
Homomorphic Signatures for
Polynomial Functions

Dan Boneh and David Mandell Freeman

Stanford University, USA

Eurocrypt 2011
Tallinn, Estonia

16 May 2011

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic Signatures

Homomorphic encryption allows users to delegate computation
while ensuring secrecy.

sk

signed
grades

Untrusted DB
Student Score Sig

Adam 91 σ1
Becky 73 σ2

...
...

...
Kevin 84 σk

mean?

87.3, σ pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation
while ensuring integrity.

sk

signed
grades

Untrusted DB
Student Score Sig

Adam 91 σ1
Becky 73 σ2

...
...

...
Kevin 84 σk

mean?

87.3, σ pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation
while ensuring integrity.

sk

signed
grades

Untrusted DB

mean?

87.3, σ pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation
while ensuring integrity.

sk

signed
grades

Untrusted DB
Student Score Sig

Adam 91 σ1
Becky 73 σ2

...
...

...
Kevin 84 σk

mean?

87.3, σ pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation
while ensuring integrity.

sk

signed
grades

Untrusted DB
Student Score Sig

Adam 91 σ1
Becky 73 σ2

...
...

...
Kevin 84 σk

mean?

87.3, σ

pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation
while ensuring integrity.

sk

signed
grades

Untrusted DB
Student Score Sig

Adam 91 σ1
Becky 73 σ2

...
...

...
Kevin 84 σk

mean?

87.3, σ

pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic Signatures

Homomorphic signatures allow users to delegate computation
while ensuring integrity.

sk

signed
grades

Untrusted DB
Student Score Sig

Adam 91 σ1
Becky 73 σ2

...
...

...
Kevin 84 σk

mean?

87.3, σ pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

σ = signature on
(“grades”, 87.3, “mean”)

1 Validity: σ authenticates 87.3 as the mean, and that the
mean was computed correctly.

2 Unforgeability: no adversary can produce a σ∗ that
authenticates a different mean for the “grades” data.

3 Length efficiency: σ is short.

4 Privacy: σ reveals nothing about data other than the mean.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

σ = signature on
(“grades”, 87.3, “mean”)

1 Validity: σ authenticates 87.3 as the mean, and that the
mean was computed correctly.

2 Unforgeability: no adversary can produce a σ∗ that
authenticates a different mean for the “grades” data.

3 Length efficiency: σ is short.

4 Privacy: σ reveals nothing about data other than the mean.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

σ = signature on
(“grades”, 87.3, “mean”)

1 Validity: σ authenticates 87.3 as the mean, and that the
mean was computed correctly.

2 Unforgeability: no adversary can produce a σ∗ that
authenticates a different mean for the “grades” data.

3 Length efficiency: σ is short.

4 Privacy: σ reveals nothing about data other than the mean.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

σ = signature on
(“grades”, 87.3, “mean”)

1 Validity: σ authenticates 87.3 as the mean, and that the
mean was computed correctly.

2 Unforgeability: no adversary can produce a σ∗ that
authenticates a different mean for the “grades” data.

3 Length efficiency: σ is short.

4 Privacy: σ reveals nothing about data other than the mean.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Properties of homomorphic signatures

What properties do we want the derived signature σ to have?

σ = signature on
(“grades”, 87.3, “mean”)

1 Validity: σ authenticates 87.3 as the mean, and that the
mean was computed correctly.

2 Unforgeability: no adversary can produce a σ∗ that
authenticates a different mean for the “grades” data.

3 Length efficiency: σ is short.

4 Privacy: σ reveals nothing about data other than the mean.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

More generally: F-homomorphic signatures

As introduced by [JMSW02]:
F is a set of “admissible” functions on messages.
τ is the name of the file or data set

(prevents mixing of data from different sets)
Given pk , admissible function f ∈ F , and signatures on

(τ,m1,1), . . . , (τ,mk , k)

anyone can compute a valid signature on

(τ, f (m1, . . . ,mk)),

Observation [JMSW02]

