Homomorphic Signatures for Polynomial Functions

Dan Boneh and David Mandell Freeman

Stanford University, USA

Séminaire de Crypto de l'ENS 4 March 2011

Homomorphic Encryption

Homomorphic encryption allows users to delegate computation while ensuring *secrecy*.

Untrusted DB

 c_i = encryption of *i*th score

 c_i = encryption of *i*th score

 c_i = encryption of *i*th score

 c_i = encryption of *i*th score

c = encryption of mean

- Validity: c decrypts to the correct mean.
- Security: no adversary can obtain any info about scores.
- Length efficiency: *c* is short.
- Privacy: decrypted mean reveals nothing else about data.

		Untrusted DB		
	signed	Student	Score	Sig
4 3	grades	Adam	91	σ_1
<u>_</u>	9.44.00	Becky	73	σ_2
9		:	÷	÷
l sk		Kevin	84	σ_k

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

		Untrusted DB		
	signed	Student	Score	Sig
4 /	grades	Adam	91	σ_1
	9.44.00	Becky	73	σ_2
9		:	÷	÷
l sk		Kevin	84	σ_{k}

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

What properties do we want the derived signature σ to have?

What properties do we want the derived signature σ to have?

 $\sigma = \text{signature on}$ ("grades", 87.3, "mean")

Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.

What properties do we want the derived signature σ to have?

- Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
- 2 Unforgeability: no adversary can produce a σ^* that authenticates a different mean.

What properties do we want the derived signature σ to have?

- Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
- 2 Unforgeability: no adversary can produce a σ^* that authenticates a different mean.
- **Output** Length efficiency: σ is short.

What properties do we want the derived signature σ to have?

- Validity: σ authenticates 87.3 as the mean, and that the mean was computed correctly.
- 2 Unforgeability: no adversary can produce a σ^* that authenticates a different mean.
- **3** Length efficiency: σ is short.
- Solution Privacy: σ reveals nothing about data other than the mean.

More generally: \mathcal{F} -homomorphic signatures

- \mathcal{F} is a set of "admissible" functions on messages.
- τ is a "tag" tying together data from the same set. (like a filename)
 - prevents mixing of data from different sets
- Given pk, admissible function $f \in \mathcal{F}$, and signatures on data

 $m_1,\ldots,m_k,$

anyone can compute a valid signature on

$$(\tau, f(m_1,\ldots,m_k), \omega(f)),$$

where $\omega(f)$ is an "encoding" or "digest" of the function *f*.

\mathcal{F}	Application
Linear	Mean
functions	Linear least-squares fit (fixed x , variable y)
	Fourier transforms

\mathcal{F}	Application
Linear	Mean
functions	Linear least-squares fit (fixed x , variable y)
	Fourier transforms
Polynomials	Standard deviation & higher moments
(bounded	Linear least-squares fit (variable x and y)
degree)	

\mathcal{F}	Application
Linear	Mean
functions	Linear least-squares fit (fixed x , variable y)
	Fourier transforms
Polynomials	Standard deviation & higher moments
(bounded	Linear least-squares fit (variable x and y)
degree)	
Arbitrary	Non-linear estimators and regression
circuits	Data mining (decision trees, SVM, etc.)

\mathcal{F}	Application
Linear	Mean
functions	Linear least-squares fit (fixed x , variable y)
	Fourier transforms
Polynomials	Standard deviation & higher moments
(bounded	Linear least-squares fit (variable x and y)
degree)	
Arbitrary	Non-linear estimators and regression
circuits	Data mining (decision trees, SVM, etc.)
Subsets	Message redaction

\mathcal{F}	Hom. encryption	Hom. signatures
Linear		
functions		
Polynomials		
(bounded		
degree)		
Arbitrary		
circuits		
Subsets		

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	
Polynomials (bounded degree)	[BGN05], [GHV10] (quadratic)	
Arbitrary circuits	[G09], [DGHV10]	
Subsets		

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	[KFM04], [CJL06], [ZKMH07], [BFKW09], [GKKR10], [BF11]
Polynomials (bounded degree)	[BGN05], [GHV10] (quadratic)	
Arbitrary circuits	[G09], [DGHV10]	
Subsets		[JMSW02], others

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	[KFM04], [CJL06], [ZKMH07], [BFKW09], [GKKR10], [BF11]
Polynomials (bounded degree)	[BGN05], [GHV10] (quadratic)	This work
Arbitrary circuits	[G09], [DGHV10]	
Subsets		[JMSW02], others

How can we compute on encrypted or authenticated data?

\mathcal{F}	Hom. encryption	Hom. signatures
Linear functions	[GM82], [B88], [P99], others	[KFM04], [CJL06], [ZKMH07], [BFKW09], [GKKR10], [BF11]
Polynomials (bounded degree)	[BGN05], [GHV10] (quadratic)	This work
Arbitrary circuits	[G09], [DGHV10]	
Subsets		[JMSW02], others

Specifically, we construct secure, length-efficient,

 $\mathcal F\text{-homomorphic signatures for}$

 $\mathcal{F} = \{ \text{polynomials of bounded degree with small coefficients} \}$

Application: Least Squares Fits

For a data set $\{(x_i, y_i)\}_{i=1}^k$, the degree *d* least squares fit is a polynomial

$$f(x) = c_0 + c_1 x + \dots + c_d x^d$$

For a data set $\{(x_i, y_i)\}_{i=1}^k$, the degree *d* least squares fit is a polynomial

$$f(x) = c_0 + c_1 x + \cdots + c_d x^d$$

For a data set $\{(x_i, y_i)\}_{i=1}^k$, the degree *d* least squares fit is a polynomial

$$f(x) = c_0 + c_1 x + \cdots + c_d x^d$$

For a data set $\{(x_i, y_i)\}_{i=1}^k$, the degree *d* least squares fit is a polynomial

$$f(x) = c_0 + c_1 x + \dots + c_d x^d$$

Authenticating a least-squares fit (x-values only)

Authenticating a least-squares fit (x-values only)

If x values are fixed, then \vec{c} is linear function of y values.

Authenticating a least-squares fit (x-values only)

If x values are fixed, then \vec{c} is linear function of y values.

- Census bureau stores signed population counts on server using linearly homomorphic signature.
- Server can authenticate coefficients of least-squares fit.

Coefficients c_j are rational functions of sampled x and y values.

- Coefficients c_j are rational functions of sampled x and y values.
- However: $det(X^tX) \cdot c_i$ are polynomial functions of x and y.

- Coefficients c_j are rational functions of sampled x and y values.
- However: $det(X^tX) \cdot c_i$ are polynomial functions of x and y.

Formula: $det(X^tX) \cdot c_j = polynomial in \{x_i, y_i\}$

 United Nations stores signed data on server using polynomially homomorphic signature.

Formula: $det(X^tX) \cdot c_j = polynomial in \{x_i, y_i\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $det(X^tX)$ and $det(X^tX) \cdot \vec{c}$.

