Homomorphic Signatures for Polynomial Functions

Dan Boneh and David Mandell Freeman

Stanford University, USA

Eurocrypt 2011 Tallinn, Estonia

16 May 2011

Homomorphic encryption allows users to delegate computation while ensuring *secrecy*.

		Untrusted DB		
	signed	Student	Score	Sig
4 7	grades	Adam	91	σ_1
	9.4400	Becky	73	σ_2
9		:	÷	
∎ sk		Kevin	84	σ_{k}

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

		Untrusted DB		
	signed	Student	Score	Sig
4 7	grades	Adam	91	σ_1
	gradoo	Becky	73	σ_2
9		:	÷	÷
∎ sk		Kevin	84	σ_{k}

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

What properties do we want the derived signature σ to have?

What properties do we want the derived signature σ to have?

 $\sigma =$ signature on ("grades", 87.3, "mean")

Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.

What properties do we want the derived signature σ to have?

- Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
- 2 Unforgeability: no adversary can produce a σ^* that authenticates a different mean for the "grades" data.

What properties do we want the derived signature σ to have?

- Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
- 2 Unforgeability: no adversary can produce a σ^* that authenticates a different mean for the "grades" data.
- **Output** Length efficiency: σ is short.

What properties do we want the derived signature σ to have?

- Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
- 2 Unforgeability: no adversary can produce a σ^* that authenticates a different mean for the "grades" data.
- **3** Length efficiency: σ is short.
- **9** Privacy: σ reveals nothing about data other than the mean.

As introduced by [JMSW02]:

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is the name of the file or data set (prevents mixing of data from different sets)
- Given pk, admissible function $f \in \mathcal{F}$, and signatures on

$$(\tau, m_1, 1), \ldots, (\tau, m_k, k)$$

anyone can compute a valid signature on

$$(\tau, f(m_1,\ldots,m_k)),$$

As introduced by [JMSW02]:

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is the name of the file or data set (prevents mixing of data from different sets)
- Given pk, admissible function $f \in \mathcal{F}$, and signatures on

$$(\tau, m_1, 1), \ldots, (\tau, m_k, k)$$

anyone can compute a valid signature on

```
(\tau, f(m_1,\ldots,m_k)),
```

Observation [JMSW02]

Secure homomorphic signatures for $\mathcal{F} = \{$ linear functions $\}$ cannot exist.

Our modification: authenticate the function.

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is the name of the file or data set (prevents mixing of data from different sets)
- Given pk, admissible function $f \in \mathcal{F}$, and signatures on

$$(\tau, m_1, 1), \ldots, (\tau, m_k, k)$$

anyone can compute a valid signature on

$$(\tau, f(m_1,\ldots,m_k), \omega(f)),$$

where $\omega(f)$ is an "encoding" or "digest" of the function *f*.

Our modification: authenticate the function.

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is the name of the file or data set (prevents mixing of data from different sets)
- Given pk, admissible function $f \in \mathcal{F}$, and signatures on

$$(\tau, m_1, 1), \ldots, (\tau, m_k, k)$$

anyone can compute a valid signature on

 $(\tau, f(m_1,\ldots,m_k), \omega(f)),$

where $\omega(f)$ is an "encoding" or "digest" of the function *f*.

Theorem [BFKW09,GKKR10,BF11]

Secure homomorphic signatures for $\mathcal{F} = \{$ linear functions $\}$ do exist (under certain assumptions).

${\mathcal F}$	Application
Linear	Mean
functions	Fourier transform
	Network coding

${\mathcal F}$	Application
Linear	Mean
functions	Fourier transform
	Network coding
Subsets	Message redaction

${\mathcal F}$	Application
Linear	Mean
functions	Fourier transform
	Network coding
Subsets	Message redaction
Polynomials	Standard deviation & higher moments
(bounded	Linear least-squares fit
degree)	

\mathcal{F}	Application
Linear	Mean
functions	Fourier transform
	Network coding
Subsets	Message redaction
Polynomials	Standard deviation & higher moments
(bounded	Linear least-squares fit
degree)	
Arbitrary	Non-linear estimators and regression
circuits	Data mining (decision trees, SVM, etc.)

