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Problem: Computing on Authenticated Data

Q: How do we delegate computation while ensuring integrity?

sk

signed
grades

Untrusted DB
Student Score Sig

Adam 91 σ1
Becky 73 σ2

...
...

...
Kevin 84 σk

mean?

87.3, σ pk

σ1 = signature on
(“grades”, 91, “Adam”)

σ = signature on
(“grades”, 87.3, “mean”)

Validity: σ authenticates 87.3 as the correct mean.

Security: no adversary can authenticate a different mean.

Length efficiency: σ is short.
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Solution: Homomorphic Signatures

Messages (m1, . . . ,mk ) grouped together into files, identified by
a randomly chosen tag τ .

KeyGen(n)→ pk, sk
Signsk(τ,mi , i)→ signature σi on i th message
Evalpk(τ, (σ1, . . . , σk ), f )→ signature σ on f (m1, . . . ,mk )

Verifypk(τ,m, σ, f )→ 1 iff m = f (m1, . . . ,mk )

Security goal: no adversary can authenticate (m′, f ) for
m′ 6= f (m1, . . . ,mk ).

Linearly homomorphic signatures:
messages mi are vectors in Zn or Fn

q

functions f are linear combinations.
applications: mean, Fourier transform, regression models,
network coding.
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Linearly Homomorphic Signatures: State of the Art

Scheme Built on Assumption Vectors in
[BFKW09] BLS signatures CDH in bilinear Fn

p
groups (large p)

[GKKR10] RSA signatures RSA Zn

[BF11a,b] GPV signatures worst-case Fn
p

lattice problems (small p)

[AL11] Lewko-Waters nonstandard, deci- Zn
N

IBE sional assumptions in
bilinear groups

[CFW11] “adaptive pseudo- strong RSA Zn

free groups”
[CFW12] q-SDH in bilinear Fn

p; Fn
e

groups; strong RSA

(Orange = random oracle model)

Missing: Weak assumptions in the standard model!
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Our Contribution (1)

Generic framework for converting (ordinary) signatures to
linearly homomorphic signatures.

Applies to signature schemes with certain
“pre-homomorphic” properties.

Security based on same assumption as underlying
scheme.

Efficiency comparable to previous constructions.

Instantiations:
Scheme Assumption (in standard model)
[W05] CDH in bilinear groups
[BB04b] q-SDH in bilinear groups
[GHR99] strong RSA
[HW09b] RSA
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Our Contrubution (2)

Stronger security model for homomorphic signatures.

Chall.

sk

pk
−−−−−−−−−−−−−−−−−−→

tuple (F , i ,mi)←−−−−−−−−−−−−−−−−−−
tag τF , sig σF

i−−−−−−−−−−−−−−−−−−→

 repeat

forgery τ∗,m∗, σ∗, f
←−−−−−−−−−−−−−−−−−

Adversary

Forgery is a valid signature σ∗ on (τ∗,m∗, f ) with

m∗ 6= f (messages in file w/ tag τ∗).

Original adversary: must query entire files at once.
Stronger adversary: adaptively queries one message at a
time from any file.

Our schemes are secure against the stronger adversary.
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Previous RSA Construction [GKKR10]

Homomorphic hash: fix public h1, . . . ,hn ∈ Z∗N ;
for vector v ∈ Zn, define

Hhom(v) = hv1
1 · · · h

vn
n

.

Signatures: to sign i th vector vi , compute:

σ = (ti · Hhom(vi))
1/e mod N (ti public).

Homomorphic: If σ1, σ2 are signatures on v1,v2, then

σ1 · σ2 =
(
t1 · Hhom(v1) · t2 · Hhom(v2)

)1/e

= (t1t2 · Hhom(v1 + v2))
1/e

authenticates v1 + v2 for the function f (x , y) = x + y .

ti must be different for each file to prevent mixing.
Secure if ti = R(i , τ) produced by a random oracle.
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Removing the Random Oracle

Instead of RSA sigs, use [GHR99]:

Sign(m) = g1/H(m) mod N.

g public, H hashes to odd primes.
secure in standard model under strong RSA assumption:

Given (g,N), find any (e,g1/e mod N).