Formula: $det(X^tX) \cdot c_j = polynomial in \{x_i, y_i\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $det(X^tX)$ and $det(X^tX) \cdot \vec{c}$.
- User can compute least-squares fit from server's values.

Formula: $det(X^tX) \cdot c_j = polynomial in \{x_i, y_i\}$

- United Nations stores signed data on server using polynomially homomorphic signature.
- Server can authenticate $det(X^tX)$ and $det(X^tX) \cdot \vec{c}$.
- User can compute least-squares fit from server's values.
- Linear fit can be computed using degree 3 polynomials.

Linearly Homomorphic Signatures

Key idea: preimage sampleable trapdoor function

Key idea: preimage sampleable trapdoor function

• Public function $\phi: D \to R$ with secret "trapdoor" ϕ^{-1}

Key idea: preimage sampleable trapdoor function

• Public function $\phi: D \to R$ with secret "trapdoor" ϕ^{-1}

Key idea: preimage sampleable trapdoor function

• Public function $\phi: D \to R$ with secret "trapdoor" ϕ^{-1}

• "Hash and sign:" $pk = \phi$, $sk = \phi^{-1}$, hash $H: \{0, 1\}^* \to R$

Sign(m) :=
$$\phi^{-1}(H(m))$$

Verify(σ) : $\phi(\sigma) \stackrel{?}{=} H(m)$

Λ ⊂ Zⁿ a lattice (full-rank additive subgroup), defined by basis.

- Λ ⊂ Zⁿ a lattice (full-rank additive subgroup), defined by basis.
- D = short vectors in Zⁿ, with Gaussian distribution.

- Λ ⊂ Zⁿ a lattice (full-rank additive subgroup), defined by basis.
- D = short vectors in Zⁿ, with Gaussian distribution.
- $R = \mathbb{Z}^n / \Lambda$ (fix unique representatives)

- Λ ⊂ Zⁿ a lattice (full-rank additive subgroup), defined by basis.
- D = short vectors in Zⁿ, with Gaussian distribution.
- $R = \mathbb{Z}^n / \Lambda$ (fix unique representatives)
- Trapdoor function φ: v → (v mod ∧) i.e., move v into a fundamental parallelepiped.

- Λ ⊂ Zⁿ a lattice (full-rank additive subgroup), defined by basis.
- D = short vectors in Zⁿ, with Gaussian distribution.
- $R = \mathbb{Z}^n / \Lambda$ (fix unique representatives)
- Trapdoor function φ: ν → (ν mod Λ)
 i.e., move ν into a fundamental parallelepiped.
- GPV: algorithm to sample short vectors in φ⁻¹(w) = Λ + w given a "short" basis of Λ.

- Λ ⊂ Zⁿ a lattice (full-rank additive subgroup), defined by basis.
- D = short vectors in Zⁿ, with Gaussian distribution.
- $R = \mathbb{Z}^n / \Lambda$ (fix unique representatives)
- Trapdoor function φ: ν → (ν mod Λ)
 i.e., move ν into a fundamental parallelepiped.
- GPV: algorithm to sample short vectors in φ⁻¹(w) = Λ + w given a "short" basis of Λ.

- Λ ⊂ Zⁿ a lattice (full-rank additive subgroup), defined by basis.
- D = short vectors in Zⁿ, with Gaussian distribution.
- $R = \mathbb{Z}^n / \Lambda$ (fix unique representatives)
- Trapdoor function φ: ν → (ν mod Λ)
 i.e., move ν into a fundamental parallelepiped.
- GPV: algorithm to sample short vectors in φ⁻¹(w) = Λ + w given a "short" basis of Λ.
- Sampling from Λ + w without short basis is hard. (How hard depends on Gaussian parameter.)

Idea: instead of hashing the messages to $R = \mathbb{Z}^n / \Lambda$, let the message space be *R* itself.

Idea: instead of hashing the messages to $R = \mathbb{Z}^n / \Lambda$, let the message space be *R* itself.

GPV sign/verify algorithms: $H: \{0, 1\}^* \to \mathbb{Z}^n / \Lambda$

Sign(*m*) := short vector in $(\Lambda + H(m))$ Verify(σ) := 1 iff σ is short, $\sigma \mod \Lambda = H(m)$

Idea: instead of hashing the messages to $R = \mathbb{Z}^n / \Lambda$, let the message space be *R* itself.

New sign/verify algorithms: $m \in \mathbb{Z}^n / \Lambda$

Sign(*m*) := short vector in $(\Lambda + m)$ Verify(σ) := 1 iff σ is short, $\sigma \mod \Lambda = m$

Idea: instead of hashing the messages to $R = \mathbb{Z}^n / \Lambda$, let the message space be *R* itself.

New sign/verify algorithms: $m \in \mathbb{Z}^n / \Lambda$

Sign(*m*) := short vector in $(\Lambda + m)$ Verify(σ) := 1 iff σ is short, $\sigma \mod \Lambda = m$

Homomorphic property: ϕ is a linear map, so adding signatures corresponds to adding messages.

Idea: instead of hashing the messages to $R = \mathbb{Z}^n / \Lambda$, let the message space be *R* itself.

New sign/verify algorithms: $m \in \mathbb{Z}^n / \Lambda$

Sign(*m*) := short vector in $(\Lambda + m)$ Verify(σ) := 1 iff σ is short, $\sigma \mod \Lambda = m$

Homomorphic property: ϕ is a linear map, so adding signatures corresponds to adding messages.

• Suppose σ_1, σ_2 are signatures on m_1, m_2 $\Rightarrow \sigma_i$ short, $\sigma_i \mod \Lambda = m_i$.

Idea: instead of hashing the messages to $R = \mathbb{Z}^n / \Lambda$, let the message space be *R* itself.

New sign/verify algorithms: $m \in \mathbb{Z}^n / \Lambda$

Sign(*m*) := short vector in $(\Lambda + m)$ Verify(σ) := 1 iff σ is short, $\sigma \mod \Lambda = m$

Homomorphic property: ϕ is a linear map, so adding signatures corresponds to adding messages.

- Suppose σ_1, σ_2 are signatures on m_1, m_2 $\Rightarrow \sigma_i$ short, $\sigma_i \mod \Lambda = m_i$.
- For a, b ∈ Z, define signature on am₁ + bm₂ to be σ := aσ₁ + bσ₂.
 ⇒ σ is short (if a, b small), σ mod Λ = am₁ + bm₂.

Valid signature doesn't imply function was computed correctly.

Valid signature doesn't imply function was computed correctly.

Valid signature doesn't imply function was computed correctly.

• Honest DB outputs $87.3 = \frac{1}{k} \sum s_i$ and signature $\sigma = \frac{1}{k} \sum \sigma_i$.

Valid signature doesn't imply function was computed correctly.