${\cal F}$	Hom. encryption	Hom. signatures
Linear		
functions		
Subsets		
Polynomials		
(bounded		
degree)		
Arbitrary		
circuits		

${\mathcal F}$	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	
Subsets		
Polynomials	[BGN05], [GHV10]	
(bounded	(quadratic)	
degree)		
Arbitrary	[G09], [DGHV10],	
circuits	[BV11]	

${\mathcal F}$	Hom. encryption	Hom. signatures
Linear	[GM82], [B88], [P99],	[KFM04], [CJL06],
functions	others	[ZKMH07], [BFKW09],
		[GKKR10], [BF11]
Subsets		[JMSW02], others
Polynomials	[BGN05], [GHV10]	
(bounded	(quadratic)	
degree)		
Arbitrary	[G09], [DGHV10],	
circuits	[BV11]	

${\mathcal F}$	Hom. encryption	Hom. signatures
Linear	[GM82], [B88], [P99],	[KFM04], [CJL06],
functions	others	[ZKMH07], [BFKW09],
		[GKKR10], [BF11]
Subsets		[JMSW02], others
Polynomials	[BGN05], [GHV10]	
(bounded	(quadratic)	This work
degree)		
Arbitrary	[G09], [DGHV10],	
circuits	[BV11]	

How can we compute on encrypted or authenticated data?

${\cal F}$	Hom. encryption	Hom. signatures
Linear	[GM82], [B88], [P99],	[KFM04], [CJL06],
functions	others	[ZKMH07], [BFKW09],
		[GKKR10], [BF11]
Subsets		[JMSW02], others
Polynomials	[BGN05], [GHV10]	
(bounded	(quadratic)	This work
degree)		
Arbitrary	[G09], [DGHV10],	
circuits	[BV11]	

Specifically, we construct secure, length-efficient,

 $\mathcal F\text{-homomorphic signatures for}$

 $\mathcal{F} = \{ \text{polynomials of bounded degree with small coefficients} \}$

Related Concepts

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f, y)

$$\exists (\vec{m}, \sigma) \text{ s.t. } \begin{cases} y = f(\vec{m}) \text{ and} \\ \text{Verify}(pk, \vec{m}, \sigma) = 1. \end{cases}$$

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f, y)

$$\exists (\vec{m}, \sigma) \text{ s.t. } \begin{cases} y = f(\vec{m}) & \text{and} \\ \text{Verify}(pk, \vec{m}, \sigma) = 1. \end{cases}$$

- Inefficient (requires PCP theorem).
- Hard to compose functions [V07].
- Need random oracle or non-falsifiable assumption [GW11].

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f, y)

$$\exists (\vec{m}, \sigma) \text{ s.t. } \begin{cases} y = f(\vec{m}) & \text{and} \\ \text{Verify}(pk, \vec{m}, \sigma) = 1. \end{cases}$$

- Inefficient (requires PCP theorem).
- Hard to compose functions [V07].
- Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to verify certificate that computation was done correctly.

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f, y)

$$\exists (\vec{m}, \sigma) \text{ s.t. } \begin{cases} y = f(\vec{m}) & \text{and} \\ \text{Verify}(pk, \vec{m}, \sigma) = 1. \end{cases}$$

- Inefficient (requires PCP theorem).
- Hard to compose functions [V07].
- Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to verify certificate that computation was done correctly.

• Homomorphic signatures allow third party verification.

Application: Least Squares Fits

For a data set $\{(x_i, y_i)\}_{i=1}^k$, the degree *d* least squares fit is a polynomial

$$f(x) = c_0 + c_1 x + \dots + c_d x^d$$

that "best" approximates the y values.

