Homomorphic Signatures for Polynomial Functions

Dan Boneh and David Mandell Freeman

Stanford University, USA

Eurocrypt 2011
Tallinn, Estonia

16 May 2011

Homomorphic Signatures

Homomorphic encryption allows users to delegate computation while ensuring secrecy.

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation while ensuring integrity.

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation while ensuring integrity.

Untrusted DB

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation while ensuring integrity.

-	signed	Untrusted DB		
		Student	Score	Sig
	$\xrightarrow[\text { grades }]{ }$	Adam	91	σ_{1}
		Becky	73	σ_{2}
9			:	\vdots
sk		Kevin	84	σ_{k}

$\sigma_{1}=$ signature on
("grades", 91, "Adam")

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation while ensuring integrity.

-	signed	Untrusted DB		
		Student	Score	Sig
	$\xrightarrow[\text { grades }]{ }$	Adam	91	σ_{1}
		Becky	73	σ_{2}
			!	!
s		Kevin	84	σ_{k}

$\sigma_{1}=$ signature on
("grades", 91, "Adam")

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation while ensuring integrity.

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation while ensuring integrity.

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

$$
\begin{gathered}
\sigma=\text { signature on } \\
\text { ("grades", 87.3, "mean") }
\end{gathered}
$$

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

$$
\begin{gathered}
\sigma=\text { signature on } \\
\text { ("grades", 87.3, "mean") }
\end{gathered}
$$

(1) Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

$$
\begin{gathered}
\sigma=\text { signature on } \\
\text { ("grades", 87.3, "mean") }
\end{gathered}
$$

(1) Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
(2) Unforgeability: no adversary can produce a σ^{*} that authenticates a different mean for the "grades" data.

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

$$
\begin{gathered}
\sigma=\text { signature on } \\
\text { ("grades", 87.3, "mean") }
\end{gathered}
$$

(1) Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
(2) Unforgeability: no adversary can produce a σ^{*} that authenticates a different mean for the "grades" data.
(3) Length efficiency: σ is short.

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

$$
\begin{gathered}
\sigma=\text { signature on } \\
\text { ("grades", 87.3, "mean") }
\end{gathered}
$$

(1) Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
(2) Unforgeability: no adversary can produce a σ^{*} that authenticates a different mean for the "grades" data.
(3) Length efficiency: σ is short.
(4) Privacy: σ reveals nothing about data other than the mean.

More generally: \mathcal{F}-homomorphic signatures

As introduced by [JMSW02]:

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is the name of the file or data set (prevents mixing of data from different sets)
- Given pk, admissible function $f \in \mathcal{F}$, and signatures on

$$
\left(\tau, m_{1}, 1\right), \ldots,\left(\tau, m_{k}, k\right)
$$

anyone can compute a valid signature on

$$
\left(\tau, f\left(m_{1}, \ldots, m_{k}\right)\right)
$$

More generally: \mathcal{F}-homomorphic signatures

As introduced by [JMSW02]:

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is the name of the file or data set (prevents mixing of data from different sets)
- Given pk, admissible function $f \in \mathcal{F}$, and signatures on

$$
\left(\tau, m_{1}, 1\right), \ldots,\left(\tau, m_{k}, k\right)
$$

anyone can compute a valid signature on

$$
\left(\tau, f\left(m_{1}, \ldots, m_{k}\right)\right)
$$

Observation [JMSW02]

Secure homomorphic signatures for $\mathcal{F}=\{$ linear functions $\}$ cannot exist.

More generally: \mathcal{F}-homomorphic signatures

Our modification: authenticate the function.

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is the name of the file or data set
(prevents mixing of data from different sets)
- Given $p k$, admissible function $f \in \mathcal{F}$, and signatures on

$$
\left(\tau, m_{1}, 1\right), \ldots,\left(\tau, m_{k}, k\right)
$$

anyone can compute a valid signature on

$$
\left(\tau, f\left(m_{1}, \ldots, m_{k}\right), \omega(f)\right)
$$

where $\omega(f)$ is an "encoding" or "digest" of the function f.

More generally: \mathcal{F}-homomorphic signatures

Our modification: authenticate the function.