- Honest DB outputs $87.3 = \frac{1}{k} \sum s_i$ and signature $\sigma = \frac{1}{k} \sum \sigma_i$.
- Malicious DB outputs $18.0 = s_1 s_2$ and signature $\sigma = \sigma_1 \sigma_2$.

Valid signature doesn't imply function was computed correctly.

- Honest DB outputs $87.3 = \frac{1}{k} \sum s_i$ and signature $\sigma = \frac{1}{k} \sum \sigma_i$.
- Malicious DB outputs $18.0 = s_1 s_2$ and signature $\sigma = \sigma_1 \sigma_2$.
- σ authenticates 18, but 18 is not the mean!

Use a second lattice to authenticate functions:

- $\Lambda_2 \subset \mathbb{Z}^n$ distinct from $\Lambda_1 := \Lambda$.
 - require $\Lambda_1 + \Lambda_2 = \mathbb{Z}^n$
- Map $\phi_2 \colon \mathbb{Z}^n \to \mathbb{Z}^n / \Lambda_2$ given by $\phi_2(\mathbf{v}) := \mathbf{v} \mod \Lambda_2$.

Use a second lattice to authenticate functions:

•
$$\Lambda_2 \subset \mathbb{Z}^n$$
 distinct from $\Lambda_1 := \Lambda$.

• require $\Lambda_1 + \Lambda_2 = \mathbb{Z}^n$

• Map $\phi_2 \colon \mathbb{Z}^n \to \mathbb{Z}^n / \Lambda_2$ given by $\phi_2(\mathbf{v}) := \mathbf{v} \mod \Lambda_2$.

"Encode" functions f as elements $\omega(f) \in \mathbb{Z}^n / \Lambda_2$. Sign functions by computing

Sign(
$$f$$
) := short vector in ($\Lambda_2 + \omega(f)$).

Linearly Homomorphic Signatures: Key Idea #2

Use a second lattice to authenticate functions:

•
$$\Lambda_2 \subset \mathbb{Z}^n$$
 distinct from $\Lambda_1 := \Lambda$.

- require $\Lambda_1 + \Lambda_2 = \mathbb{Z}^n$
- Map $\phi_2 \colon \mathbb{Z}^n \to \mathbb{Z}^n / \Lambda_2$ given by $\phi_2(\mathbf{v}) := \mathbf{v} \mod \Lambda_2$.

"Encode" functions f as elements $\omega(f) \in \mathbb{Z}^n / \Lambda_2$. Sign functions by computing

Sign(
$$f$$
) := short vector in ($\Lambda_2 + \omega(f)$).

If "encoding" $\omega(\cdot)$ is linear, (i.e., $\omega(f) + \omega(g) = \omega(f+g)$) then signature is a linear operator on the space of functions.

Ingredients:

- *k* := number of messages input to a function.
- $\tau :=$ "tag" that ties together messages in same data set.
- Hash function $H: \{0,1\}^* \to (\mathbb{Z}^n/\Lambda_2)^k$ maps $\tau \mapsto (\alpha_1, \ldots, \alpha_k)$.

Ingredients:

- *k* := number of messages input to a function.
- $\tau :=$ "tag" that ties together messages in same data set.
- Hash function $H: \{0,1\}^* \to (\mathbb{Z}^n/\Lambda_2)^k$ maps $\tau \mapsto (\alpha_1, \ldots, \alpha_k)$.
- Observation:

 $\left\{ \begin{array}{c} \text{Linear functions} \\ \text{in } k \text{ variables} \end{array} \right\} \quad \text{generated by} \quad \left\{ \begin{array}{c} \text{"projections" } \pi_i : \\ \pi_i(m_1, \dots, m_k) = m_i \end{array} \right\}_{i=1}^k$

Ingredients:

- *k* := number of messages input to a function.
- $\tau :=$ "tag" that ties together messages in same data set.
- Hash function $H: \{0,1\}^* \to (\mathbb{Z}^n/\Lambda_2)^k$ maps $\tau \mapsto (\alpha_1, \ldots, \alpha_k)$.
- Observation:

$$\left\{ \begin{array}{c} \text{Linear functions} \\ \text{in } k \text{ variables} \end{array} \right\} \quad \text{generated by} \quad \left\{ \begin{array}{c} \text{"projections" } \pi_i : \\ \pi_i(m_1, \dots, m_k) = m_i \end{array} \right\}_{i=1}^k$$

Define "encoding" $\omega \colon \mathcal{F} \to \mathbb{Z}^n / \Lambda_2$ by

$$f = \sum c_i \pi_i \quad \mapsto \quad \omega(f) = \sum c_i \alpha_i = f(\alpha_1, \dots, \alpha_k).$$

Ingredients:

- *k* := number of messages input to a function.
- $\tau :=$ "tag" that ties together messages in same data set.
- Hash function $H: \{0,1\}^* \to (\mathbb{Z}^n/\Lambda_2)^k$ maps $\tau \mapsto (\alpha_1, \ldots, \alpha_k)$.
- Observation:

$$\left\{ \begin{array}{c} \text{Linear functions} \\ \text{in } k \text{ variables} \end{array} \right\} \quad \text{generated by} \quad \left\{ \begin{array}{c} \text{"projections" } \pi_i : \\ \pi_i(m_1, \dots, m_k) = m_i \end{array} \right\}_{i=1}^k$$

Define "encoding" $\omega \colon \mathcal{F} \to \mathbb{Z}^n / \Lambda_2$ by

$$f = \sum c_i \pi_i \quad \mapsto \quad \omega(f) = \sum c_i \alpha_i = f(\alpha_1, \dots, \alpha_k).$$

- *c_i* are small integers.
- "encoding" $\omega(f)$ much shorter than description of f.

"Intersection method" binds messages to functions

• Messages $m \in \mathbb{Z}^n / \Lambda_1$.

"Intersection method" binds messages to functions

- Messages $m \in \mathbb{Z}^n / \Lambda_1$.
- Functions f = ∑ c_iπ_i encoded as ω(f) = ∑ c_iα_i ∈ Zⁿ/Λ₂.
 (α_i defined by tag τ.)

"Intersection method" binds messages to functions

- Messages $m \in \mathbb{Z}^n / \Lambda_1$.
- Functions f = ∑ c_iπ_i encoded as ω(f) = ∑ c_iα_i ∈ Zⁿ/Λ₂.
 (α_i defined by tag τ.)
- Pair $(m, \omega(f))$ gives unique element of $\mathbb{Z}^n / \Lambda_1 \cap \Lambda_2$.

Signing a message-function pair

• Pair $(m, \omega(f))$ gives unique element of $\mathbb{Z}^n / \Lambda_1 \cap \Lambda_2$.

Signing a message-function pair

• Pair $(m, \omega(f))$ gives unique element of $\mathbb{Z}^n / \Lambda_1 \cap \Lambda_2$. $CRT(m, \omega(f))$ $CRT(m, \omega(f))$ $= m \mod \Lambda_1$ $= \omega(f) \mod \Lambda_2$ O Sign(m) := short vector in $(\Lambda_1 \cap \Lambda_2) + CRT(m, \omega(f))$ Verify(σ) := 1 iff ($\sigma \mod \Lambda_1 = m$) and ($\sigma \mod \Lambda_2 = \omega(f)$) and σ is short

Linearly homomorphic signature scheme

- KeyGen(n):
 - $pk = Lattices \Lambda_1, \Lambda_2 \subset \mathbb{Z}^n$, Gaussian parameter β
 - $sk = short basis of \Lambda_1 \cap \Lambda_2$
 - $H: \{0,1\}^* \to (\mathbb{Z}^n/\Lambda_2)^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$

Linearly homomorphic signature scheme

- KeyGen(n):
 - $pk = Lattices \Lambda_1, \Lambda_2 \subset \mathbb{Z}^n$, Gaussian parameter β
 - $sk = short basis of \Lambda_1 \cap \Lambda_2$
 - $H: \{0,1\}^* \to (\mathbb{Z}^n/\Lambda_2)^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$
- Sign(τ , m_i , π_i): compute short vector σ_i in $\Lambda_1 \cap \Lambda_2 + CRT(m_i, \alpha_i)$.
 - $\pi_i = i$ th projection function

Linearly homomorphic signature scheme

- KeyGen(n):
 - $pk = Lattices \Lambda_1, \Lambda_2 \subset \mathbb{Z}^n$, Gaussian parameter β
 - $sk = short basis of \Lambda_1 \cap \Lambda_2$
 - $H: \{0,1\}^* \to (\mathbb{Z}^n/\Lambda_2)^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$
- Sign(τ , m_i , π_i): compute short vector σ_i in $\Lambda_1 \cap \Lambda_2 + CRT(m_i, \alpha_i)$.
 - $\pi_i = i$ th projection function
- Evaluate $(f = \sum c_i \pi_i, (\sigma_1, \dots, \sigma_k))$: compute $\sigma = \sum c_i \sigma_i$.

- KeyGen(n):
 - $pk = Lattices \Lambda_1, \Lambda_2 \subset \mathbb{Z}^n$, Gaussian parameter β
 - $sk = short basis of \Lambda_1 \cap \Lambda_2$
 - $H: \{0,1\}^* \to (\mathbb{Z}^n/\Lambda_2)^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$
- Sign(τ , m_i , π_i): compute short vector σ_i in $\Lambda_1 \cap \Lambda_2 + CRT(m_i, \alpha_i)$.
 - $\pi_i = i$ th projection function
- Evaluate $(f = \sum c_i \pi_i, (\sigma_1, \dots, \sigma_k))$: compute $\sigma = \sum c_i \sigma_i$.
- Verify(τ, σ, m, f = ∑ c_iπ_i): Accept if
 σ mod Λ₁ = m,
 σ mod Λ₂ = ω(f) = ∑ c_iα_i,
 σ sufficiently short.

Lattices:

 $\Lambda_1 = p \mathbb{Z}^n$ *p* small prime

$$\Lambda_2$$

 $\Lambda_1\cap\Lambda_2$

Lattices:

 $\begin{array}{c} \Lambda_1 = \boldsymbol{p}\mathbb{Z}^n \\ \boldsymbol{p} \text{ small prime} \end{array} \quad \{x \in \mathcal{X}\}$

• Can sample random $\Lambda_a^{\perp}(\mathbf{A})$ with short basis **B** [A99,AP09].

Lattices:

$$\begin{array}{c|c} \Lambda_1 = p\mathbb{Z}^n \\ p \text{ small prime} \end{array} & \begin{array}{c} \Lambda_2 = \Lambda_q^{\perp}(\mathbf{A}) = \\ \{\mathbf{x} \in \mathbb{Z}^n : \mathbf{A} \cdot \mathbf{x} = 0 \bmod q\} \\ q \neq p \text{ prime, } \mathbf{A} \in \mathbb{F}_q^{n' \times n} \end{array} & \begin{array}{c} \Lambda_1 \cap \Lambda_2 = p \cdot \Lambda_q^{\perp}(\mathbf{A}) \\ \text{ short basis is } p \cdot \mathbf{B} \end{array}$$

• Can sample random $\Lambda_q^{\perp}(\mathbf{A})$ with short basis **B** [A99,AP09].

Lattices:

 $\begin{array}{c|c} \Lambda_1 = p\mathbb{Z}^n \\ p \text{ small prime} \end{array} & \begin{array}{c} \Lambda_2 = \Lambda_q^{\perp}(\mathbf{A}) = \\ \{\mathbf{x} \in \mathbb{Z}^n : \mathbf{A} \cdot \mathbf{x} = 0 \mod q\} \\ q \neq p \text{ prime, } \mathbf{A} \in \mathbb{F}_q^{n' \times n} \end{array} & \begin{array}{c} \Lambda_1 \cap \Lambda_2 = p \cdot \Lambda_q^{\perp}(\mathbf{A}) \\ \text{ short basis is } p \cdot \mathbf{B} \end{array}$

• Can sample random $\Lambda_q^{\perp}(\mathbf{A})$ with short basis **B** [A99,AP09].

• Message space:
$$\mathbb{Z}^n/p\mathbb{Z}^n = \mathbb{F}_p^n$$
.

Lattices:

 $\begin{array}{c|c} \Lambda_1 = p\mathbb{Z}^n \\ p \text{ small prime} \end{array} & \begin{array}{c} \Lambda_2 = \Lambda_q^{\perp}(\mathbf{A}) = \\ \{\mathbf{x} \in \mathbb{Z}^n : \mathbf{A} \cdot \mathbf{x} = 0 \mod q\} \\ q \neq p \text{ prime, } \mathbf{A} \in \mathbb{F}_q^{n' \times n} \end{array} & \begin{array}{c} \Lambda_1 \cap \Lambda_2 = p \cdot \Lambda_q^{\perp}(\mathbf{A}) \\ \text{ short basis is } p \cdot \mathbf{B} \end{array}$

• Can sample random $\Lambda_q^{\perp}(\mathbf{A})$ with short basis **B** [A99,AP09].

- Message space: $\mathbb{Z}^n/p\mathbb{Z}^n = \mathbb{F}_p^n$.
- Admissible functions f = ∑ c_iπ_i, c_i ∈ 𝔽_p: 𝔽_p-linear combinations of k vectors in 𝔽ⁿ_p.

Lattices:

 $\begin{array}{c|c} \Lambda_1 = p\mathbb{Z}^n \\ p \text{ small prime} \end{array} & \begin{array}{c} \Lambda_2 = \Lambda_q^{\perp}(\mathbf{A}) = \\ \{\mathbf{x} \in \mathbb{Z}^n : \mathbf{A} \cdot \mathbf{x} = 0 \mod q\} \\ q \neq p \text{ prime, } \mathbf{A} \in \mathbb{F}_q^{n' \times n} \end{array} & \begin{array}{c} \Lambda_1 \cap \Lambda_2 = p \cdot \Lambda_q^{\perp}(\mathbf{A}) \\ \text{ short basis is } p \cdot \mathbf{B} \end{array}$

• Can sample random $\Lambda_q^{\perp}(\mathbf{A})$ with short basis **B** [A99,AP09].