For a data set $\{(x_i, y_i)\}_{i=1}^k$, the degree *d* least squares fit is a polynomial

$$f(x) = c_0 + c_1 x + \cdots + c_d x^d$$

that "best" approximates the y values.

For a data set $\{(x_i, y_i)\}_{i=1}^k$, the degree *d* least squares fit is a polynomial

$$f(x) = c_0 + c_1 x + \dots + c_d x^d$$

that "best" approximates the y values.

For a data set $\{(x_i, y_i)\}_{i=1}^k$, the degree *d* least squares fit is a polynomial

$$f(x) = c_0 + c_1 x + \dots + c_d x^d$$

that "best" approximates the y values.

Dan Boneh and David Mandell Freeman

Homomorphic Signatures for Polynomial Functions

Authenticating a least-squares fit (x-values only)

Coefficients c_j are rational functions of sampled x and y values.

- Coefficients *c_j* are rational functions of sampled *x* and *y* values.
- However: $det(X^tX) \cdot c_i$ are polynomial functions of x and y.

Formula: $det(X^tX) \cdot c_j = polynomial in \{x_i, y_i\}$

 United Nations stores signed data on server using polynomially homomorphic signature.

Formula: $det(X^tX) \cdot c_j = polynomial in \{x_i, y_i\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $det(X^tX)$ and $det(X^tX) \cdot \vec{c}$.

Formula: $det(X^tX) \cdot c_j = polynomial in \{x_i, y_i\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $det(X^tX)$ and $det(X^tX) \cdot \vec{c}$.
- User can compute least-squares fit from server's values.

Formula: $det(X^tX) \cdot c_j = polynomial in \{x_i, y_i\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $det(X^tX)$ and $det(X^tX) \cdot \vec{c}$.
- User can compute least-squares fit from server's values.
- Linear fit can be computed using degree 3 polynomials.

Homomorphic Signatures: Our Construction

pk: $\Lambda \subset \mathbb{Z}^n$ a lattice (full-rank additive subgroup), defined by "bad" basis.

pk: $\Lambda \subset \mathbb{Z}^n$ a lattice (full-rank additive subgroup), defined by "bad" basis.

sk: "good" basis of Λ .

- *pk*: $\Lambda \subset \mathbb{Z}^n$ a lattice (full-rank additive subgroup), defined by "bad" basis.
- sk: "good" basis of Λ.

$$\begin{array}{l} H: \ \{0,1\}^* \to \mathbb{Z}^n / \Lambda \\ (\text{fix unique representatives}) \end{array}$$

- *pk*: $\Lambda \subset \mathbb{Z}^n$ a lattice (full-rank additive subgroup), defined by "bad" basis.
- sk: "good" basis of Λ.
- $\begin{array}{l} H: \ \{0,1\}^* \to \mathbb{Z}^n / \Lambda \\ (\mbox{fix unique representatives}). \end{array}$
 - Sign(sk, m) = short vector σ ∈ Λ + H(m).

- *pk*: $\Lambda \subset \mathbb{Z}^n$ a lattice (full-rank additive subgroup), defined by "bad" basis.
- sk: "good" basis of Λ.
- $\begin{array}{l} H: \ \{0,1\}^* \to \mathbb{Z}^n / \Lambda \\ (\mbox{fix unique representatives}). \end{array}$
 - Sign(sk, m) = short vector σ ∈ Λ + H(m).
 - Verify(pk, m, σ): check that
 - **1** σ is short,
 - $o \mod \Lambda = H(m).$

- *pk*: $\Lambda \subset \mathbb{Z}^n$ a lattice (full-rank additive subgroup), defined by "bad" basis.
- sk: "good" basis of Λ.
- $\begin{array}{l} H: \ \{0,1\}^* \to \mathbb{Z}^n / \Lambda \\ (\mbox{fix unique representatives}). \end{array}$
 - Sign(sk, m) = short vector σ ∈ Λ + m.
 - Verify(pk, m, σ): check that
 - σ is short,
 - 2 $\sigma \mod \Lambda = m$.

What if we encode *m* in \mathbb{Z}^n / Λ directly?

- *pk*: $\Lambda \subset \mathbb{Z}^n$ a lattice (full-rank additive subgroup), defined by "bad" basis.
- sk: "good" basis of Λ.
- $\begin{array}{l} H: \ \{0,1\}^* \to \mathbb{Z}^n / \Lambda \\ (\mbox{fix unique representatives}). \end{array}$
 - Sign(sk, m) = short vector σ ∈ Λ + m.
 - Verify(pk, m, σ): check that
 - σ is short,
 - 2 $\sigma \mod \Lambda = m$.

What if we encode m in \mathbb{Z}^n/Λ directly? Then signatures are linearly homomorphic:

$$(\sigma_1 + \sigma_2)$$
 is short, $(\sigma_1 + \sigma_2) \mod \Lambda = m_1 + m_2$

so $\sigma_1 + \sigma_2$ authenticates $m_1 + m_2!$

Valid signature doesn't imply function was computed correctly.

Valid signature doesn't imply function was computed correctly.

Valid signature doesn't imply function was computed correctly.

• Honest DB outputs $87.3 = \frac{1}{k} \sum s_i$ and signature $\sigma = \frac{1}{k} \sum \sigma_i$.

Valid signature doesn't imply function was computed correctly.

- Honest DB outputs $87.3 = \frac{1}{k} \sum s_i$ and signature $\sigma = \frac{1}{k} \sum \sigma_i$.
- Malicious DB outputs $18.0 = s_1 s_2$ and signature $\sigma = \sigma_1 \sigma_2$.

Valid signature doesn't imply function was computed correctly.

- Honest DB outputs $87.3 = \frac{1}{k} \sum s_i$ and signature $\sigma = \frac{1}{k} \sum \sigma_i$.
- Malicious DB outputs $18.0 = s_1 s_2$ and signature $\sigma = \sigma_1 \sigma_2$.
- σ authenticates 18, but 18 is not the mean!

Use a second lattice to authenticate functions:

•
$$\Lambda_2 \subset \mathbb{Z}^n$$
 distinct from $\Lambda_1 := \Lambda$.

Use a second lattice to authenticate functions:

•
$$\Lambda_2 \subset \mathbb{Z}^n$$
 distinct from $\Lambda_1 := \Lambda$.

"Encode" functions f as elements $\omega(f) \in \mathbb{Z}^n / \Lambda_2$. Sign functions by computing

Sign(
$$f$$
) := short vector in ($\Lambda_2 + \omega(f)$).

Use a second lattice to authenticate functions:

•
$$\Lambda_2 \subset \mathbb{Z}^n$$
 distinct from $\Lambda_1 := \Lambda$.

"Encode" functions f as elements $\omega(f) \in \mathbb{Z}^n / \Lambda_2$. Sign functions by computing

Sign(
$$f$$
) := short vector in ($\Lambda_2 + \omega(f)$).

If "encoding" $\omega(\cdot)$ is linear, (i.e., $\omega(f) + \omega(g) = \omega(f+g)$) signatures are linear on the space of functions.

"Intersection method" binds messages to functions

Messages $m \in \mathbb{Z}^n / \Lambda_1$, functions f encoded as $\omega(f) \in \mathbb{Z}^n / \Lambda_2$.

"Intersection method" binds messages to functions

Messages $m \in \mathbb{Z}^n / \Lambda_1$, functions f encoded as $\omega(f) \in \mathbb{Z}^n / \Lambda_2$.

Define signature as simultaneous GPV signature on $(m, \omega(f))$.

- Sign(*m*) = short vector in $(\Lambda_1 + m) \cap (\Lambda_2 + \omega(f))$.
 - sk = "good" basis of $\Lambda_1 \cap \Lambda_2$.