Secure homomorphic signatures for F = {linear functions}
cannot exist.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

More generally: F-homomorphic signatures

As introduced by [JMSW02]:
F is a set of “admissible” functions on messages.
τ is the name of the file or data set

(prevents mixing of data from different sets)
Given pk , admissible function f ∈ F , and signatures on

(τ,m1,1), . . . , (τ,mk , k)

anyone can compute a valid signature on

(τ, f (m1, . . . ,mk)),

Observation [JMSW02]

Secure homomorphic signatures for F = {linear functions}
cannot exist.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

More generally: F-homomorphic signatures

Our modification: authenticate the function.
F is a set of “admissible” functions on messages.
τ is the name of the file or data set

(prevents mixing of data from different sets)
Given pk , admissible function f ∈ F , and signatures on

(τ,m1,1), . . . , (τ,mk , k)

anyone can compute a valid signature on

(τ, f (m1, . . . ,mk), ω(f)),

where ω(f) is an “encoding” or “digest” of the function f .

Theorem [BFKW09,GKKR10,BF11]

Secure homomorphic signatures for F = {linear functions}
do exist (under certain assumptions).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

More generally: F-homomorphic signatures

Our modification: authenticate the function.
F is a set of “admissible” functions on messages.
τ is the name of the file or data set

(prevents mixing of data from different sets)
Given pk , admissible function f ∈ F , and signatures on

(τ,m1,1), . . . , (τ,mk , k)

anyone can compute a valid signature on

(τ, f (m1, . . . ,mk), ω(f)),

where ω(f) is an “encoding” or “digest” of the function f .

Theorem [BFKW09,GKKR10,BF11]

Secure homomorphic signatures for F = {linear functions}
do exist (under certain assumptions).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Applications

What are homomorphic signatures good for?

F Application
Linear Mean
functions Fourier transform

Network coding

Subsets Message redaction
Polynomials Standard deviation & higher moments
(bounded Linear least-squares fit
degree)
Arbitrary Non-linear estimators and regression
circuits Data mining (decision trees, SVM, etc.)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Applications

What are homomorphic signatures good for?

F Application
Linear Mean
functions Fourier transform

Network coding
Subsets Message redaction

Polynomials Standard deviation & higher moments
(bounded Linear least-squares fit
degree)
Arbitrary Non-linear estimators and regression
circuits Data mining (decision trees, SVM, etc.)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Applications

What are homomorphic signatures good for?

F Application
Linear Mean
functions Fourier transform

Network coding
Subsets Message redaction
Polynomials Standard deviation & higher moments
(bounded Linear least-squares fit
degree)

Arbitrary Non-linear estimators and regression
circuits Data mining (decision trees, SVM, etc.)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Applications

What are homomorphic signatures good for?

F Application
Linear Mean
functions Fourier transform

Network coding
Subsets Message redaction
Polynomials Standard deviation & higher moments
(bounded Linear least-squares fit
degree)
Arbitrary Non-linear estimators and regression
circuits Data mining (decision trees, SVM, etc.)

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

State of the art

How can we compute on encrypted or authenticated data?

F Hom. encryption Hom. signatures
Linear

[GM82], [B88], [P99], [KFM04], [CJL06],

functions

others [ZKMH07], [BFKW09],
[GKKR10], [BF11]

Subsets

[JMSW02], others

Polynomials

[BGN05], [GHV10]

(bounded

(quadratic) This work

degree)
Arbitrary

[G09], [DGHV10],

circuits

[BV11]

Specifically, we construct secure, length-efficient,
F-homomorphic signatures for

F = {polynomials of bounded degree with small coefficients}

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

State of the art

How can we compute on encrypted or authenticated data?