- Message space: $\mathbb{Z}^n/p\mathbb{Z}^n = \mathbb{F}_p^n$.
- Admissible functions f = ∑ c_iπ_i, c_i ∈ 𝔽_p: 𝔽_p-linear combinations of k vectors in 𝔽ⁿ_p.

Signature scheme signs *k* vectors $\mathbf{v}_i \in \mathbb{F}_p^n$ and can authenticate any \mathbb{F}_p -linear combination of the \mathbf{v}_i .

Lattices:

 $\begin{array}{l} \Lambda_1 = p\mathbb{Z}^n \\ p \text{ small prime} \end{array} \quad \begin{array}{l} \Lambda_2 = \\ \{ \mathbf{x} \in \mathbb{Z}^n : I \\ q \neq p \text{ pri} \end{array}$

$$\begin{split} \Lambda_2 &= \Lambda_q^{\perp}(\mathbf{A}) = \\ &\in \mathbb{Z}^n : \mathbf{A} \cdot \mathbf{x} = 0 \mod q \\ &\neq p \text{ prime, } \mathbf{A} \in \mathbb{F}_q^{n' \times n} \end{split} \ \ \ \begin{array}{c} \Lambda_1 \cap \Lambda_2 = p \cdot \Lambda_q^{\perp}(\mathbf{A}) \\ &\text{ short basis is } p \cdot \mathbf{B} \end{aligned}$$

• Can sample random $\Lambda_q^{\perp}(\mathbf{A})$ with short basis **B** [A99,AP09].

- Message space: Zⁿ/pZⁿ = Fⁿ_p.
- Admissible functions f = ∑ c_iπ_i, c_i ∈ F_p: F_p-linear combinations of k vectors in Fⁿ_p.

Signature scheme signs *k* vectors $\mathbf{v}_i \in \mathbb{F}_p^n$ and can authenticate any \mathbb{F}_p -linear combination of the \mathbf{v}_i .

Same functionality as *network coding* signatures [BFKW09,GKKR10], except p can be small (even p = 2).

What does it mean to forge a homomorphic signature?

What does it mean to forge a homomorphic signature?

What does it mean to forge a homomorphic signature?

What does it mean to forge a homomorphic signature?

What does it mean to forge a homomorphic signature?

Adversary

What does it mean to forge a homomorphic signature?

What does it mean to forge a homomorphic signature?

What does it mean to forge a homomorphic signature?

 Forgery is a valid signature on (τ, m^{*}, f) with m^{*} ≠ f(messages with tag τ).

Adversary wins if *f* admissible, σ^* verifies for (τ^*, m^*, f) , and

- **1** τ^* not obtained in response to a query, or
- 2 $\tau^* = \tau$ for query (m_1, \ldots, m_k) , and $m^* \neq f(m_1, \ldots, m_k)$.

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_2 .

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_2 .

To implement system securely:

Choose Λ_2 such that finding short vectors in Λ_2 is hard!

• $\Lambda_q^{\perp}(\mathbf{A})$ has this property [MR04,GPV08].

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero vector in Λ_2 .

To implement system securely:

Choose Λ_2 such that finding short vectors in Λ_2 is hard!

• $\Lambda_q^{\perp}(\mathbf{A})$ has this property [MR04,GPV08].

Proof outline

Given a "challenge" Λ₂, answer signature queries without a basis of Λ₁ ∩ Λ₂.

Our Seal of the second sec

Security Proof, Part 1

Proof outline

Given a "challenge" Λ₂, answer signature queries without a basis of Λ₁ ∩ Λ₂.

Security Proof, Part 1

Proof outline

Given a "challenge" Λ₂, answer signature queries without a basis of Λ₁ ∩ Λ₂.

• Generate Λ_1 with a short basis.

Security Proof, Part 1

Proof outline

- Given a "challenge" Λ₂, answer signature queries without a basis of Λ₁ ∩ Λ₂.
 - Generate Λ_1 with a short basis.
 - Adversary queries m_1, \ldots, m_k .

Proof outline

- Given a "challenge" Λ₂, answer signature queries without a basis of Λ₁ ∩ Λ₂.
 - Generate Λ_1 with a short basis.
 - Adversary queries m_1, \ldots, m_k .
 - Choose random τ and simulate signature σ_i on (τ, m_i, π_i) :
 - **1** Use basis of Λ_1 to compute short vectors $\sigma_i \in \Lambda_1 + m_i$;
 - 2 Set $\alpha_i := \sigma_i \mod \Lambda_2 \in \mathbb{Z}^n / \Lambda_2$.
 - **Output** Program random oracle with $H(\tau) := (\alpha_1, \ldots, \alpha_k)$.

Proof outline

- Given a "challenge" Λ₂, answer signature queries without a basis of Λ₁ ∩ Λ₂.
 - Generate Λ_1 with a short basis.
 - Adversary queries m_1, \ldots, m_k .
 - Choose random τ and simulate signature σ_i on (τ, m_i, π_i) :
 - **1** Use basis of Λ_1 to compute short vectors $\sigma_i \in \Lambda_1 + m_i$;
 - 2 Set $\alpha_i := \sigma_i \mod \Lambda_2 \in \mathbb{Z}^n / \Lambda_2$.
 - **Output** Program random oracle with $H(\tau) := (\alpha_1, \ldots, \alpha_k)$.
 - For certain parameter choices, α_i are statistically close to uniform in Zⁿ/Λ₂.

Proof outline

- Given a "challenge" Λ₂, answer signature queries without a basis of Λ₁ ∩ Λ₂.
 - Generate Λ_1 with a short basis.
 - Adversary queries m_1, \ldots, m_k .
 - Choose random τ and simulate signature σ_i on (τ, m_i, π_i) :
 - **1** Use basis of Λ_1 to compute short vectors $\sigma_i \in \Lambda_1 + m_i$;
 - 2 Set $\alpha_i := \sigma_i \mod \Lambda_2 \in \mathbb{Z}^n / \Lambda_2$.
 - **Output** Program random oracle with $H(\tau) := (\alpha_1, \ldots, \alpha_k)$.
 - For certain parameter choices, α_i are statistically close to uniform in Zⁿ/Λ₂.
 - Simulation is indistinguishable from real system.

Proof outline

2 Use forgery to produce a short nonzero vector in Λ_2 .

Proof outline

3 Use forgery to produce a short nonzero vector in Λ_2 .

• Adversary outputs forgery $(\tau^*, m^*, \sigma^*, f = \sum c_i \pi_i)$.