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is the name of the file or data set (prevents mixing of data from different sets)
- Given pk, admissible function $f \in \mathcal{F}$, and signatures on

$$
\left(\tau, m_{1}, 1\right), \ldots,\left(\tau, m_{k}, k\right)
$$

anyone can compute a valid signature on

$$
\left(\tau, f\left(m_{1}, \ldots, m_{k}\right), \omega(f)\right)
$$

where $\omega(f)$ is an "encoding" or "digest" of the function f.

Theorem [BFKW09,GKKR10,BF11]

Secure homomorphic signatures for $\mathcal{F}=\{$ linear functions $\}$ do exist (under certain assumptions).

Applications

What are homomorphic signatures good for?

\mathcal{F}	Application
Linear functions	Mean
	Fourier transform Network coding

Applications

What are homomorphic signatures good for?

\mathcal{F}	Application
Linear functions	Mean Fourier transform Network coding
Subsets	Message redaction

Applications

What are homomorphic signatures good for?

\mathcal{F}	Application
Linear functions	Mean Fourier transform Network coding
Subsets	Message redaction
Polynomials (bounded degree)	Standard deviation \& higher moments Linear least-squares fit

Applications

What are homomorphic signatures good for?

\mathcal{F}	Application
Linear functions	Mean Fourier transform Network coding
Subsets	Message redaction
Polynomials (bounded degree)	Standard deviation \& higher moments Linear least-squares fit
Arbitrary circuits	Non-linear estimators and regression Data mining (decision trees, SVM, etc.)

State of the art

How can we compute on encrypted or authenticated data?

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions		
Subsets		
Polynomials (bounded degree)		
Arbitrary circuits		

State of the art

How can we compute on encrypted or authenticated data?

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	
Subsets	[BGN05], [GHV10]	
Polynomials (bounded degree)	(quadratic)	
Arbitrary circuits	[G09], [DGHV10],	

State of the art

How can we compute on encrypted or authenticated data?

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	[KFM04], [CJL06], [ZKMH07], [BFKW09], [GKKR10], [BF11]
Subsets	[JMSW02], others	
Polynomials (bounded degree)	[BGN05], [GHV10] (quadratic)	
Arbitrary circuits	[G09], [DGHV10], [BV11]	

State of the art

How can we compute on encrypted or authenticated data?

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	[KFM04], [CJL06], [ZKMH07], [BFKWW09], [GKKR10], [BF11]
Subsets	[JMSW02], others	
Polynomials (bounded degree)	[BGN05], [GHV10] (quadratic)	This work
Arbitrary circuits	[G09], [DGHV10], [BV11]	

State of the art

How can we compute on encrypted or authenticated data?

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	[KFM04], [CJL06], [ZKMH07], [BFKW09], [GKKR10], [BF11]
Subsets	[JMSW02], others	
Polynomials (bounded degree)	[BGN05], [GHV10] (quadratic)	This work
Arbitrary circuits	[G09], [DGHV10], [BV11]	

Specifically, we construct secure, length-efficient, \mathcal{F}-homomorphic signatures for
$\mathcal{F}=\{$ polynomials of bounded degree with small coefficients $\}$

Computationally Sound Proofs [MOO]:

Server computes a short proof of knowledge that for given (f, y)

$$
\exists(\vec{m}, \sigma) \text { s.t. }\left\{\begin{array}{l}
y=f(\vec{m}) \quad \text { and } \\
\operatorname{Verify}(p k, \vec{m}, \sigma)=1 .
\end{array}\right.
$$

Related Concepts

Computationally Sound Proofs [MOO]:

Server computes a short proof of knowledge that for given (f, y)

$$
\exists(\vec{m}, \sigma) \text { s.t. }\left\{\begin{array}{l}
y=f(\vec{m}) \quad \text { and } \\
\operatorname{Verify}(p k, \vec{m}, \sigma)=1 .
\end{array}\right.
$$

- Inefficient (requires PCP theorem).
- Hard to compose functions [V07].
- Need random oracle or non-falsifiable assumption [GW11].

Related Concepts

Computationally Sound Proofs [MOO]:

Server computes a short proof of knowledge that for given (f, y)

$$
\exists(\vec{m}, \sigma) \text { s.t. }\left\{\begin{array}{l}
y=f(\vec{m}) \quad \text { and } \\
\operatorname{Verify}(p k, \vec{m}, \sigma)=1 .
\end{array}\right.
$$

- Inefficient (requires PCP theorem).
- Hard to compose functions [V07].
- Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to verify certificate that computation was done correctly.