F Hom. encryption Hom. signatures
Linear [GM82], [B88], [P99],

[KFM04], [CJL06],

functions others

[ZKMH07], [BFKW09],
[GKKR10], [BF11]

Subsets

[JMSW02], others

Polynomials [BGN05], [GHV10]
(bounded (quadratic)

This work

degree)
Arbitrary [G09], [DGHV10],
circuits [BV11]

Specifically, we construct secure, length-efficient,
F-homomorphic signatures for

F = {polynomials of bounded degree with small coefficients}

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

State of the art

How can we compute on encrypted or authenticated data?

F Hom. encryption Hom. signatures
Linear [GM82], [B88], [P99], [KFM04], [CJL06],
functions others [ZKMH07], [BFKW09],

[GKKR10], [BF11]
Subsets [JMSW02], others
Polynomials [BGN05], [GHV10]
(bounded (quadratic)

This work

degree)
Arbitrary [G09], [DGHV10],
circuits [BV11]

Specifically, we construct secure, length-efficient,
F-homomorphic signatures for

F = {polynomials of bounded degree with small coefficients}

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

State of the art

How can we compute on encrypted or authenticated data?

F Hom. encryption Hom. signatures
Linear [GM82], [B88], [P99], [KFM04], [CJL06],
functions others [ZKMH07], [BFKW09],

[GKKR10], [BF11]
Subsets [JMSW02], others
Polynomials [BGN05], [GHV10]
(bounded (quadratic) This work
degree)
Arbitrary [G09], [DGHV10],
circuits [BV11]

Specifically, we construct secure, length-efficient,
F-homomorphic signatures for

F = {polynomials of bounded degree with small coefficients}

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

State of the art

How can we compute on encrypted or authenticated data?

F Hom. encryption Hom. signatures
Linear [GM82], [B88], [P99], [KFM04], [CJL06],
functions others [ZKMH07], [BFKW09],

[GKKR10], [BF11]
Subsets [JMSW02], others
Polynomials [BGN05], [GHV10]
(bounded (quadratic) This work
degree)
Arbitrary [G09], [DGHV10],
circuits [BV11]

Specifically, we construct secure, length-efficient,
F-homomorphic signatures for

F = {polynomials of bounded degree with small coefficients}

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Related Concepts

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f , y)

∃ (~m, σ) s.t.
{

y = f (~m) and
Verify(pk , ~m, σ) = 1.

Inefficient (requires PCP theorem).
Hard to compose functions [V07].
Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to
verify certificate that computation was done correctly.

Homomorphic signatures allow third party verification.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Related Concepts

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f , y)

∃ (~m, σ) s.t.
{

y = f (~m) and
Verify(pk , ~m, σ) = 1.

Inefficient (requires PCP theorem).
Hard to compose functions [V07].
Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to
verify certificate that computation was done correctly.

Homomorphic signatures allow third party verification.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Related Concepts

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f , y)

∃ (~m, σ) s.t.
{

y = f (~m) and
Verify(pk , ~m, σ) = 1.

Inefficient (requires PCP theorem).
Hard to compose functions [V07].
Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to
verify certificate that computation was done correctly.

Homomorphic signatures allow third party verification.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Related Concepts

Computationally Sound Proofs [M00]:

Server computes a short proof of knowledge that for given (f , y)

∃ (~m, σ) s.t.
{

y = f (~m) and
Verify(pk , ~m, σ) = 1.

Inefficient (requires PCP theorem).
Hard to compose functions [V07].
Need random oracle or non-falsifiable assumption [GW11].

Verifiable computation [GKR08,GGP10,CKV10,AIK10]:

Alice outsources computation to server, uses secret key to
verify certificate that computation was done correctly.

Homomorphic signatures allow third party verification.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Application: Least Squares Fits

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Least squares fits — the basics

For a data set {(xi , yi)}ki=1, the degree d least squares fit is a
polynomial

f (x) = c0 + c1x + · · ·+ cdxd

that “best” approximates the y values.

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

Formula:

~c = (X tX)−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Least squares fits — the basics

For a data set {(xi , yi)}ki=1, the degree d least squares fit is a
polynomial

f (x) = c0 + c1x + · · ·+ cdxd

that “best” approximates the y values.