Proof outline

3 Use forgery to produce a short nonzero vector in Λ_2 .

- Adversary outputs forgery $(\tau^*, m^*, \sigma^*, f = \sum c_i \pi_i)$.
- Suppose $\tau^*, \sigma_1, \ldots, \sigma_k$ answer query m_1, \ldots, m_k .

Proof outline

2 Use forgery to produce a short nonzero vector in Λ_2 .

- Adversary outputs forgery $(\tau^*, m^*, \sigma^*, f = \sum c_i \pi_i)$.
- Suppose $\tau^*, \sigma_1, \ldots, \sigma_k$ answer query m_1, \ldots, m_k .
- Compute $\sigma := \sum c_i \sigma_i =$ "real" sig on $f(m_1, \ldots, m_k)$.

Proof outline

Use forgery to produce a short nonzero vector in Λ₂.

- Adversary outputs forgery $(\tau^*, m^*, \sigma^*, f = \sum c_i \pi_i)$.
- Suppose $\tau^*, \sigma_1, \ldots, \sigma_k$ answer query m_1, \ldots, m_k .
- Compute $\sigma := \sum c_i \sigma_i =$ "real" sig on $f(m_1, \ldots, m_k)$.
- Validity of forged σ^* means:

•
$$\sigma^* \mod \Lambda_1 = m^* \neq f(m_1, \dots, m_k)$$

• $\sigma^* \mod \Lambda_2 = \sum c_i \alpha_i$
• $\sigma^* \text{ is short}$

Proof outline

Use forgery to produce a short nonzero vector in A₂.

- Adversary outputs forgery $(\tau^*, m^*, \sigma^*, f = \sum c_i \pi_i)$.
- Suppose $\tau^*, \sigma_1, \ldots, \sigma_k$ answer query m_1, \ldots, m_k .
- Compute $\sigma := \sum c_i \sigma_i$ = "real" sig on $f(m_1, \ldots, m_k)$.
- Validity of forged σ^* and authenticity of "real" σ means:

2)
$$\sigma^* \mod \Lambda_2 = \sum c_i \alpha_i = \sigma \mod \Lambda_2$$

3) σ^* is short and σ is short

Proof outline

- Adversary outputs forgery $(\tau^*, m^*, \sigma^*, f = \sum c_i \pi_i)$.
- Suppose $\tau^*, \sigma_1, \ldots, \sigma_k$ answer query m_1, \ldots, m_k .
- Compute $\sigma := \sum c_i \sigma_i$ = "real" sig on $f(m_1, \ldots, m_k)$.
- Validity of forged σ^* and authenticity of "real" σ means:

2)
$$\sigma^* \mod \Lambda_2 = \sum c_i \alpha_i = \sigma \mod \Lambda_2$$

3 σ^* is short and σ is short

Conclusion: $\sigma^* - \sigma$ is (1) nonzero, (2) in Λ_2 , (3) short.

Proof outline

Output: Out

- Adversary outputs forgery $(\tau^*, m^*, \sigma^*, f = \sum c_i \pi_i)$.
- Suppose $\tau^*, \sigma_1, \ldots, \sigma_k$ answer query m_1, \ldots, m_k .
- Compute $\sigma := \sum c_i \sigma_i$ = "real" sig on $f(m_1, \ldots, m_k)$.
- Validity of forged σ^* and authenticity of "real" σ means:

$$\ \, \mathbf{0} \ \, \sigma^* \bmod \Lambda_1 = m^* \neq f(m_1,\ldots,m_k) = \sigma \bmod \Lambda_1$$

2)
$$\sigma^* \mod \Lambda_2 = \sum c_i \alpha_i = \sigma \mod \Lambda_2$$

(3) σ^* is short and σ is short

Conclusion: $\sigma^* - \sigma$ is (1) nonzero, (2) in Λ_2 , (3) short.

If *τ** not obtained from a query, sign random messages *m_i* and perform same analysis.

Privacy property: derived signature on $f(m_1, ..., m_k)$ reveals nothing about $m_1, ..., m_k$ beyond value of f.

Privacy property: derived signature on $f(m_1, ..., m_k)$ reveals nothing about $m_1, ..., m_k$ beyond value of f.

Specifically: given data sets

$$\vec{m} = (m_1, \ldots, m_k), \qquad \vec{m}' = (m'_1, \ldots, m'_k)$$

and admissible function f with

$$f(\vec{m})=f(\vec{m}'),$$

even unbounded adversary cannot distinguish derived signature on $f(\vec{m})$ from derived signature on $f(\vec{m}')$.

Privacy theorem

Theorem

Linearly homomorphic signatures are private.

Theorem

Linearly homomorphic signatures are private.

Proof idea

- Distribution of derived signature on f(m
) depends only on f and f(m
), not on m
 .
- If $f(\vec{m}) = f(\vec{m}')$, distributions of derived sigs are identical.

Theorem

Linearly homomorphic signatures are private.

Proof idea

- Distribution of derived signature on f(m
) depends only on f and f(m
), not on m
 .
- If $f(\vec{m}) = f(\vec{m}')$, distributions of derived sigs are identical.

Key technical fact [BF11]: distribution of linear combination of discrete Gaussian samples is also discrete Gaussian.

• Sigs on *m_i* sampled from discrete Gaussian distribution, derived sigs are linear combinations.

Polynomially Homomorphic Signatures from Ideal Lattices

Linearly homomorphic scheme: messages in \mathbb{Z}^n/Λ_1 , functions "encoded" in \mathbb{Z}^n/Λ_2 , signatures are short vectors in \mathbb{Z}^n .

 $\phi_i \colon \mathbb{Z}^n \to \mathbb{Z}^n / \Lambda_i$ given by $\mathbf{v} \mapsto (\mathbf{v} \mod \Lambda_i)$ is a linear map, so we can add either before or after applying ϕ_i .

Linearly homomorphic scheme: messages in \mathbb{Z}^n/Λ_1 , functions "encoded" in \mathbb{Z}^n/Λ_2 , signatures are short vectors in \mathbb{Z}^n .

 $\phi_i \colon \mathbb{Z}^n \to \mathbb{Z}^n / \Lambda_i$ given by $\mathbf{v} \mapsto (\mathbf{v} \mod \Lambda_i)$ is a linear map, so we can add either before or after applying ϕ_i .

New idea: what if \mathbb{Z}^n has a ring structure and Λ_1, Λ_2 are ideals?

Then ϕ is a ring homomorphism, so we can add or multiply either before or after applying ϕ .

Linearly homomorphic scheme: messages in \mathbb{Z}^n/Λ_1 , functions "encoded" in \mathbb{Z}^n/Λ_2 , signatures are short vectors in \mathbb{Z}^n .

 $\phi_i \colon \mathbb{Z}^n \to \mathbb{Z}^n / \Lambda_i$ given by $\mathbf{v} \mapsto (\mathbf{v} \mod \Lambda_i)$ is a linear map, so we can add either before or after applying ϕ_i .

New idea: what if \mathbb{Z}^n has a ring structure and Λ_1, Λ_2 are ideals?