Messages $m \in \mathbb{Z}^n / \Lambda_1$, functions f encoded as $\omega(f) \in \mathbb{Z}^n / \Lambda_2$.

Define signature as simultaneous GPV signature on $(m, \omega(f))$.

• Sign(m) = short vector in $(\Lambda_1 + m) \cap (\Lambda_2 + \omega(f))$.

sk = "good" basis of $\Lambda_1 \cap \Lambda_2$.

- Verify(σ): check that
 - σ is short,
 σ mod Λ₁ = m,

3
$$\sigma \mod \Lambda_2 = \omega(f).$$

Messages $m \in \mathbb{Z}^n / \Lambda_1$, functions f encoded as $\omega(f) \in \mathbb{Z}^n / \Lambda_2$.

Define signature as simultaneous GPV signature on $(m, \omega(f))$.

• Sign(m) = short vector in $(\Lambda_1 + m) \cap (\Lambda_2 + \omega(f))$.

sk = "good" basis of $\Lambda_1 \cap \Lambda_2$.

- Verify(σ): check that
 - σ is short,
 - 2 $\sigma \mod \Lambda_1 = m$,
 - $o \mod \Lambda_2 = \omega(f).$
- Evaluate(f, (σ_1 ,..., σ_k)) = $f(\sigma_1$,..., σ_k) for linear f. If σ_i = Sign(m_i), output authenticates $f(m_1,...,m_k)$.

Linearly homomorphic scheme: messages in \mathbb{Z}^n/Λ_1 , functions encoded in \mathbb{Z}^n/Λ_2 , signatures in \mathbb{Z}^n .

Verification computes a linear map

 \Rightarrow adding signatures corresponds to adding messages.

Linearly homomorphic scheme: messages in \mathbb{Z}^n/Λ_1 , functions encoded in \mathbb{Z}^n/Λ_2 , signatures in \mathbb{Z}^n .

Verification computes a linear map

 \Rightarrow adding signatures corresponds to adding messages.

What if \mathbb{Z}^n has a ring structure and Λ_1, Λ_2 are ideal lattices?

Linearly homomorphic scheme: messages in \mathbb{Z}^n/Λ_1 , functions encoded in \mathbb{Z}^n/Λ_2 , signatures in \mathbb{Z}^n .

Verification computes a linear map

 \Rightarrow adding signatures corresponds to adding messages.

What if \mathbb{Z}^n has a ring structure and Λ_1, Λ_2 are ideal lattices?

Then verification computes a ring homomorphism ⇒ adding or multiplying signatures corresponds to adding or multiplying messages.

Linearly homomorphic scheme: messages in \mathbb{Z}^n/Λ_1 , functions encoded in \mathbb{Z}^n/Λ_2 , signatures in \mathbb{Z}^n .

Verification computes a linear map

 \Rightarrow adding signatures corresponds to adding messages.

What if \mathbb{Z}^n has a ring structure and Λ_1, Λ_2 are ideal lattices?

Then verification computes a ring homomorphism ⇒ adding or multiplying signatures corresponds to adding or multiplying messages.

 Same construction now authenticates polynomial functions on messages.

Linearly homomorphic scheme: messages in \mathbb{Z}^n/Λ_1 , functions encoded in \mathbb{Z}^n/Λ_2 , signatures in \mathbb{Z}^n .

Verification computes a linear map

 \Rightarrow adding signatures corresponds to adding messages.

What if \mathbb{Z}^n has a ring structure and Λ_1, Λ_2 are ideal lattices?

Then verification computes a ring homomorphism ⇒ adding or multiplying signatures corresponds to adding or multiplying messages.

- Same construction now authenticates polynomial functions on messages.
- Length of signature vector grows with polynomial degree
 ⇒ degree must be bounded to ensure security.

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages in file τ).

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages in file τ).

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages in file τ).

Adversary

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages in file τ).

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages in file τ).

Adversary

Security

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages in file τ).

