Improved Security for Linearly Homomorphic Signatures: A Generic Framework

David Mandell Freeman

Stanford University, USA

PKC 2012 Darmstadt, Germany 23 May 2012

David Mandell Freeman Improved Security for Homomorphic Signatures

Q: How do we delegate computation while ensuring integrity?

Q: How do we delegate computation while ensuring integrity?

Q: How do we delegate computation while ensuring integrity?

Untrusted DB

David Mandell Freeman Improved Security for Homomorphic Signatures

Q: How do we delegate computation while ensuring integrity?

		Untrı	usted D	В
	sianed	Student	Score	Sig
4 🌮	grades	Adam	91	σ_1
	9.44.00	Becky	73	σ_2
9		:	÷	÷
∎ sk		Kevin	84	σ_{k}

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

Q: How do we delegate computation while ensuring integrity?

		Untru	usted D	В
	signed	Student	Score	Sig
4 🌮	arades	Adam	91	σ_1
	gradoo	Becky	73	σ_2
9		:	÷	÷
∎ sk		Kevin	84	σ_{k}

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

Q: How do we delegate computation while ensuring integrity?

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam")

Q: How do we delegate computation while ensuring integrity?

		Untru	usted D	В		A
	sianed	Student	Score	Sig	mean?	X
4 3	grades	Adam	91	σ_1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	9.4400	Becky	73	σ_2		
9		:	÷	÷	87.3, σ	pk
l sk		Kevin	84	σ_k		6

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam") $\sigma = \text{signature on}$ ("grades", 87.3, "mean")

Q: How do we delegate computation while ensuring integrity?

		Untru	usted D	В		A
	sianed	Student	Score	Sig	mean?	X
4 3	arades	Adam	91	σ_1	~	
	9	Becky	73	σ_2		
9		:	÷	÷	87.3 , σ	₽ pk
l sk		Kevin	84	σ_{k}		6
• 3/		Kevin	84	σ_{k}		

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam") $\sigma =$ signature on ("grades", 87.3, "mean")

• Validity: σ authenticates 87.3 as the correct mean.

Q: How do we delegate computation while ensuring integrity?

	Untru	sted D	В		A
ned	Student	Score	Sig	mean?	
des	Adam	91	σ_1	~	
	Becky	73	σ_2	\longrightarrow	
	÷	:	:	87.3 , σ	₽ pk
	Kevin	84	σ_{k}		6
	ned des	des Untru des Adam Becky : Kevin	Hed des Hed Hed Hed Hed Hed Hed Hed Hed	$\begin{array}{c c} & \text{Untrusted DB} \\ \hline \text{Student} & \text{Score} & \text{Sig} \\ \hline \text{Adam} & 91 & \sigma_1 \\ \text{Becky} & 73 & \sigma_2 \\ \hline \vdots & \vdots & \vdots \\ \text{Kevin} & 84 & \sigma_k \end{array}$	$\begin{array}{c c} & \text{Untrusted DB} \\ \hline \text{Med} & \hline & \underline{\text{Student}} & \underline{\text{Score}} & \underline{\text{Sig}} \\ \hline & \text{Adam} & 91 & \sigma_1 \\ \hline & \text{Becky} & 73 & \sigma_2 \\ \hline & \vdots & \vdots & \vdots \\ \hline & \text{Kevin} & 84 & \sigma_k \end{array} \hline & \hline & & & & \\ \hline & & & & & \\ \hline & & & &$

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam") $\sigma =$ signature on ("grades", 87.3, "mean")

- Validity: σ authenticates 87.3 as the correct mean.
- Security: no adversary can authenticate a different mean.

Q: How do we delegate computation while ensuring integrity?

		Untru	usted D	В		A
	sianed	Student	Score	Sig	mean?	X
4 3	grades	Adam	91	σ_1	~	
	gradoo	Becky	73	σ_2		
9		:	÷	÷	87.3, σ	₿ pk
l sk		Kevin	84	σ_{k}		

 $\sigma_1 = \text{signature on}$ ("grades", 91, "Adam") $\sigma = \text{signature on}$ ("grades", 87.3, "mean")

- Validity: σ authenticates 87.3 as the correct mean.
- Security: no adversary can authenticate a different mean.
- Length efficiency: σ is short.

Solution: Homomorphic Signatures

Messages (m_1, \ldots, m_k) grouped together into *files*, identified by a randomly chosen *tag* τ .