Related Concepts

Computationally Sound Proofs [MOO]:

Server computes a short proof of knowledge that for given (f, y)

$$
\exists(\vec{m}, \sigma) \text { s.t. }\left\{\begin{array}{l}
y=f(\vec{m}) \quad \text { and } \\
\operatorname{Verify}(p k, \vec{m}, \sigma)=1 .
\end{array}\right.
$$

- Inefficient (requires PCP theorem).
- Hard to compose functions [V07].
- Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to verify certificate that computation was done correctly.

- Homomorphic signatures allow third party verification.

Application: Least Squares Fits

Least squares fits — the basics

For a data set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$, the degree d least squares fit is a polynomial

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}
$$

that "best" approximates the y values.

Least squares fits — the basics

For a data set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$, the degree d least squares fit is a polynomial

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}
$$

that "best" approximates the y values.

Least squares fits — the basics

For a data set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$, the degree d least squares fit is a polynomial

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}
$$

that "best" approximates the y values.

Least squares fits — the basics

For a data set $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$, the degree d least squares fit is a polynomial

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}
$$

that "best" approximates the y values.

Authenticating a least-squares fit (x-values only)

Formula:

$$
\vec{c}=\left(X^{t} X\right)^{-1} X^{t} \vec{y}
$$

$\vec{c}=$ vector of coefficients of $f(x)$,
$X=$ Vandermonde matrix of x values,
$\vec{y}=$ vector of y values.

Authenticating a least-squares fit (x-values only)

$$
\begin{array}{cl}
\text { Formula: } & \vec{c}=\text { vector of coefficients of } f(x), \\
\vec{c}=\left(X^{t} X\right)^{-1} X^{t} \vec{y} & \vec{y}=\text { Vandermonde matrix of } x \text { values, } \\
& \vec{y}=\text { vector of } y \text { values. }
\end{array}
$$

- Coefficients c_{j} are rational functions of sampled x and y values.

Authenticating a least-squares fit (x-values only)

$$
\begin{array}{cl}
\text { Formula: } & \vec{c}=\text { vector of coefficients of } f(x), \\
\vec{c}=\left(X^{t} X\right)^{-1} X^{t} \vec{y} & \left.\begin{array}{l}
\vec{y}=\text { Vandermonde matrix of } x \text { values, } \\
\\
\end{array}\right)=\text { vector of } y \text { values. }
\end{array}
$$

- Coefficients c_{j} are rational functions of sampled x and y values.
- However: $\operatorname{det}\left(X^{t} X\right) \cdot c_{j}$ are polynomial functions of x and y.

Authenticating a least-squares fit (x-values only)

Formula: $\operatorname{det}\left(X^{t} X\right) \cdot c_{j}=$ polynomial in $\left\{x_{i}, y_{i}\right\}$

- United Nations stores signed data on server using polynomially homomorphic signature.

Authenticating a least-squares fit (x-values only)

Formula: $\quad \operatorname{det}\left(X^{t} X\right) \cdot c_{j}=$ polynomial in $\left\{x_{i}, y_{i}\right\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $\operatorname{det}\left(X^{t} X\right)$ and $\operatorname{det}\left(X^{t} X\right) \cdot \vec{c}$.

Authenticating a least-squares fit (x-values only)

Formula: $\quad \operatorname{det}\left(X^{t} X\right) \cdot c_{j}=$ polynomial in $\left\{x_{i}, y_{i}\right\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $\operatorname{det}\left(X^{t} X\right)$ and $\operatorname{det}\left(X^{t} X\right) \cdot \vec{c}$.
- User can compute least-squares fit from server's values.

Authenticating a least-squares fit (x-values only)

Formula: $\operatorname{det}\left(X^{t} X\right) \cdot c_{j}=$ polynomial in $\left\{x_{i}, y_{i}\right\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $\operatorname{det}\left(X^{t} X\right)$ and $\operatorname{det}\left(X^{t} X\right) \cdot \vec{c}$.
- User can compute least-squares fit from server's values.
- Linear fit can be computed using degree 3 polynomials.

Homomorphic Signatures: Our Construction

Building block: GPV Signatures

pk: $\Lambda \subset \mathbb{Z}^{n}$ a lattice (full-rank additive subgroup), defined by "bad" basis.