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

Formula:

~c = (X tX)−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Least squares fits — the basics

For a data set {(xi , yi)}ki=1, the degree d least squares fit is a
polynomial

f (x) = c0 + c1x + · · ·+ cdxd

that “best” approximates the y values.

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal
y = f (x)
= c0 + c1x

Formula:

~c = (X tX)−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Least squares fits — the basics

For a data set {(xi , yi)}ki=1, the degree d least squares fit is a
polynomial

f (x) = c0 + c1x + · · ·+ cdxd

that “best” approximates the y values.

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal
y = f (x)
= c0 + c1x

Formula:

~c = (X tX)−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Authenticating a least-squares fit (x-values only)

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

y = f (x)
= c0 + c1x

Formula:

~c = (X tX)−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

United Nations stores signed data on server using
polynomially homomorphic signature.
Server can authenticate det(X tX) and det(X tX) · ~c.
User can compute least-squares fit from server’s values.
Linear fit can be computed using degree 3 polynomials.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Authenticating a least-squares fit (x-values only)

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

y = f (x)
= c0 + c1x

Formula:

~c = (X tX)−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

Coefficients cj are rational functions of sampled x and y
values.

However: det(X tX) · cj are polynomial functions of x and y .

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Authenticating a least-squares fit (x-values only)

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

y = f (x)
= c0 + c1x

Formula:

~c = (X tX)−1X t~y

~c = vector of coefficients of f (x),
X = Vandermonde matrix of x values,
~y = vector of y values.

Coefficients cj are rational functions of sampled x and y
values.
However: det(X tX) · cj are polynomial functions of x and y .

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Authenticating a least-squares fit (x-values only)

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

y = f (x)
= c0 + c1x

Formula: det(X tX) · cj = polynomial in {xi , yi}

United Nations stores signed data on server using
polynomially homomorphic signature.

Server can authenticate det(X tX) and det(X tX) · ~c.
User can compute least-squares fit from server’s values.
Linear fit can be computed using degree 3 polynomials.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Authenticating a least-squares fit (x-values only)

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

y = f (x)
= c0 + c1x

Formula: det(X tX) · cj = polynomial in {xi , yi}

United Nations stores signed data on server using
polynomially homomorphic signature.
Server can authenticate det(X tX) and det(X tX) · ~c.

User can compute least-squares fit from server’s values.
Linear fit can be computed using degree 3 polynomials.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Authenticating a least-squares fit (x-values only)

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

y = f (x)
= c0 + c1x

Formula: det(X tX) · cj = polynomial in {xi , yi}

United Nations stores signed data on server using
polynomially homomorphic signature.
Server can authenticate det(X tX) and det(X tX) · ~c.
User can compute least-squares fit from server’s values.

Linear fit can be computed using degree 3 polynomials.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Authenticating a least-squares fit (x-values only)

Internet penetration vs. National wealth

wealth per capita

internet
users

$0 $15K $30K $45K $60K
0%

25%

50%

75%

100%

France USA

Brazil

Australia

Russia

Norway

China

Israel

India

Estonia

Portugal

y = f (x)
= c0 + c1x

Formula: det(X tX) · cj = polynomial in {xi , yi}

United Nations stores signed data on server using
polynomially homomorphic signature.
Server can authenticate det(X tX) and det(X tX) · ~c.
User can compute least-squares fit from server’s values.
Linear fit can be computed using degree 3 polynomials.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic Signatures:
Our Construction

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Building block: GPV Signatures

pk : Λ ⊂ Zn a lattice (full-rank additive
subgroup), defined by “bad” basis.

sk : “good” basis of Λ.
H: {0,1}∗ → Zn/Λ

(fix unique representatives).
Sign(sk ,m) =

short vector σ ∈ Λ + m.
Verify(pk ,m, σ): check that

1 σ is short,
2 σ mod Λ = m.

b1

b2

What if we encode m in Zn/Λ directly?
Then signatures are linearly homomorphic:

(σ1 + σ2) is short, (σ1 + σ2) mod Λ = m1 + m2

so σ1 + σ2 authenticates m1 + m2!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Building block: GPV Signatures

pk : Λ ⊂ Zn a lattice (full-rank additive
subgroup), defined by “bad” basis.

sk : “good” basis of Λ.

