and prescribed embedding
degree k.
o Works for abitrary k, nearly arbitrary r.
o Field sizes are large.
@ Bestcases: g~ r*fordmA =2, g~ r® fordimA=3.

@ Result #2 (Pairing ‘08)

e Method for constructing primes g and ordinary A/F, that
have a subgroup of order r and prescribed embedding
degree k.

e Works for more restricted set of k and r.

e Field sizes are not as large.

@ Bestcases: g~ r®fordimA=2, g~ r* fordimA = 3.
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Algorithm #1 for constructing pairing-friendly A.V.

@ Inputs: embedding degree K, K,
prime subgroup order r.

@ Algorithm constructs a 7 € Ok with certain properties

modulo r.
@ The element & corresponds (in the sense of Honda-Tate
theory) to the of an A/Fq that

has embedding degree k with respect to r.
@ A can be constructed explicitly using
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Complex multiplication: the basics

@ For ordinary, simple, g-dimensional A/Fg,

End(A)®Qis a K of degree 2g.
e K =imaginary quadratic extension of totally real field.
@ Frobenius endomorphism 7 is a in Ok.

e All embeddings K — K have 77 = q.
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Properties of Frobenius make A/IF, pairing-friendly

@ Number of points given by #A(Fq) = Ni /(7 —1).
@ Embedding degree k is order of g = n7 in (Z/rZ)*.
@ A has embedding degree k with respect to r iff

NK/Q(T('— 1) =0 (mOd r) (1)
Sy (mm) = 0 (modr) (2)

(Px = kth cyclotomic polynomial).
@ Goal: construct a m € Ok with properties (1) and (2).
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Main idea: A modular approach

@ Easiest case: K Galois cyclic, degree 2g,

Gal(K/Q) = (o).
@ Subgroup order r is a prime that splits completely in K.
@ Pick a prime v over r in Ok, and write

g-1 _ _ —_g9-1
rOK:t.to—...tU 't‘to—"‘to—

(note 09 = complex conjugation).
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Constructing a 7 with prescribed residues

g—1 _ _ _~g—1
rOK:t.to...tg B A

Given ¢ € Ok, write residues of £ modulo primes over r as
(o1, 00,...,09,01,...,0q) € IF?Q.
Then residues of £€7 ' are
(o,03, ..., 01, 02,...,01) € ng,
and so on for each ¢€°', until residues of €77 are
(s B1s- -+ Byt Bgs - -y arg_1) € F59.

. o g_1 o_—i
Define 7 = [, £7 -
Then mmod v =[[7_, o € Fr,and 7 mod © = [[?_, 3 € F,.
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Imposing the pairing-friendly conditions

@ Given ¢ € Ok with residues «;, 53;, we construct 7 with
rmodt=[[?,q;, mmodt=7modt=][[7,3.

@ Choose «;, 5; in advance so that
o H?:1 ai=1inT,,
@ [[7_, B is a primitive kth root of unity in F,,
and construct ¢ via Chinese Remainder theorem.
@ Then
@ 7 =1 (mod ), so Nx,g(m —1) =0 (mod t),
Q@ ok(77) =0 (mod t).
@ Conclusion: if g = 77 = Ny /g(€) is prime, then abelian
varieties A/IF4 with Frobenius endomorphism 7 have
embedding degree k with respect to a subgroup of order r.
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The FSS Algorithm (for K Galois cyclic)

@ Fix CM field K (degree 2g), prime subgroup size r,
embedding degree k.

@ Requirements: r splits completely in K and k =1 (mod r).

© Choose random ay, ..., ag_1,51,...,8g-1 € F/.

@ Choose ag, 34 € F, such that [[?_, «; = 1, and
Hf’:1 B; is a primitive kth root of unity.

© Use Chinese remainder theorem to construct ¢ € Ok with
residues «;, 5; modulo primes over r in Ok.

Q Letm =], ¢, g =7 = Ngg(6).

@ If g is prime return g and «; otherwise go to (3).
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Algorithm outputs a pairing-friendly Frobenius element

@ For fixed K, expected running time to output prime g and
m € Ok is (heuristically) polynomial in log r.
@ Use to construct pairing-friendly abelian
variety A/FFq with Frobenius element .
e Methods construct abelian varieties in characteristic zero
with prescribed endomorphism ring.
e Only developed for g < 3.

@ Only practical when K is “small.”
e For further details, see talks by Kohel and Stevenhagen.
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Generalize to arbitrary CM fields using type norm

oA of Kisaset ® = {¢1,...,¢g} of half of the
embeddings K — K, one from each complex conjugate
pair.