Building block: GPV Signatures

$p k: \Lambda \subset \mathbb{Z}^{n}$ a lattice (full-rank additive subgroup), defined by "bad" basis. sk: "good" basis of \wedge.

Building block: GPV Signatures

$p k: \Lambda \subset \mathbb{Z}^{n}$ a lattice (full-rank additive subgroup), defined by "bad" basis.
sk: "good" basis of \wedge.
$H:\{0,1\}^{*} \rightarrow \mathbb{Z}^{n} / \Lambda$
(fix unique representatives).

Building block: GPV Signatures

$p k: \Lambda \subset \mathbb{Z}^{n}$ a lattice (full-rank additive subgroup), defined by "bad" basis.
sk: "good" basis of Λ.
$H:\{0,1\}^{*} \rightarrow \mathbb{Z}^{n} / \Lambda$
(fix unique representatives).

- $\operatorname{Sign}(s k, m)=$
short vector $\sigma \in \Lambda+H(m)$.

Building block: GPV Signatures

$p k: \wedge \subset \mathbb{Z}^{n}$ a lattice (full-rank additive subgroup), defined by "bad" basis.
sk: "good" basis of Λ.
$H:\{0,1\}^{*} \rightarrow \mathbb{Z}^{n} / \Lambda$ (fix unique representatives).

- $\operatorname{Sign}(s k, m)=$ short vector $\sigma \in \Lambda+H(m)$.
- Verify $(p k, m, \sigma)$: check that
(1) σ is short,
(2) $\sigma \bmod \Lambda=H(m)$.

Building block: GPV Signatures

$p k: \Lambda \subset \mathbb{Z}^{n}$ a lattice (full-rank additive subgroup), defined by "bad" basis.
sk: "good" basis of \wedge.
$H:\{0,1\}^{*} \rightarrow \mathbb{Z}^{n} / \Lambda$
(fix unique representatives).

- $\operatorname{Sign}(s k, m)=$
short vector $\sigma \in \Lambda+m$.
- Verify $(p k, m, \sigma)$: check that
(1) σ is short,
(2) $\sigma \bmod \Lambda=m$.

What if we encode m in \mathbb{Z}^{n} / Λ directly?

Building block: GPV Signatures

$p k: \Lambda \subset \mathbb{Z}^{n}$ a lattice (full-rank additive subgroup), defined by "bad" basis.
sk: "good" basis of Λ.
$H:\{0,1\}^{*} \rightarrow \mathbb{Z}^{n} / \Lambda$
(fix unique representatives).

- $\operatorname{Sign}(s k, m)=$
short vector $\sigma \in \Lambda+m$.
- Verify $(p k, m, \sigma)$: check that
(1) σ is short,
(2) $\sigma \bmod \Lambda=m$.

What if we encode m in \mathbb{Z}^{n} / Λ directly?
Then signatures are linearly homomorphic:

$$
\left(\sigma_{1}+\sigma_{2}\right) \text { is short, } \quad\left(\sigma_{1}+\sigma_{2}\right) \bmod \Lambda=m_{1}+m_{2}
$$

so $\sigma_{1}+\sigma_{2}$ authenticates $m_{1}+m_{2}$!

Problem: Removing hash function destroys security

Valid signature doesn't imply function was computed correctly.

Problem: Removing hash function destroys security

Valid signature doesn't imply function was computed correctly.

Untrusted DB

Student	Score	Sig
1	91	σ_{1}
2	73	σ_{2}
\vdots	\vdots	\vdots
k	84	σ_{k}

Problem: Removing hash function destroys security

Valid signature doesn't imply function was computed correctly.

- Honest DB outputs $87.3=\frac{1}{k} \sum s_{i}$ and signature $\sigma=\frac{1}{k} \sum \sigma_{i}$.

Problem: Removing hash function destroys security

Valid signature doesn't imply function was computed correctly.

- Honest DB outputs $87.3=\frac{1}{k} \sum s_{i}$ and signature $\sigma=\frac{1}{k} \sum \sigma_{i}$.
- Malicious DB outputs $18.0=s_{1}-s_{2}$ and signature

$$
\sigma=\sigma_{1}-\sigma_{2}
$$

Problem: Removing hash function destroys security

Valid signature doesn't imply function was computed correctly.