H: {0,1}∗ → Zn/Λ
(fix unique representatives).
Sign(sk ,m) =

short vector σ ∈ Λ + m.
Verify(pk ,m, σ): check that

1 σ is short,
2 σ mod Λ = m.

s1

s2

What if we encode m in Zn/Λ directly?
Then signatures are linearly homomorphic:

(σ1 + σ2) is short, (σ1 + σ2) mod Λ = m1 + m2

so σ1 + σ2 authenticates m1 + m2!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Building block: GPV Signatures

pk : Λ ⊂ Zn a lattice (full-rank additive
subgroup), defined by “bad” basis.

sk : “good” basis of Λ.
H: {0,1}∗ → Zn/Λ

(fix unique representatives).

Sign(sk ,m) =
short vector σ ∈ Λ + m.

Verify(pk ,m, σ): check that
1 σ is short,
2 σ mod Λ = m.

H(m)

What if we encode m in Zn/Λ directly?
Then signatures are linearly homomorphic:

(σ1 + σ2) is short, (σ1 + σ2) mod Λ = m1 + m2

so σ1 + σ2 authenticates m1 + m2!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Building block: GPV Signatures

pk : Λ ⊂ Zn a lattice (full-rank additive
subgroup), defined by “bad” basis.

sk : “good” basis of Λ.
H: {0,1}∗ → Zn/Λ

(fix unique representatives).
Sign(sk ,m) =

short vector σ ∈ Λ + H(m).

Verify(pk ,m, σ): check that
1 σ is short,
2 σ mod Λ = m.

H(m)

σ

Sign

What if we encode m in Zn/Λ directly?
Then signatures are linearly homomorphic:

(σ1 + σ2) is short, (σ1 + σ2) mod Λ = m1 + m2

so σ1 + σ2 authenticates m1 + m2!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Building block: GPV Signatures
pk : Λ ⊂ Zn a lattice (full-rank additive

subgroup), defined by “bad” basis.
sk : “good” basis of Λ.
H: {0,1}∗ → Zn/Λ

(fix unique representatives).
Sign(sk ,m) =

short vector σ ∈ Λ + H(m).
Verify(pk ,m, σ): check that

1 σ is short,
2 σ mod Λ = H(m).

H(m)

σ

Verify

What if we encode m in Zn/Λ directly?
Then signatures are linearly homomorphic:

(σ1 + σ2) is short, (σ1 + σ2) mod Λ = m1 + m2

so σ1 + σ2 authenticates m1 + m2!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Building block: GPV Signatures

pk : Λ ⊂ Zn a lattice (full-rank additive
subgroup), defined by “bad” basis.

sk : “good” basis of Λ.
H: {0,1}∗ → Zn/Λ

(fix unique representatives).
Sign(sk ,m) =

short vector σ ∈ Λ + m.
Verify(pk ,m, σ): check that

1 σ is short,
2 σ mod Λ = m.

m

σ

Sign

What if we encode m in Zn/Λ directly?

Then signatures are linearly homomorphic:

(σ1 + σ2) is short, (σ1 + σ2) mod Λ = m1 + m2

so σ1 + σ2 authenticates m1 + m2!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Building block: GPV Signatures

pk : Λ ⊂ Zn a lattice (full-rank additive
subgroup), defined by “bad” basis.

sk : “good” basis of Λ.
H: {0,1}∗ → Zn/Λ

(fix unique representatives).
Sign(sk ,m) =

short vector σ ∈ Λ + m.
Verify(pk ,m, σ): check that

1 σ is short,
2 σ mod Λ = m.

m

σ

Sign

What if we encode m in Zn/Λ directly?
Then signatures are linearly homomorphic:

(σ1 + σ2) is short, (σ1 + σ2) mod Λ = m1 + m2

so σ1 + σ2 authenticates m1 + m2!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Problem: Removing hash function destroys security

Valid signature doesn’t imply function was computed correctly.

sk

signed
grades

Untrusted DB
Student Score Sig

1 91 σ1
2 73 σ2
...