Then ϕ is a ring homomorphism, so we can add or multiply either before or after applying ϕ .

• Can authenticate polynomial functions on messages.

Setup for polynomial system [G09]

Fix monic, irreducible $F(x) \in \mathbb{Z}[x]$ of degree *n*.

• $R := \mathbb{Z}[x]/(F(x))$ gives a ring structure on \mathbb{Z}^n :

(coordinates of vectors) \leftrightarrow (coefficients of polynomials mod F)

 $(a_0,\ldots,a_{n-1}) \leftrightarrow a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$

Setup for polynomial system [G09]

Fix monic, irreducible $F(x) \in \mathbb{Z}[x]$ of degree *n*.

• $R := \mathbb{Z}[x]/(F(x))$ gives a ring structure on \mathbb{Z}^n :

(coordinates of vectors) \leftrightarrow (coefficients of polynomials mod F)

 $(a_0,\ldots,a_{n-1}) \leftrightarrow a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$

 $\Lambda_1 = \text{prime ideal } \mathfrak{p} \subset R \text{ of norm } p.$

- Message space is $R/\mathfrak{p} = \mathbb{F}_{p}$.
- Admissible functions are polynomials *f* ∈ 𝔽_{*p*}[*x*₁,..., *x_k*] with small coefficients.

Setup for polynomial system [G09]

Fix monic, irreducible $F(x) \in \mathbb{Z}[x]$ of degree *n*.

• $R := \mathbb{Z}[x]/(F(x))$ gives a ring structure on \mathbb{Z}^n :

(coordinates of vectors) \leftrightarrow (coefficients of polynomials mod F)

$$(a_0,\ldots,a_{n-1}) \quad \leftrightarrow \quad a_0+a_1x+\cdots+a_{n-1}x^{n-1}$$

 $\Lambda_1 = \text{prime ideal } \mathfrak{p} \subset R \text{ of norm } p.$

- Message space is $R/\mathfrak{p} = \mathbb{F}_{p}$.
- Admissible functions are polynomials *f* ∈ 𝔽_{*p*}[*x*₁,..., *x*_k] with small coefficients.
- Λ_2 = prime ideal q; polynomials "encoded" in $R/q = \mathbb{F}_q$:
 - Hash function $H: \{0,1\}^* \to \mathbb{F}_q^k$ maps $\tau \mapsto (\alpha_1, \ldots, \alpha_k)$.
 - "Encode" f by ω(f) := f(α₁,..., α_k). (think of coefficients of f as small integers).

- KeyGen(n):
 - $F(x) \in \mathbb{Z}[x]$ degree n \Rightarrow ring structure on $\mathbb{Z}^n \cong R := \mathbb{Z}[x]/(F(x)).$
 - pk = prime ideals $\mathfrak{p}, \mathfrak{q} \subset R$, Gaussian parameter β

•
$$H: \{0,1\}^* \to \mathbb{F}_q^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$$

- KeyGen(n):
 - $F(x) \in \mathbb{Z}[x]$ degree n \Rightarrow ring structure on $\mathbb{Z}^n \cong R := \mathbb{Z}[x]/(F(x)).$
 - pk = prime ideals $\mathfrak{p}, \mathfrak{q} \subset R$, Gaussian parameter β

•
$$sk = short basis of \mathfrak{p} \cap \mathfrak{q} = \mathfrak{p} \cdot \mathfrak{q}$$

•
$$H: \{0,1\}^* \to \mathbb{F}_q^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$$

Sign(τ, m_i, x_i):

• Compute short element σ_i in $\mathfrak{p} \cdot \mathfrak{q} + CRT(m_i, \alpha_i)$.

- KeyGen(n):
 - $F(x) \in \mathbb{Z}[x]$ degree n \Rightarrow ring structure on $\mathbb{Z}^n \cong R := \mathbb{Z}[x]/(F(x)).$
 - pk = prime ideals $\mathfrak{p}, \mathfrak{q} \subset R$, Gaussian parameter β

•
$$sk = short basis of \mathfrak{p} \cap \mathfrak{q} = \mathfrak{p} \cdot \mathfrak{q}$$

•
$$H: \{0,1\}^* \to \mathbb{F}_q^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$$

Sign(τ, m_i, x_i):

• Compute short element σ_i in $\mathfrak{p} \cdot \mathfrak{q} + CRT(m_i, \alpha_i)$.

- Evaluate(f, (σ_1 , ..., σ_k)):
 - Output $\sigma = f(\sigma_1, \ldots, \sigma_k) \in R$

- KeyGen(n):
 - $F(x) \in \mathbb{Z}[x]$ degree n \Rightarrow ring structure on $\mathbb{Z}^n \cong R := \mathbb{Z}[x]/(F(x)).$
 - pk = prime ideals $\mathfrak{p}, \mathfrak{q} \subset R$, Gaussian parameter β

•
$$\mathit{sk} = \mathsf{short} \mathsf{ basis} \mathsf{ of } \mathfrak{p} \cap \mathfrak{q} = \mathfrak{p} \cdot \mathfrak{q}$$

•
$$H: \{0,1\}^* \to \mathbb{F}_q^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$$

• Compute short element σ_i in $\mathfrak{p} \cdot \mathfrak{q} + CRT(m_i, \alpha_i)$.

- KeyGen(n):
 - $F(x) \in \mathbb{Z}[x]$ degree n \Rightarrow ring structure on $\mathbb{Z}^n \cong R := \mathbb{Z}[x]/(F(x)).$
 - pk = prime ideals $\mathfrak{p}, \mathfrak{q} \subset R$, Gaussian parameter β
 - sk = short basis of p ∩ q = p · q how to generate?
 - $H: \{0,1\}^* \to \mathbb{F}_q^k, \quad H(\tau) = (\alpha_1, \ldots, \alpha_k).$
- Sign (τ, m_i, x_i) :
 - Compute short element σ_i in $\mathfrak{p} \cdot \mathfrak{q} + CRT(m_i, \alpha_i)$.
- Evaluate(f, (σ₁,..., σ_k)):
 Output σ = f(σ₁,..., σ_k) ∈ R why is this short?
- Verify(τ, σ, m, f): Accept if
 σ mod p = m,
 σ mod q = f(α₁,..., α_k),
 σ sufficiently short how short?

Products of short elements

Why is a product of short elements of R short?

Why is a product of short elements of *R* short?

[G09,G10]: parameter γ_F measures how much multiplication in *R* increases length:

$$\gamma_{\mathcal{F}} := \sup_{u,v\in \mathcal{R}} \frac{\|u\cdot v\|}{\|u\|\cdot \|v\|}.$$

- Product of *d* elements of length $< \beta$ has length $< \gamma_F^{d-1} \beta^d$.
- If $\beta, \gamma_F \in \text{poly}(n)$ and d = O(1), then this is still considered "short".

Why is a product of short elements of *R* short?

[G09,G10]: parameter γ_F measures how much multiplication in *R* increases length:

$$\gamma_{\mathcal{F}} := \sup_{u,v\in \mathcal{R}} \frac{\|u\cdot v\|}{\|u\|\cdot \|v\|}.$$

- Product of *d* elements of length $< \beta$ has length $< \gamma_F^{d-1} \beta^d$.
- If β, γ_F ∈ poly(n) and d = O(1), then this is still considered "short".

Lots of F(x) have small γ_F :

• e.g., cyclotomic polynomials $\Phi_{\ell}(x)$, ℓ prime or $\ell = 2^a 3^b$.

How to generate p, q with short basis of $p \cdot q$?

How to generate $\mathfrak{p}, \mathfrak{q}$ with short basis of $\mathfrak{p} \cdot \mathfrak{q}$?

 Smart-Vercauteren: choose a random short u ∈ R, repeat until u · R is a prime ideal (lattice) p.

How to generate p, q with short basis of $p \cdot q$?

- Smart-Vercauteren: choose a random short u ∈ R, repeat until u · R is a prime ideal (lattice) p.
- Repeat to get a second prime ideal $q = v \cdot R$.

How to generate $\mathfrak{p}, \mathfrak{q}$ with short basis of $\mathfrak{p} \cdot \mathfrak{q}$?

- Smart-Vercauteren: choose a random short u ∈ R, repeat until u · R is a prime ideal (lattice) p.
- Repeat to get a second prime ideal $q = v \cdot R$.

•
$$uv \cdot R = \mathfrak{p} \cdot \mathfrak{q}$$
, and

$$\mathbf{B} := \{uv, uv \cdot x, uv \cdot x^2, \dots, uv \cdot x^{n-1}\}.$$

spans $p \cdot q$ and consists of short elements:

$$\|\boldsymbol{u}\boldsymbol{v}\cdot\boldsymbol{x}^{i}\|\leq\|\boldsymbol{u}\|\cdot\|\boldsymbol{v}\|\cdot\gamma_{F}^{2}.$$

Signature length

How short are derived signatures?

Signature length

How short are derived signatures?

•	Length expansion
Evaluate degree-d monomial	$\ell \mapsto \ell^d \cdot \gamma_F^{d-1}$
Multiply by coefficient in $[-y, y]$	$\ell \mapsto \ell \cdot y$
Sum of <i>m</i> monomials of length ℓ	$\ell\mapsto\ell\cdot m$

Define admissible function set \mathcal{F} to be polynomials in $\mathbb{F}_{p}[x_{1}, \ldots, x_{k}]$ of degree $\leq d$ with coefficients in [-y, y].

•	Length expansion
Evaluate degree-d monomial	$\ell \mapsto \ell^d \cdot \gamma_F^{d-1}$
Multiply by coefficient in $[-y, y]$	$\ell\mapsto\ell\cdot y$
Sum of m monomials of length ℓ	$\ell\mapsto\ell\cdot \textit{m}$

Signatures on original messages m_i have length < β
 ⇒ signature on f(m₁,..., m_k) has length < β^d · γ^{d-1}_F · y · (^{k+d}_d).

•	Length expansion
Evaluate degree-d monomial	$\ell \mapsto \ell^d \cdot \gamma_F^{d-1}$
Multiply by coefficient in $[-y, y]$	$\ell \mapsto \ell \cdot y$
Sum of <i>m</i> monomials of length ℓ	$\ell\mapsto\ell\cdot m$

- Signatures on original messages m_i have length < β
 ⇒ signature on f(m₁,...,m_k) has length < β^d · γ^{d-1}_F · y · (^{k+d}_d).
- If β, γ_F, k, y ∈ poly(n) and d = O(1), then derived signature length is poly(n). (p is exponential in n)

•	Length expansion
Evaluate degree-d monomial	$\ell \mapsto \ell^d \cdot \gamma_F^{d-1}$
Multiply by coefficient in $[-y, y]$	$\ell\mapsto\ell\cdot y$
Sum of m monomials of length ℓ	$\ell\mapsto\ell\cdot m$

- Signatures on original messages m_i have length < β
 ⇒ signature on f(m₁,...,m_k) has length < β^d · γ^{d-1}_F · y · (^{k+d}_d).
- If β, γ_F, k, y ∈ poly(n) and d = O(1), then derived signature length is poly(n). (p is exponential in n)
- For fixed *n*, bit length of derived signatures is linear in *d*, logarithmic in *k*.

Security of polynomial scheme

What is security based on?

What is security based on?

Analysis of linearly homomorphic scheme also applies here:

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero element of q.

What is security based on?

Analysis of linearly homomorphic scheme also applies here:

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero element of q.

- q is a principal prime ideal.
 - Producing a short generator of arbitrary principal q is a classical problem in algorithmic number theory.

What is security based on?

Analysis of linearly homomorphic scheme also applies here:

Theorem

An adversary that wins the security game (in the random oracle model) can be used to compute a short nonzero element of q.

- q is a principal prime ideal.
 - Producing a short generator of arbitrary principal q is a classical problem in algorithmic number theory.
- Distribution of Smart-Vercauteren q not well understood.
 - Want \mathfrak{q} in distribution that admits a worst-case reduction.

- Construct private polynomially homomorphic signatures. (i.e., that leak no information about original messages)
 - Linearly homomorphic signatures are private.
 - Current polynomial construction is not private.

- Construct private polynomially homomorphic signatures. (i.e., that leak no information about original messages)
 - Linearly homomorphic signatures are private.
 - Current polynomial construction is not private.
- Remove random oracle from security proof.
 - Work in progress.

- Construct private polynomially homomorphic signatures. (i.e., that leak no information about original messages)
 - Linearly homomorphic signatures are private.
 - Current polynomial construction is not private.
- Remove random oracle from security proof.
 - Work in progress.
- Reduce security to worst-case problems on ideal lattices.
 - Achieved for linear scheme.
 - Achieve for polynomial scheme using Gentry's techniques?

- Construct private polynomially homomorphic signatures. (i.e., that leak no information about original messages)
 - Linearly homomorphic signatures are private.
 - Current polynomial construction is not private.
- Remove random oracle from security proof.
 - Work in progress.
- Reduce security to worst-case problems on ideal lattices.
 - Achieved for linear scheme.
 - Achieve for polynomial scheme using Gentry's techniques?
- Fully homomorphic signatures!
 - Adapt "bootstrapping" approach???

- Construct private polynomially homomorphic signatures. (i.e., that leak no information about original messages)
 - Linearly homomorphic signatures are private.
 - Current polynomial construction is not private.
- Remove random oracle from security proof.
 - Work in progress.
- Reduce security to worst-case problems on ideal lattices.
 - Achieved for linear scheme.
 - Achieve for polynomial scheme using Gentry's techniques?
- Fully homomorphic signatures!
 - Adapt "bootstrapping" approach???

Thank you!

Thanks also to Chris Peikert for help with graphics.