Untrusted DB

Student	Score	Sig	mean?
1	91	σ_{1}	
2	73	σ_{2}	
:	:	\vdots	18.0, σ
k	84	σ_{k}	

- Honest DB outputs $87.3=\frac{1}{k} \sum s_{i}$ and signature $\sigma=\frac{1}{k} \sum \sigma_{i}$.
- Malicious DB outputs $18.0=s_{1}-s_{2}$ and signature

$$
\sigma=\sigma_{1}-\sigma_{2} .
$$

- σ authenticates 18 , but 18 is not the mean!

How to recover security

Use a second lattice to authenticate functions:

- $\Lambda_{2} \subset \mathbb{Z}^{n}$ distinct from $\Lambda_{1}:=\Lambda$.

How to recover security

Use a second lattice to authenticate functions:

- $\Lambda_{2} \subset \mathbb{Z}^{n}$ distinct from $\Lambda_{1}:=\Lambda$.
"Encode" functions f as elements $\omega(f) \in \mathbb{Z}^{n} / \Lambda_{2}$. Sign functions by computing

$$
\operatorname{Sign}(f):=\text { short vector in }\left(\Lambda_{2}+\omega(f)\right)
$$

How to recover security

Use a second lattice to authenticate functions:

- $\Lambda_{2} \subset \mathbb{Z}^{n}$ distinct from $\Lambda_{1}:=\Lambda$.
"Encode" functions f as elements $\omega(f) \in \mathbb{Z}^{n} / \Lambda_{2}$. Sign functions by computing

$$
\operatorname{Sign}(f):=\text { short vector in }\left(\Lambda_{2}+\omega(f)\right)
$$

If "encoding" $\omega(\cdot)$ is linear, (i.e., $\omega(f)+\omega(g)=\omega(f+g)$) signatures are linear on the space of functions.

"Intersection method" binds messages to functions

Messages $m \in \mathbb{Z}^{n} / \Lambda_{1}$, functions f encoded as $\omega(f) \in \mathbb{Z}^{n} / \Lambda_{2}$.

Messages $m \in \mathbb{Z}^{n} / \Lambda_{1}$, functions f encoded as $\omega(f) \in \mathbb{Z}^{n} / \Lambda_{2}$.
Define signature as simultaneous GPV signature on $(m, \omega(f)$).

- $\operatorname{Sign}(m)=$ short vector in $\left(\Lambda_{1}+m\right) \cap\left(\Lambda_{2}+\omega(f)\right)$.

$$
s k=\text { "good" basis of } \Lambda_{1} \cap \Lambda_{2} \text {. }
$$

"Intersection method" binds messages to functions

Messages $m \in \mathbb{Z}^{n} / \Lambda_{1}$, functions f encoded as $\omega(f) \in \mathbb{Z}^{n} / \Lambda_{2}$.
Define signature as simultaneous GPV signature on $(m, \omega(f)$).

- $\operatorname{Sign}(m)=$ short vector in $\left(\Lambda_{1}+m\right) \cap\left(\Lambda_{2}+\omega(f)\right)$.

$$
s k=\text { "good" basis of } \Lambda_{1} \cap \Lambda_{2}
$$

- Verify (σ) : check that
(1) σ is short,
(2) $\sigma \bmod \Lambda_{1}=m$,
(3) $\sigma \bmod \Lambda_{2}=\omega(f)$.

"Intersection method" binds messages to functions

Messages $m \in \mathbb{Z}^{n} / \Lambda_{1}$, functions f encoded as $\omega(f) \in \mathbb{Z}^{n} / \Lambda_{2}$.
Define signature as simultaneous GPV signature on $(m, \omega(f))$.

- Sign $(m)=$ short vector in $\left(\Lambda_{1}+m\right) \cap\left(\Lambda_{2}+\omega(f)\right)$.

$$
s k=\text { "good" basis of } \Lambda_{1} \cap \Lambda_{2}
$$

- Verify (σ) : check that
(1) σ is short,
(2) $\sigma \bmod \Lambda_{1}=m$,
(3) $\sigma \bmod \Lambda_{2}=\omega(f)$.
- Evaluate $\left(f,\left(\sigma_{1}, \ldots, \sigma_{k}\right)\right)=f\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ for linear f.

If $\sigma_{i}=\operatorname{Sign}\left(m_{i}\right)$, output authenticates $f\left(m_{1}, \ldots, m_{k}\right)$.