...
...

k 84 σk

mean?

18.0, σ pk

Honest DB outputs 87.3 = 1
k
∑

si and signature
σ = 1

k
∑
σi .

Malicious DB outputs 18.0 = s1 − s2 and signature
σ = σ1 − σ2.
σ authenticates 18, but 18 is not the mean!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Problem: Removing hash function destroys security

Valid signature doesn’t imply function was computed correctly.

sk

signed
grades

Untrusted DB
Student Score Sig

1 91 σ1
2 73 σ2
...

...
...

k 84 σk

mean?

18.0, σ

pk

Honest DB outputs 87.3 = 1
k
∑

si and signature
σ = 1

k
∑
σi .

Malicious DB outputs 18.0 = s1 − s2 and signature
σ = σ1 − σ2.
σ authenticates 18, but 18 is not the mean!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Problem: Removing hash function destroys security

Valid signature doesn’t imply function was computed correctly.

sk

signed
grades

Untrusted DB
Student Score Sig

1 91 σ1
2 73 σ2
...

...
...

k 84 σk

mean?

87.3, σ pk

Honest DB outputs 87.3 = 1
k
∑

si and signature
σ = 1

k
∑
σi .

Malicious DB outputs 18.0 = s1 − s2 and signature
σ = σ1 − σ2.
σ authenticates 18, but 18 is not the mean!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Problem: Removing hash function destroys security

Valid signature doesn’t imply function was computed correctly.

sk

signed
grades

Untrusted DB
Student Score Sig

1 91 σ1
2 73 σ2
...

...
...

k 84 σk

mean?

18.0, σ pk

Honest DB outputs 87.3 = 1
k
∑

si and signature
σ = 1

k
∑
σi .

Malicious DB outputs 18.0 = s1 − s2 and signature
σ = σ1 − σ2.

σ authenticates 18, but 18 is not the mean!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Problem: Removing hash function destroys security

Valid signature doesn’t imply function was computed correctly.

sk

signed
grades

Untrusted DB
Student Score Sig

1 91 σ1
2 73 σ2
...

...
...

k 84 σk

mean?

18.0, σ pk

Honest DB outputs 87.3 = 1
k
∑

si and signature
σ = 1

k
∑
σi .

Malicious DB outputs 18.0 = s1 − s2 and signature
σ = σ1 − σ2.
σ authenticates 18, but 18 is not the mean!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

How to recover security

Use a second lattice to authenticate functions:

Λ2 ⊂ Zn distinct from Λ1 := Λ.

“Encode” functions f as elements ω(f) ∈ Zn/Λ2.
Sign functions by computing

Sign(f) := short vector in (Λ2 + ω(f)).

If “encoding” ω(·) is linear, (i.e., ω(f) + ω(g) = ω(f + g))
signatures are linear on the space of functions.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

How to recover security

Use a second lattice to authenticate functions:

Λ2 ⊂ Zn distinct from Λ1 := Λ.

“Encode” functions f as elements ω(f) ∈ Zn/Λ2.
Sign functions by computing

Sign(f) := short vector in (Λ2 + ω(f)).

If “encoding” ω(·) is linear, (i.e., ω(f) + ω(g) = ω(f + g))
signatures are linear on the space of functions.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

How to recover security

Use a second lattice to authenticate functions:

Λ2 ⊂ Zn distinct from Λ1 := Λ.

“Encode” functions f as elements ω(f) ∈ Zn/Λ2.
Sign functions by computing

Sign(f) := short vector in (Λ2 + ω(f)).