- KeyGen $(n) \rightarrow pk, sk$
- Sign_{sk}(τ , m_i , i) \rightarrow signature σ_i on ith message
- $\operatorname{Eval}_{\mathsf{pk}}(\tau, (\sigma_1, \ldots, \sigma_k), f) \to \operatorname{signature} \sigma \text{ on } f(m_1, \ldots, m_k)$
- Verify_{pk} $(\tau, m, \sigma, f) \rightarrow 1$ iff $m = f(m_1, \dots, m_k)$

Solution: Homomorphic Signatures

Messages (m_1, \ldots, m_k) grouped together into *files*, identified by a randomly chosen *tag* τ .

- KeyGen $(n) \rightarrow pk, sk$
- Sign_{sk}(τ , m_i , i) \rightarrow signature σ_i on ith message
- $\operatorname{Eval}_{\mathsf{pk}}(\tau, (\sigma_1, \ldots, \sigma_k), f) \to \operatorname{signature} \sigma \text{ on } f(m_1, \ldots, m_k)$
- Verify_{pk} $(\tau, m, \sigma, f) \rightarrow 1$ iff $m = f(m_1, \dots, m_k)$

Security goal: no adversary can authenticate (m', f) for $m' \neq f(m_1, \ldots, m_k)$.

Solution: Homomorphic Signatures

Messages (m_1, \ldots, m_k) grouped together into *files*, identified by a randomly chosen *tag* τ .

- KeyGen $(n) \rightarrow pk, sk$
- Sign_{sk}(τ , m_i , i) \rightarrow signature σ_i on ith message
- $\operatorname{Eval}_{\mathsf{pk}}(\tau, (\sigma_1, \ldots, \sigma_k), f) \to \operatorname{signature} \sigma \text{ on } f(m_1, \ldots, m_k)$
- Verify_{pk} $(\tau, m, \sigma, f) \rightarrow 1$ iff $m = f(m_1, \dots, m_k)$

Security goal: no adversary can authenticate (m', f) for $m' \neq f(m_1, \ldots, m_k)$.

Linearly homomorphic signatures:

- messages m_i are vectors in \mathbb{Z}^n or \mathbb{F}_q^n
- functions *f* are linear combinations.
- applications: mean, Fourier transform, regression models, network coding.

Linearly Homomorphic Signatures: State of the Art

Scheme	Built on	Assumption	Vectors in
[BFKW09]	BLS signatures	CDH in bilinear	\mathbb{F}_p^n
		groups	(large p)
[GKKR10]	RSA signatures	RSA	\mathbb{Z}^n
[BF11a,b]	GPV signatures	worst-case	\mathbb{F}_p^n
		lattice problems	(small <i>p</i>)

(Orange = random oracle model)

Linearly Homomorphic Signatures: State of the Art

Scheme	Built on	Assumption	Vectors in
[BFKW09]	BLS signatures	CDH in bilinear	\mathbb{F}_p^n
		groups	(large p)
[GKKR10]	RSA signatures	RSA	\mathbb{Z}^n
[BF11a,b]	GPV signatures	worst-case	\mathbb{F}_p^n
		lattice problems	(small <i>p</i>)
[AL11]	Lewko-Waters	nonstandard, deci-	\mathbb{Z}_{N}^{n}
	IBE	sional assumptions in	
		bilinear groups	
[CFW11]	"adaptive pseudo-	strong RSA	\mathbb{Z}^n
	free groups"		
[CFW12]		q-SDH in bilinear	$\mathbb{F}_p^n; \mathbb{F}_e^n$
		groups; strong RSA	

(Orange = random oracle model)

Linearly Homomorphic Signatures: State of the Art

Scheme	Built on	Assumption	Vectors in
[BFKW09]	BLS signatures	CDH in bilinear	\mathbb{F}_{p}^{n}
		groups	(large p)
[GKKR10]	RSA signatures	RSA	\mathbb{Z}^n
[BF11a,b]	GPV signatures	worst-case	\mathbb{F}_p^n
		lattice problems	(small p)
[AL11]	Lewko-Waters	nonstandard, deci-	\mathbb{Z}_{N}^{n}
	IBE	sional assumptions in	
		bilinear groups	
[CFW11]	"adaptive pseudo-	strong RSA	\mathbb{Z}^n
	free groups"		
[CFW12]		q-SDH in bilinear	$\mathbb{F}_p^n; \mathbb{F}_e^n$
		groups; strong RSA	

(Orange = random oracle model)

Missing: Weak assumptions in the standard model!