Security

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages in file τ).

Security

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages in file τ).

Adversary wins if *f* admissible, σ^* verifies for (τ^*, m^*, f) , and

1 τ^* not obtained in response to a query, or

2)
$$\tau^* = \tau$$
 for query (m_1, \ldots, m_k) , and $m^* \neq f(m_1, \ldots, m_k)$.

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_2 .

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_2 .

To implement system securely:

Choose Λ_2 such that finding short vectors in Λ_2 is hard!

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_2 .

To implement system securely:

Choose Λ_2 such that finding short vectors in Λ_2 is hard!

Linear system: use "*q*-ary" lattices defined by a random matrix over 𝔽_{*q*}.

Finding short vectors is as hard as solving worst-case lattice problems [A96,MR04,GPV08].

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_2 .

To implement system securely:

Choose Λ_2 such that finding short vectors in Λ_2 is hard!

Linear system: use "*q*-ary" lattices defined by a random matrix over 𝔽_{*q*}.

Finding short vectors is as hard as solving worst-case lattice problems [A96,MR04,GPV08].

 Polynomial system: use ideal lattices proposed for homomorphic encryption [SV10].

Privacy

Privacy property: derived signature on $f(m_1, ..., m_k)$ reveals nothing about $m_1, ..., m_k$ beyond value of f.

Privacy

Privacy property: derived signature on $f(m_1, ..., m_k)$ reveals nothing about $m_1, ..., m_k$ beyond value of f.

Specifically: given data sets

$$\vec{m} = (m_1, \ldots, m_k), \qquad \vec{m}' = (m'_1, \ldots, m'_k)$$

and admissible function f with

$$f(\vec{m})=f(\vec{m}'),$$

even unbounded adversary cannot distinguish derived signature on $f(\vec{m})$ from derived signature on $f(\vec{m}')$.

Privacy

Privacy property: derived signature on $f(m_1, ..., m_k)$ reveals nothing about $m_1, ..., m_k$ beyond value of f.

Specifically: given data sets

$$\vec{m} = (m_1, \ldots, m_k), \qquad \vec{m}' = (m'_1, \ldots, m'_k)$$

and admissible function f with

$$f(\vec{m})=f(\vec{m}'),$$

even unbounded adversary cannot distinguish derived signature on $f(\vec{m})$ from derived signature on $f(\vec{m}')$.

Theorem

Our linearly homomorphic signatures are private.

- Privacy for polynomially homomorphic signatures.
 - Current polynomial construction is not private.

- Privacy for polynomially homomorphic signatures.
 - Current polynomial construction is not private.
- Remove random oracle from security proof.
 - Achieved for linear scheme.
 - Work in progress for polynomial scheme.

- Privacy for polynomially homomorphic signatures.
 - Current polynomial construction is not private.
- Remove random oracle from security proof.
 - Achieved for linear scheme.
 - Work in progress for polynomial scheme.
- Reduce security to worst-case lattice problems.
 - Achieved for linear scheme.
 - Achieve for polynomial scheme using Gentry's techniques?

- Privacy for polynomially homomorphic signatures.
 - Current polynomial construction is not private.
- Remove random oracle from security proof.
 - Achieved for linear scheme.
 - Work in progress for polynomial scheme.
- Reduce security to worst-case lattice problems.
 - Achieved for linear scheme.
 - Achieve for polynomial scheme using Gentry's techniques?
- Fully homomorphic signatures!
 - Adapt "bootstrapping" approach???

- Privacy for polynomially homomorphic signatures.
 - Current polynomial construction is not private.
- Remove random oracle from security proof.
 - Achieved for linear scheme.
 - Work in progress for polynomial scheme.
- Reduce security to worst-case lattice problems.
 - Achieved for linear scheme.
 - Achieve for polynomial scheme using Gentry's techniques?
- Fully homomorphic signatures!
 - Adapt "bootstrapping" approach???

Thank you!