Our idea: to sign i th vector vi for file τ , compute:

σ =
(

g1/H(τ)︸ ︷︷ ︸
σ1

, (ti · Hhom(v))1/H(τ)︸ ︷︷ ︸
σ2

)
(ti public).

To verify (σ1, σ2) on vector w for function f (~x) =
∑

cixi :
1 Check that σH(τ)

1 = g.

2 Check that σH(τ)
2 =

∏
tci
i · Hhom(w)
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Homomorphic Property

Sign(τ,vi)→
(

g1/H(τ)︸ ︷︷ ︸
σ1

, (ti · Hhom(v))1/H(τ)︸ ︷︷ ︸
σ2

)
.

Verify(τ,w, (σ1, σ2), f ) with f (~x) =
∑

cixi :

σ
H(τ)
1

?
= g, σ

H(τ)
2

?
=
∏

tci
i · Hhom(w).

Homomorphic: If (σ1, σ2), (σ1, σ
′
2) are signatures on v1,v2, then

σ2 · σ′2 = (t1t2 · Hhom(v1 + v2))
1/H(τ)

so (σ1, σ2 · σ′2) authenticates v1 + v2 for f (x , y) = x + y .
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Security

Forgery is a valid signature σ∗ on (τ∗,m∗, f ) with

m∗ 6= f (messages in file w/ tag τ∗).

Two types:
1 τ∗ not obtained in response to a query, or
2 τ∗ = τ for query (m1, . . . ,mk ), and m∗ 6= f (m1, . . . ,mk ).

Type 1 forgery breaks underlying GHR scheme:
computes g1/H(τ∗) for previously unseen τ∗.

Type 2 forgery breaks an RSA assumption:
strong RSA if H is [GHR99] hash function.
RSA if H is a random oracle.
RSA if H is [HW09b] hash function.
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Proof Sketch for Type 2 Forgery

Consider a weak adversary that submits files F` = {v`1, . . . ,v`k}
for ` = 1, . . . ,q and receives pk, tags τ`, and signatures

σ =
(

g1/H(τ), (ti · Hhom(v))1/H(τ)
)
.

1 Given RSA challenge g, choose `∗ R← {1, . . . ,q} and set

x = g
∏

` H(τ`), y = g
∏

` 6=`∗ H(τ`).

Simulator can compute x1/H(τ`) for all `.
Simulator can compute y1/H(τ`) for all ` 6= `∗

y1/H(τ`∗ ) can be used to solve RSA problem (w.h.p).

2 Construct public key so that ti · Hhom(v`i ) = xa`,i yb`,i for
a`,i ,b`,i known to simulator, and b`,i = 0 for ` = `∗.

Can sign all queried vectors v.
Forgery on `∗th file contains a y term⇒ solve RSA.

3 Generalize using homomorphic chameleon hash.
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Generalization to Other Signatures

Construction works for any signatures of the form

Sign(m) =
(
gf (sk,m,r), σ2

)
where g generates some group G and r is random.

E.g.:

1 [GS02/BB04a/W05]: sk = α, Sign(m) = (gr ,gαH(m)r )

Secure under CDH assumption in bilinear group G if H is
random oracle or Waters hash function.

2 [BB04b]: sk = α, Sign(m) = g1/(m+α).

Secure under q-SDH assumption in bilinear group G.

Generalized homomorphic signature on i th vector vi for file τ is

σ =
(

gf (sk,τ,r), σ2, (ti · Hhom(vi))
f (sk,τ,r)

)
.

For details see full version (IACR eprint 2012/060).
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The Big Picture

Comparison with [CFW12] (previous talk):
Theirs are more efficient (no σ1 component).
Ours are more general (can use CDH assumption).

Open questions:
1 Improve efficiency.
2 Strengthen adversary — allow adv. to choose tags?
3 Adapt to lattice setting [BF11a,b] — polynomial functions?

Thank you!
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