@ The of (K, ®) is a CM-type W = {¢1,..., ¢35} of

a certain CM-subfield K of the Galois closure of K.
e K = K if K is Galois; in general g >> g.
@ The of ¥ is the map

Ny : € — T, vi(€).

@ Theorem (Shimura): Ny maps O to Ok.
@ To generalize construction, factor r in O, construct
¢ € O with prescribed residues, and let 7 = Ny (§) € Ok.
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Algorithm #2 for constructing pairing-friendly A.V.

@ Main idea (Brezing-Weng & others):
Fix CM field K, embedding degree k;
parametrize subgroup order r as polynomial r(x) € Z|[x].

@ Algorithm constructs =(x) € K[x] with certain properties
modulo r(x).

@ For certain xp € Z, 7(Xp) is Frobenius element of an A/Fq
that has embedding degree k with respect to r(xp).

@ A can be constructed explicitly using CM methods.
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How it works (if K Galois cyclic)

@ Choose K and r(x) so that L = Q(x)/(r(x)) is a Galois
number field containing K and .

@ Pick a factor s(x) of r(x) in K[x], and write

o g9~1

-5(x) - s(x) -~ s(x)

r(x) = s(x) - s(x)7 - - s(x)7°""

(o € Gal(K/Q) acts on s(x) € K[x] by acting on its coefficients).

@ Given ¢ € K|x], write residues of ¢ modulo factors of
r(x) in K[x] as

2
(()d*],...,Oég,Aﬁ,...,ﬁg)GLg.
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Imposing the pairing-friendly conditions

@ Letn(x) = H?;J ¢ (o acts on coefficients of ¢).
@ o permutes residues of ¢ as before, so

m(x) mod s(x) =1L, e, 7(x) mod s(x) =T, B

@ Choose «j, 8; in advance so that

Q [[%, ci=1inL,
@ [I7_, B is a primitive kth root of unity in L,

and construct £ via Chinese remainder theorem.
@ Then
@ 7(x)—1=0 (mod s(x)),
1

0 (mod s(x)).
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Finding an individual variety

@ We've constructed 7(x) € K[x] that satisfies the
pairing-friendly conditions for polynomials.
@ To find individual varieties: look for xg € Z such that
e g(xo) = 7(x0)7(x0) is an integer prime,
@ r(xp) is (nearly) prime.
@ Then 7(xp) is the Frobenius endomorphism of an abelian
variety A/Fq that has embedding degree k with respect to
a subgroup of order r(xp).
@ Use CM methods to construct A explicitly.

@ Adapt method to general CM fields K using
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Measuring the field size

@ To maximize efficiency in applications, want to make g as
small as possible for fixed r.
@ Ratio of full group order g (in bits) to subgroup order r (in
bits) measured by
_ log, g¢
~ log, r

@ Method #1 with Galois K gives g ~ r?9 = p ~ 2g°.
e g = Nk/(&) is a product of 2g “randomish” residues mod r.
@ Experimental evidence supports this conclusion:
e g=2,160-bit r:
92% of abelian surfaces produced have 7.9 < p < 8.

David Freeman Constructing Abelian Varieties for Pairing-Based Cryptography



Generalizing Method 1 to Polynomials

Constructing Pairing-Friendly Abelian Varieties: Method 2 Rzl i et S

Method #2 (polynomials) gives smaller field sizes

@ ¢ € K[x] constructed via CRT has degree < deg r(x).
@ 7(x) has degree < gdeg r(x)

(since it’s a product of g conjugates of £).
e If g = m(xo)7(x0) and r = r(xp), then for large xq

__ 2gdegm(x)
~ degr(x)

29°.

@ If r(x) and residues of ¢ are chosen cleverly, can obtain
significantly better p-values.
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Best results for selected k

@ Best results when r(x) = ®x(x), K C Q(¢k)-

Dimension g = 2 Dimension g = 3
k[ p CM field
5| 4 Q(Gs) k [ p | CMfield
10| 6 Q(¢s) 7 [12] Q&)
13| 6.7 | Q(vV—-13 +2V13) 9 15| Q)
16| 7 | QV-2++2) 18115 Q(c)
20| 6 Q(¢s)

@ Compare with p =8forg=2and p =18 for g = 3.
@ Ultimate goal: varieties of prime order (p = 1).
o Not there yet, but this is a start!
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