If “encoding” ω(·) is linear, (i.e., ω(f) + ω(g) = ω(f + g))
signatures are linear on the space of functions.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

“Intersection method” binds messages to functions

Messages m ∈ Zn/Λ1, functions f encoded as ω(f) ∈ Zn/Λ2.

Define signature as simultaneous GPV signature on (m, ω(f)).

Sign(m) = short vector in (Λ1 + m) ∩ (Λ2 + ω(f)).
sk = “good” basis of Λ1 ∩ Λ2.

Verify(σ): check that
1 σ is short,
2 σ mod Λ1 = m,
3 σ mod Λ2 = ω(f).

Evaluate(f , (σ1, . . . , σk)) = f (σ1, . . . , σk) for linear f .
If σi = Sign(mi), output authenticates f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

“Intersection method” binds messages to functions

Messages m ∈ Zn/Λ1, functions f encoded as ω(f) ∈ Zn/Λ2.

Define signature as simultaneous GPV signature on (m, ω(f)).

Sign(m) = short vector in (Λ1 + m) ∩ (Λ2 + ω(f)).
sk = “good” basis of Λ1 ∩ Λ2.

Verify(σ): check that
1 σ is short,
2 σ mod Λ1 = m,
3 σ mod Λ2 = ω(f).

Evaluate(f , (σ1, . . . , σk)) = f (σ1, . . . , σk) for linear f .
If σi = Sign(mi), output authenticates f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

“Intersection method” binds messages to functions

Messages m ∈ Zn/Λ1, functions f encoded as ω(f) ∈ Zn/Λ2.

Define signature as simultaneous GPV signature on (m, ω(f)).

Sign(m) = short vector in (Λ1 + m) ∩ (Λ2 + ω(f)).
sk = “good” basis of Λ1 ∩ Λ2.

Verify(σ): check that
1 σ is short,
2 σ mod Λ1 = m,
3 σ mod Λ2 = ω(f).

Evaluate(f , (σ1, . . . , σk)) = f (σ1, . . . , σk) for linear f .
If σi = Sign(mi), output authenticates f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

“Intersection method” binds messages to functions

Messages m ∈ Zn/Λ1, functions f encoded as ω(f) ∈ Zn/Λ2.

Define signature as simultaneous GPV signature on (m, ω(f)).

Sign(m) = short vector in (Λ1 + m) ∩ (Λ2 + ω(f)).
sk = “good” basis of Λ1 ∩ Λ2.

Verify(σ): check that
1 σ is short,
2 σ mod Λ1 = m,
3 σ mod Λ2 = ω(f).

Evaluate(f , (σ1, . . . , σk)) = f (σ1, . . . , σk) for linear f .
If σi = Sign(mi), output authenticates f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.
Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.
Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.
Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.

Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Homomorphic signatures for polynomial functions

Linearly homomorphic scheme: messages in Zn/Λ1,
functions encoded in Zn/Λ2, signatures in Zn.

Verification computes a linear map
⇒ adding signatures corresponds to adding messages.

What if Zn has a ring structure and Λ1,Λ2 are ideal lattices?

Then verification computes a ring homomorphism
⇒ adding or multiplying signatures corresponds to adding

or multiplying messages.

Same construction now authenticates polynomial functions
on messages.
Length of signature vector grows with polynomial degree
⇒ degree must be bounded to ensure security.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk), and m∗ 6= f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk), and m∗ 6= f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk), and m∗ 6= f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−

name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk), and m∗ 6= f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk), and m∗ 6= f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk), and m∗ 6= f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk), and m∗ 6= f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security

What does it mean to forge a homomorphic signature?
Forgery is a valid signature on (τ,m∗, f) with
m∗ 6= f (messages in file τ).

Chall.

sk

pk
−−−−−−−−−−−−−−−−→

data m1, . . . ,mk←−−−−−−−−−−−−−−−−
name τ, sigs σ1, . . . , σk−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Adversary wins if f admissible, σ∗ verifies for (τ∗,m∗, f), and
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk), and m∗ 6= f (m1, . . . ,mk).