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in $\mathbb{Z}^{n} / \Lambda_{1}$, functions encoded in $\mathbb{Z}^{n} / \Lambda_{2}$, signatures in \mathbb{Z}^{n}.

Verification computes a linear map
\Rightarrow adding signatures corresponds to adding messages.

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in $\mathbb{Z}^{n} / \Lambda_{1}$, functions encoded in $\mathbb{Z}^{n} / \Lambda_{2}$, signatures in \mathbb{Z}^{n}.

Verification computes a linear map
\Rightarrow adding signatures corresponds to adding messages.

What if \mathbb{Z}^{n} has a ring structure and Λ_{1}, Λ_{2} are ideal lattices?

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in $\mathbb{Z}^{n} / \Lambda_{1}$, functions encoded in $\mathbb{Z}^{n} / \Lambda_{2}$, signatures in \mathbb{Z}^{n}.

Verification computes a linear map
\Rightarrow adding signatures corresponds to adding messages.

What if \mathbb{Z}^{n} has a ring structure and Λ_{1}, Λ_{2} are ideal lattices?

Then verification computes a ring homomorphism
\Rightarrow adding or multiplying signatures corresponds to adding or multiplying messages.

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in $\mathbb{Z}^{n} / \Lambda_{1}$, functions encoded in $\mathbb{Z}^{n} / \Lambda_{2}$, signatures in \mathbb{Z}^{n}.

Verification computes a linear map
\Rightarrow adding signatures corresponds to adding messages.

What if \mathbb{Z}^{n} has a ring structure and Λ_{1}, Λ_{2} are ideal lattices?

Then verification computes a ring homomorphism
\Rightarrow adding or multiplying signatures corresponds to adding or multiplying messages.

- Same construction now authenticates polynomial functions on messages.

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in $\mathbb{Z}^{n} / \Lambda_{1}$, functions encoded in $\mathbb{Z}^{n} / \Lambda_{2}$, signatures in \mathbb{Z}^{n}.

Verification computes a linear map
\Rightarrow adding signatures corresponds to adding messages.

What if \mathbb{Z}^{n} has a ring structure and Λ_{1}, Λ_{2} are ideal lattices?
Then verification computes a ring homomorphism
\Rightarrow adding or multiplying signatures corresponds to adding or multiplying messages.

- Same construction now authenticates polynomial functions on messages.
- Length of signature vector grows with polynomial degree \Rightarrow degree must be bounded to ensure security.

What does it mean to forge a homomorphic signature?

- Forgery is a valid signature on $\left(\tau, m^{*}, f\right)$ with $m^{*} \neq f($ messages in file $\tau)$.

Security

What does it mean to forge a homomorphic signature?

- Forgery is a valid signature on $\left(\tau, m^{*}, f\right)$ with $m^{*} \neq f($ messages in file $\tau)$.

Chall.
Adversary

Security

What does it mean to forge a homomorphic signature?

- Forgery is a valid signature on $\left(\tau, m^{*}, f\right)$ with $m^{*} \neq f($ messages in file $\tau)$.

Adversary

Security

What does it mean to forge a homomorphic signature?

- Forgery is a valid signature on $\left(\tau, m^{*}, f\right)$ with $m^{*} \neq f($ messages in file $\tau)$.

Adversary
data m_{1}, \ldots, m_{k}

Security

What does it mean to forge a homomorphic signature?

- Forgery is a valid signature on $\left(\tau, m^{*}, f\right)$ with $m^{*} \neq f($ messages in file $\tau)$.

Adversary
$\xrightarrow{\text { name } \tau, \text { sigs } \sigma_{1}, \ldots, \sigma_{k}}$

Security

What does it mean to forge a homomorphic signature?

- Forgery is a valid signature on $\left(\tau, m^{*}, f\right)$ with $m^{*} \neq f($ messages in file $\tau)$.

Adversary

Security

What does it mean to forge a homomorphic signature?

- Forgery is a valid signature on $\left(\tau, m^{*}, f\right)$ with $m^{*} \neq f($ messages in file $\tau)$.

Chall.

Adversary

Security

What does it mean to forge a homomorphic signature?

- Forgery is a valid signature on $\left(\tau, m^{*}, f\right)$ with $m^{*} \neq f($ messages in file $\tau)$.

Adversary

Adversary wins if f admissible, σ^{*} verifies for $\left(\tau^{*}, m^{*}, f\right)$, and
(1) τ^{*} not obtained in response to a query, or
(2) $\tau^{*}=\tau$ for query $\left(m_{1}, \ldots, m_{k}\right)$, and $m^{*} \neq f\left(m_{1}, \ldots, m_{k}\right)$.

Security Theorem

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_{2}.

Security Theorem

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_{2}.

To implement system securely:
Choose Λ_{2} such that finding short vectors in Λ_{2} is hard!

Security Theorem

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_{2}.

To implement system securely:
Choose Λ_{2} such that finding short vectors in Λ_{2} is hard!

- Linear system: use " q-ary" lattices defined by a random matrix over \mathbb{F}_{q}.

Finding short vectors is as hard as solving worst-case lattice problems [A96,MR04,GPV08].

Security Theorem

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_{2}.

To implement system securely:
Choose Λ_{2} such that finding short vectors in Λ_{2} is hard!

- Linear system: use " q-ary" lattices defined by a random matrix over \mathbb{F}_{q}.

Finding short vectors is as hard as solving worst-case lattice problems [A96,MR04,GPV08].

- Polynomial system: use ideal lattices proposed for homomorphic encryption [SV10].

Privacy property: derived signature on $f\left(m_{1}, \ldots, m_{k}\right)$ reveals nothing about m_{1}, \ldots, m_{k} beyond value of f.

Privacy property: derived signature on $f\left(m_{1}, \ldots, m_{k}\right)$ reveals nothing about m_{1}, \ldots, m_{k} beyond value of f.

Specifically: given data sets

$$
\vec{m}=\left(m_{1}, \ldots, m_{k}\right), \quad \vec{m}^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{k}^{\prime}\right)
$$

and admissible function f with

$$
f(\vec{m})=f\left(\vec{m}^{\prime}\right),
$$

even unbounded adversary cannot distinguish derived signature on $f(\vec{m})$ from derived signature on $f\left(\vec{m}^{\prime}\right)$.

Privacy

Privacy property: derived signature on $f\left(m_{1}, \ldots, m_{k}\right)$ reveals nothing about m_{1}, \ldots, m_{k} beyond value of f.

Specifically: given data sets

$$
\vec{m}=\left(m_{1}, \ldots, m_{k}\right), \quad \vec{m}^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{k}^{\prime}\right)
$$

and admissible function f with

$$
f(\vec{m})=f\left(\vec{m}^{\prime}\right),
$$

even unbounded adversary cannot distinguish derived signature on $f(\vec{m})$ from derived signature on $f\left(\vec{m}^{\prime}\right)$.

Theorem

Our linearly homomorphic signatures are private.

Open questions

(1) Privacy for polynomially homomorphic signatures.

- Current polynomial construction is not private.

Open questions

(1) Privacy for polynomially homomorphic signatures.

- Current polynomial construction is not private.
(2) Remove random oracle from security proof.
- Achieved for linear scheme.
- Work in progress for polynomial scheme.

Open questions

(1) Privacy for polynomially homomorphic signatures.

- Current polynomial construction is not private.
(2) Remove random oracle from security proof.
- Achieved for linear scheme.
- Work in progress for polynomial scheme.
(3) Reduce security to worst-case lattice problems.
- Achieved for linear scheme.
- Achieve for polynomial scheme using Gentry's techniques?

Open questions

(1) Privacy for polynomially homomorphic signatures.

- Current polynomial construction is not private.
(2) Remove random oracle from security proof.
- Achieved for linear scheme.
- Work in progress for polynomial scheme.
(3) Reduce security to worst-case lattice problems.
- Achieved for linear scheme.
- Achieve for polynomial scheme using Gentry's techniques?
(4) Fully homomorphic signatures!
- Adapt "bootstrapping" approach???

Open questions

(1) Privacy for polynomially homomorphic signatures.

- Current polynomial construction is not private.
(2) Remove random oracle from security proof.
- Achieved for linear scheme.
- Work in progress for polynomial scheme.
(3) Reduce security to worst-case lattice problems.
- Achieved for linear scheme.
- Achieve for polynomial scheme using Gentry's techniques?
(4) Fully homomorphic signatures!
- Adapt "bootstrapping" approach???

Thank you!

