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Homomorphic Signatures

Homomorphic encryption allows users to delegate computation
while ensuring secrecy.
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Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

σ = signature on
(“grades”, 87.3, “mean”)

1 Validity: σ authenticates 87.3 as the mean, and that the
mean was computed correctly.

2 Unforgeability: no adversary can produce a σ∗ that
authenticates a different mean for the “grades” data.

3 Length efficiency: σ is short.

4 Privacy: σ reveals nothing about data other than the mean.
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More generally: F-homomorphic signatures

As introduced by [JMSW02]:
F is a set of “admissible” functions on messages.
τ is the name of the file or data set

(prevents mixing of data from different sets)
Given pk , admissible function f ∈ F , and signatures on

(τ,m1,1), . . . , (τ,mk , k)

anyone can compute a valid signature on

(τ, f (m1, . . . ,mk )),

Observation [JMSW02]

Secure homomorphic signatures for F = {linear functions}
cannot exist.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



More generally: F-homomorphic signatures

As introduced by [JMSW02]:
F is a set of “admissible” functions on messages.
τ is the name of the file or data set

(prevents mixing of data from different sets)
Given pk , admissible function f ∈ F , and signatures on

(τ,m1,1), . . . , (τ,mk , k)

anyone can compute a valid signature on

(τ, f (m1, . . . ,mk )),

Observation [JMSW02]

Secure homomorphic signatures for F = {linear functions}
cannot exist.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



More generally: F-homomorphic signatures

Our modification: authenticate the function.
F is a set of “admissible” functions on messages.
τ is the name of the file or data set

(prevents mixing of data from different sets)
Given pk , admissible function f ∈ F , and signatures on

(τ,m1,1), . . . , (τ,mk , k)

anyone can compute a valid signature on

(τ, f (m1, . . . ,mk ), ω(f )),

where ω(f ) is an “encoding” or “digest” of the function f .

Theorem [BFKW09,GKKR10,BF11]

Secure homomorphic signatures for F = {linear functions}
do exist (under certain assumptions).
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Applications

What are homomorphic signatures good for?

F Application
Linear Mean
functions Fourier transform

Network coding

Subsets Message redaction
Polynomials Standard deviation & higher moments
(bounded Linear least-squares fit
degree)
Arbitrary Non-linear estimators and regression
circuits Data mining (decision trees, SVM, etc.)
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State of the art

How can we compute on encrypted or authenticated data?

F Hom. encryption Hom. signatures
Linear

[GM82], [B88], [P99], [KFM04], [CJL06],

functions

others [ZKMH07], [BFKW09],
[GKKR10], [BF11]

Subsets

[JMSW02], others

Polynomials

[BGN05], [GHV10]

(bounded

(quadratic) This work

degree)
Arbitrary

[G09], [DGHV10],

circuits

[BV11]

Specifically, we construct secure, length-efficient,
F-homomorphic signatures for

F = {polynomials of bounded degree with small coefficients}
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Related Concepts

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f , y)

∃ (~m, σ) s.t.
{

y = f (~m) and
Verify(pk , ~m, σ) = 1.

Inefficient (requires PCP theorem).
Hard to compose functions [V07].
Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to
verify certificate that computation was done correctly.

Homomorphic signatures allow third party verification.
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Application: Least Squares Fits
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Least squares fits — the basics

For a data set {(xi , yi)}ki=1, the degree d least squares fit is a
polynomial

f (x) = c0 + c1x + · · ·+ cdxd

that “best” approximates the y values.

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

Formula:

~c = (X tX )−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.
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Authenticating a least-squares fit (x-values only)
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Formula:

~c = (X tX )−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

United Nations stores signed data on server using
polynomially homomorphic signature.
Server can authenticate det(X tX ) and det(X tX ) · ~c.
User can compute least-squares fit from server’s values.
Linear fit can be computed using degree 3 polynomials.
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Homomorphic Signatures:
Our Construction
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Building block: GPV Signatures

pk : Λ ⊂ Zn a lattice (full-rank additive
subgroup), defined by “bad” basis.

sk : “good” basis of Λ.
H: {0,1}∗ → Zn/Λ

(fix unique representatives).
Sign(sk ,m) =

short vector σ ∈ Λ + m.
Verify(pk ,m, σ): check that

1 σ is short,
2 σ mod Λ = m.

b1

b2

What if we encode m in Zn/Λ directly?
Then signatures are linearly homomorphic:

(σ1 + σ2) is short, (σ1 + σ2) mod Λ = m1 + m2

so σ1 + σ2 authenticates m1 + m2!
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Problem: Removing hash function destroys security

Valid signature doesn’t imply function was computed correctly.

sk

signed
grades

Untrusted DB
Student Score Sig

1 91 σ1
2 73 σ2
...

...
...

k 84 σk

mean?

18.0, σ pk

Honest DB outputs 87.3 = 1
k
∑

si and signature
σ = 1

k
∑
σi .

Malicious DB outputs 18.0 = s1 − s2 and signature
σ = σ1 − σ2.
σ authenticates 18, but 18 is not the mean!
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How to recover security

Use a second lattice to authenticate functions:

Λ2 ⊂ Zn distinct from Λ1 := Λ.

“Encode” functions f as elements ω(f ) ∈ Zn/Λ2.
Sign functions by computing

Sign(f ) := short vector in (Λ2 + ω(f )).

If “encoding” ω(·) is linear, (i.e., ω(f ) + ω(g) = ω(f + g))
signatures are linear on the space of functions.
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“Intersection method” binds messages to functions

Messages m ∈ Zn/Λ1, functions f encoded as ω(f ) ∈ Zn/Λ2.

Define signature as simultaneous GPV signature on (m, ω(f )).

Sign(m) = short vector in (Λ1 + m) ∩ (Λ2 + ω(f )).
sk = “good” basis of Λ1 ∩ Λ2.

Verify(σ): check that
1 σ is short,
2 σ mod Λ1 = m,
3 σ mod Λ2 = ω(f ).

Evaluate(f , (σ1, . . . , σk )) = f (σ1, . . . , σk ) for linear f .
If σi = Sign(mi ), output authenticates f (m1, . . . ,mk ).
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Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.
Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.
Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.
Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.

Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.
Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f ) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f ), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk ), and m∗ 6= f (m1, . . . ,mk ).
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Security Theorem

Theorem
An adversary that wins the security game (in the random oracle
model) can be used to compute a short nonzero vector in Λ2.

To implement system securely:
Choose Λ2 such that finding short vectors in Λ2 is hard!

Linear system: use “q-ary” lattices defined by a random
matrix over Fq.

Finding short vectors is as hard as solving worst-case
lattice problems [A96,MR04,GPV08].

Polynomial system: use ideal lattices proposed for
homomorphic encryption [SV10].
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Privacy

Privacy property: derived signature on f (m1, . . . ,mk ) reveals
nothing about m1, . . . ,mk beyond value of f .

Specifically: given data sets

~m = (m1, . . . ,mk ), ~m′ = (m′1, . . . ,m
′
k )

and admissible function f with

f (~m) = f (~m′),

even unbounded adversary cannot distinguish derived
signature on f (~m) from derived signature on f (~m′).

Theorem
Our linearly homomorphic signatures are private.
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Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions



Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions