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security Theorem

Theorem
An adversary that wins the security game (in the random oracle
model) can be used to compute a short nonzero vector in Λ2.

To implement system securely:
Choose Λ2 such that finding short vectors in Λ2 is hard!

Linear system: use “q-ary” lattices defined by a random
matrix over Fq.

Finding short vectors is as hard as solving worst-case
lattice problems [A96,MR04,GPV08].

Polynomial system: use ideal lattices proposed for
homomorphic encryption [SV10].

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security Theorem

Theorem
An adversary that wins the security game (in the random oracle
model) can be used to compute a short nonzero vector in Λ2.

To implement system securely:
Choose Λ2 such that finding short vectors in Λ2 is hard!

Linear system: use “q-ary” lattices defined by a random
matrix over Fq.

Finding short vectors is as hard as solving worst-case
lattice problems [A96,MR04,GPV08].

Polynomial system: use ideal lattices proposed for
homomorphic encryption [SV10].

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security Theorem

Theorem
An adversary that wins the security game (in the random oracle
model) can be used to compute a short nonzero vector in Λ2.

To implement system securely:
Choose Λ2 such that finding short vectors in Λ2 is hard!

Linear system: use “q-ary” lattices defined by a random
matrix over Fq.

Finding short vectors is as hard as solving worst-case
lattice problems [A96,MR04,GPV08].

Polynomial system: use ideal lattices proposed for
homomorphic encryption [SV10].

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Security Theorem

Theorem
An adversary that wins the security game (in the random oracle
model) can be used to compute a short nonzero vector in Λ2.

To implement system securely:
Choose Λ2 such that finding short vectors in Λ2 is hard!

Linear system: use “q-ary” lattices defined by a random
matrix over Fq.

Finding short vectors is as hard as solving worst-case
lattice problems [A96,MR04,GPV08].

Polynomial system: use ideal lattices proposed for
homomorphic encryption [SV10].

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Privacy

Privacy property: derived signature on f (m1, . . . ,mk) reveals
nothing about m1, . . . ,mk beyond value of f .

Specifically: given data sets

~m = (m1, . . . ,mk), ~m′ = (m′1, . . . ,m
′
k)

and admissible function f with

f (~m) = f (~m′),

even unbounded adversary cannot distinguish derived
signature on f (~m) from derived signature on f (~m′).

Theorem
Our linearly homomorphic signatures are private.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Privacy

Privacy property: derived signature on f (m1, . . . ,mk) reveals
nothing about m1, . . . ,mk beyond value of f .

Specifically: given data sets

~m = (m1, . . . ,mk), ~m′ = (m′1, . . . ,m
′
k)

and admissible function f with

f (~m) = f (~m′),

even unbounded adversary cannot distinguish derived
signature on f (~m) from derived signature on f (~m′).

Theorem
Our linearly homomorphic signatures are private.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Privacy

Privacy property: derived signature on f (m1, . . . ,mk) reveals
nothing about m1, . . . ,mk beyond value of f .

Specifically: given data sets

~m = (m1, . . . ,mk), ~m′ = (m′1, . . . ,m
′
k)

and admissible function f with

f (~m) = f (~m′),

even unbounded adversary cannot distinguish derived
signature on f (~m) from derived signature on f (~m′).

Theorem
Our linearly homomorphic signatures are private.

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

Open questions

1 Privacy for polynomially homomorphic signatures.
Current polynomial construction is not private.

2 Remove random oracle from security proof.
Achieved for linear scheme.
Work in progress for polynomial scheme.

3 Reduce security to worst-case lattice problems.
Achieved for linear scheme.
Achieve for polynomial scheme using Gentry’s techniques?

4 Fully homomorphic signatures!
Adapt “bootstrapping” approach???

Thank you!

Dan Boneh and David Mandell Freeman Homomorphic Signatures for Polynomial Functions