Our Contribution (1)

Generic framework for converting (ordinary) signatures to linearly homomorphic signatures.

- Applies to signature schemes with certain "pre-homomorphic" properties.
- Security based on same assumption as underlying scheme.
- Efficiency comparable to previous constructions.

Our Contribution (1)

Generic framework for converting (ordinary) signatures to linearly homomorphic signatures.

- Applies to signature schemes with certain "pre-homomorphic" properties.
- Security based on same assumption as underlying scheme.
- Efficiency comparable to previous constructions.

Instantiations:

Scheme	Assumption (in standard model)
[W05]	CDH in bilinear groups
[BB04b]	q-SDH in bilinear groups
[GHR99]	strong RSA
[HW09b]	RSA

Stronger security model for homomorphic signatures.

Adversary

Stronger security model for homomorphic signatures.

Chall.

$$file F = \{m_1, \dots, m_k\}$$

 $file sk$

David Mandell Freeman Improved Security for Homomorphic Signatures

Adversary

C

Chall.

$$file F = \{m \\ tag \tau_F, sigs$$

 fsk

$$\begin{array}{c} & & & \\ \hline \\ \hline \\ file \ F = \{m_1, \dots, m_k\} \\ \hline \\ ag \ \tau_F, \ sigs \ \sigma_1^F, \dots, \sigma_k^F \\ \end{array}$$

Stronger security model for homomorphic signatures.

Forgery is a valid signature σ^* on (τ^*, m^*, f) with

 $m^* \neq f(\text{messages in file w/ tag } \tau^*).$

Stronger security model for homomorphic signatures.

Chall.

$$\begin{array}{c}
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & &$$

Forgery is a valid signature σ^* on (τ^*, m^*, f) with

 $m^* \neq f(\text{messages in file w/ tag } \tau^*).$

• Original adversary: must query entire files at once.

Stronger security model for homomorphic signatures.

Chall.

$$\begin{array}{c}
\hline \hline pk \\ \hline file F = \{m_1, \dots, m_k\} \\
\hline tag \tau_F, sigs \sigma_1^F, \dots, \sigma_k^F \\
\hline sk \\
\hline \hline forgery \tau^*, m^*, \sigma^*, f \\
\hline \end{array}$$
Adversary

Forgery is a valid signature σ^* on (τ^*, m^*, f) with

 $m^* \neq f(\text{messages in file w/ tag } \tau^*).$

- Original adversary: must query entire files at once.
- Stronger adversary: adaptively queries *one message at a time* from any file.

Stronger security model for homomorphic signatures.

Forgery is a valid signature σ^* on (τ^*, m^*, f) with

 $m^* \neq f(\text{messages in file w/ tag } \tau^*).$

- Original adversary: must query entire files at once.
- Stronger adversary: adaptively queries one message at a time from any file.

Stronger security model for homomorphic signatures.

Forgery is a valid signature σ^* on (τ^*, m^*, f) with

 $m^* \neq f(\text{messages in file w/ tag } \tau^*).$

- Original adversary: must query entire files at once.
- Stronger adversary: adaptively queries one message at a time from any file.

Our schemes are secure against the stronger adversary.

.

Homomorphic hash: fix public $h_1, \ldots, h_n \in \mathbb{Z}_N^*$; for vector $\mathbf{v} \in \mathbb{Z}^n$, define

$$H_{ ext{hom}}(\mathbf{v}) = h_1^{v_1} \cdots h_n^{v_n}$$

Homomorphic hash: fix public $h_1, \ldots, h_n \in \mathbb{Z}_N^*$; for vector $\mathbf{v} \in \mathbb{Z}^n$, define

$$H_{\mathsf{hom}}(\mathbf{v}) = h_1^{v_1} \cdots h_n^{v_n}$$

Signatures: to sign *i*th vector \mathbf{v}_i , compute:

$$\sigma = (t_i \cdot H_{\text{hom}}(\mathbf{v}_i))^{1/e} \mod N \qquad (t_i \text{ public}).$$

Homomorphic hash: fix public $h_1, \ldots, h_n \in \mathbb{Z}_N^*$; for vector $\mathbf{v} \in \mathbb{Z}^n$, define

$$H_{\mathsf{hom}}(\mathbf{v}) = h_1^{v_1} \cdots h_n^{v_n}$$

Signatures: to sign *i*th vector \mathbf{v}_i , compute:

$$\sigma = (t_i \cdot H_{\text{hom}}(\mathbf{v}_i))^{1/e} \mod N \qquad (t_i \text{ public}).$$

Homomorphic: If σ_1, σ_2 are signatures on $\mathbf{v}_1, \mathbf{v}_2$, then

$$\sigma_1 \cdot \sigma_2 = (t_1 \cdot H_{\text{hom}}(\mathbf{v}_1) \cdot t_2 \cdot H_{\text{hom}}(\mathbf{v}_2))^{1/e}$$

= $(t_1 t_2 \cdot H_{\text{hom}}(\mathbf{v}_1 + \mathbf{v}_2))^{1/e}$

authenticates $\mathbf{v}_1 + \mathbf{v}_2$ for the function f(x, y) = x + y.

Homomorphic hash: fix public $h_1, \ldots, h_n \in \mathbb{Z}_N^*$; for vector $\mathbf{v} \in \mathbb{Z}^n$, define

$$H_{\mathsf{hom}}(\mathbf{v}) = h_1^{v_1} \cdots h_n^{v_n}$$

Signatures: to sign *i*th vector \mathbf{v}_i , compute:

$$\sigma = (t_i \cdot H_{\text{hom}}(\mathbf{v}_i))^{1/e} \mod N \qquad (t_i \text{ public}).$$

Homomorphic: If σ_1, σ_2 are signatures on $\mathbf{v}_1, \mathbf{v}_2$, then

$$\sigma_1 \cdot \sigma_2 = (t_1 \cdot H_{\text{hom}}(\mathbf{v}_1) \cdot t_2 \cdot H_{\text{hom}}(\mathbf{v}_2))^{1/e}$$

= $(t_1 t_2 \cdot H_{\text{hom}}(\mathbf{v}_1 + \mathbf{v}_2))^{1/e}$

authenticates $\mathbf{v}_1 + \mathbf{v}_2$ for the function f(x, y) = x + y.

- *t_i* must be different for each file to prevent mixing.
- Secure if $t_i = R(i, \tau)$ produced by a random oracle.

Removing the Random Oracle

Instead of RSA sigs, use [GHR99]:

$$\operatorname{Sign}(m) = g^{1/H(m)} \mod N.$$

- g public, H hashes to odd primes.
- secure in standard model under *strong RSA assumption*:
 - Given (g, N), find any $(e, g^{1/e} \mod N)$.

Removing the Random Oracle

Instead of RSA sigs, use [GHR99]:

$$\operatorname{Sign}(m) = g^{1/H(m)} \mod N.$$

- g public, H hashes to odd primes.
- secure in standard model under *strong RSA assumption*:
 - Given (g, N), find any $(e, g^{1/e} \mod N)$.

Our idea: to sign *i*th vector \mathbf{v}_i for file τ , compute:

$$\sigma = \left(\underbrace{g^{1/H(\tau)}}_{\sigma_1}, \underbrace{(t_i \cdot H_{\text{hom}}(\mathbf{v}))^{1/H(\tau)}}_{\sigma_2}\right) \qquad (t_i \text{ public}).$$

Removing the Random Oracle

Instead of RSA sigs, use [GHR99]:

$$\operatorname{Sign}(m) = g^{1/H(m)} \mod N.$$

- g public, H hashes to odd primes.
- secure in standard model under *strong RSA assumption*:
 - Given (g, N), find any $(e, g^{1/e} \mod N)$.

Our idea: to sign *i*th vector \mathbf{v}_i for file τ , compute:

$$\sigma = \left(\underbrace{g^{1/H(\tau)}}_{\sigma_1}, \underbrace{(t_i \cdot H_{\mathsf{hom}}(\mathbf{v}))^{1/H(\tau)}}_{\sigma_2}\right) \qquad (t_i \text{ public}).$$

To verify (σ_1, σ_2) on vector **w** for function $f(\vec{x}) = \sum c_i x_i$:

• Check that
$$\sigma_1^{H(\tau)} = g$$
.

2 Check that
$$\sigma_2^{H(\tau)} = \prod t_i^{c_i} \cdot H_{hom}(\mathbf{w})$$

Homomorphic Property

$$\operatorname{Sign}(\tau, \mathbf{v}_i) \to \Big(\underbrace{g^{1/H(\tau)}}_{\sigma_1}, \underbrace{(t_i \cdot H_{\operatorname{hom}}(\mathbf{v}))^{1/H(\tau)}}_{\sigma_2}\Big).$$

Verify $(\tau, \mathbf{w}, (\sigma_1, \sigma_2), f)$ with $f(\vec{x}) = \sum c_i x_i$:

$$\sigma_1^{H(\tau)} \stackrel{?}{=} g, \qquad \sigma_2^{H(\tau)} \stackrel{?}{=} \prod t_i^{c_i} \cdot H_{\text{hom}}(\mathbf{w}).$$

Homomorphic Property

$$\begin{aligned} \operatorname{Sign}(\tau, \mathbf{v}_{i}) &\to \left(\underbrace{g^{1/H(\tau)}}_{\sigma_{1}}, \underbrace{(t_{i} \cdot H_{\operatorname{hom}}(\mathbf{v}))^{1/H(\tau)}}_{\sigma_{2}}\right). \end{aligned}$$
$$\begin{aligned} \operatorname{Verify}(\tau, \mathbf{w}, (\sigma_{1}, \sigma_{2}), f) \text{ with } f(\vec{x}) &= \sum c_{i} x_{i}: \\ \sigma_{1}^{H(\tau)} \stackrel{?}{=} g, \qquad \sigma_{2}^{H(\tau)} \stackrel{?}{=} \prod t_{i}^{c_{i}} \cdot H_{\operatorname{hom}}(\mathbf{w}). \end{aligned}$$

Homomorphic: If $(\sigma_1, \sigma_2), (\sigma_1, \sigma'_2)$ are signatures on $\mathbf{v}_1, \mathbf{v}_2$, then

$$\sigma_2 \cdot \sigma'_2 = (t_1 t_2 \cdot H_{\text{hom}} (\mathbf{v}_1 + \mathbf{v}_2))^{1/H(\tau)}$$

so $(\sigma_1, \sigma_2 \cdot \sigma'_2)$ authenticates $\mathbf{v}_1 + \mathbf{v}_2$ for f(x, y) = x + y.

Security

Forgery is a valid signature σ^* on (τ^*, m^*, f) with

 $m^* \neq f(\text{messages in file w/ tag } \tau^*).$

Two types:

- **1** τ^* not obtained in response to a query, or
- 2 $\tau^* = \tau$ for query (m_1, \ldots, m_k) , and $m^* \neq f(m_1, \ldots, m_k)$.

Security

Forgery is a valid signature σ^* on (τ^*, m^*, f) with

 $m^* \neq f(\text{messages in file w/ tag } \tau^*).$

Two types:

- τ^* not obtained in response to a query, or
- 2 $\tau^* = \tau$ for query (m_1, \ldots, m_k) , and $m^* \neq f(m_1, \ldots, m_k)$.

Type 1 forgery breaks underlying GHR scheme:

• computes $g^{1/H(\tau^*)}$ for previously unseen τ^* .

Security

Forgery is a valid signature σ^* on (τ^*, m^*, f) with

 $m^* \neq f(\text{messages in file w/ tag } \tau^*).$

Two types:

- τ^* not obtained in response to a query, or
- 2 $\tau^* = \tau$ for query (m_1, \ldots, m_k) , and $m^* \neq f(m_1, \ldots, m_k)$.

Type 1 forgery breaks underlying GHR scheme:

• computes $g^{1/H(\tau^*)}$ for previously unseen τ^* .

Type 2 forgery breaks an RSA assumption:

- strong RSA if *H* is [GHR99] hash function.
- RSA if *H* is a random oracle.
- RSA if *H* is [HW09b] hash function.

Consider a *weak* adversary that submits files $F_{\ell} = \{\mathbf{v}_{1}^{\ell}, \dots, \mathbf{v}_{k}^{\ell}\}$ for $\ell = 1, \dots, q$ and receives pk, tags τ_{ℓ} , and signatures

$$\sigma = \left(g^{1/H(\tau)}, (t_i \cdot H_{\mathsf{hom}}(\mathbf{v}))^{1/H(\tau)}\right).$$

Consider a *weak* adversary that submits files $F_{\ell} = \{\mathbf{v}_{1}^{\ell}, \dots, \mathbf{v}_{k}^{\ell}\}$ for $\ell = 1, \dots, q$ and receives pk, tags τ_{ℓ} , and signatures

$$\sigma = \left(\boldsymbol{g}^{1/H(\tau)}, (t_i \cdot H_{\mathsf{hom}}(\mathbf{v}))^{1/H(\tau)}
ight).$$

() Given RSA challenge g, choose $\ell^* \stackrel{R}{\leftarrow} \{1, \ldots, q\}$ and set

$$x = g^{\prod_{\ell} H(\tau_{\ell})}, \qquad y = g^{\prod_{\ell \neq \ell^*} H(\tau_{\ell})}.$$

- Simulator can compute $x^{1/H(\tau_{\ell})}$ for all ℓ .
- Simulator can compute $y^{1/H(\tau_{\ell})}$ for all $\ell \neq \ell^*$
- $y^{1/H(\tau_{\ell^*})}$ can be used to solve RSA problem (w.h.p).

Consider a *weak* adversary that submits files $F_{\ell} = \{\mathbf{v}_{1}^{\ell}, \dots, \mathbf{v}_{k}^{\ell}\}$ for $\ell = 1, \dots, q$ and receives pk, tags τ_{ℓ} , and signatures

$$\sigma = \left(\boldsymbol{g}^{1/H(\tau)}, (t_i \cdot H_{\mathsf{hom}}(\mathbf{v}))^{1/H(\tau)}
ight).$$

() Given RSA challenge g, choose $\ell^* \stackrel{R}{\leftarrow} \{1, \ldots, q\}$ and set

$$x = g^{\prod_{\ell} H(\tau_{\ell})}, \qquad y = g^{\prod_{\ell
eq \ell^*} H(\tau_{\ell})}.$$

- Simulator can compute $x^{1/H(\tau_{\ell})}$ for all ℓ .
- Simulator can compute $y^{1/H(\tau_{\ell})}$ for all $\ell \neq \ell^*$
- $y^{1/H(\tau_{\ell^*})}$ can be used to solve RSA problem (w.h.p).
- Construct public key so that $t_i \cdot H_{\text{hom}}(\mathbf{v}_i^{\ell}) = x^{a_{\ell,i}} y^{b_{\ell,i}}$ for $a_{\ell,i}, b_{\ell,i}$ known to simulator, and $b_{\ell,i} = 0$ for $\ell = \ell^*$.
 - Can sign all queried vectors v.
 - Forgery on ℓ^* th file contains a *y* term \Rightarrow solve RSA.

Consider a *weak* adversary that submits files $F_{\ell} = \{\mathbf{v}_{1}^{\ell}, \dots, \mathbf{v}_{k}^{\ell}\}$ for $\ell = 1, \dots, q$ and receives pk, tags τ_{ℓ} , and signatures

$$\sigma = \left(\boldsymbol{g}^{1/H(\tau)}, \left(\boldsymbol{t}_{i} \cdot \boldsymbol{H}_{\mathsf{hom}}(\mathbf{v}) \right)^{1/H(\tau)} \right).$$

() Given RSA challenge g, choose $\ell^* \stackrel{R}{\leftarrow} \{1, \ldots, q\}$ and set

$$x = g^{\prod_{\ell} H(\tau_{\ell})}, \qquad y = g^{\prod_{\ell
eq \ell^*} H(\tau_{\ell})}.$$

- Simulator can compute $x^{1/H(\tau_{\ell})}$ for all ℓ .
- Simulator can compute $y^{1/H(\tau_{\ell})}$ for all $\ell \neq \ell^*$
- $y^{1/H(\tau_{\ell^*})}$ can be used to solve RSA problem (w.h.p).
- Construct public key so that $t_i \cdot H_{\text{hom}}(\mathbf{v}_i^{\ell}) = x^{a_{\ell,i}} y^{b_{\ell,i}}$ for $a_{\ell,i}, b_{\ell,i}$ known to simulator, and $b_{\ell,i} = 0$ for $\ell = \ell^*$.
 - Can sign all queried vectors **v**.
 - Forgery on ℓ^* th file contains a *y* term \Rightarrow solve RSA.
- Generalize using homomorphic chameleon hash.

Construction works for any signatures of the form

$$\operatorname{Sign}(m) = (g^{f(\operatorname{sk},m,r)}, \sigma_2)$$

where *g* generates some group \mathbb{G} and *r* is random.

Construction works for any signatures of the form

$$\operatorname{Sign}(m) = (g^{f(\operatorname{sk},m,r)}, \sigma_2)$$

where g generates some group \mathbb{G} and r is random. E.g.:

- **(** [GS02/BB04a/W05]: $sk = \alpha$, Sign $(m) = (g^r, g^{\alpha}H(m)^r)$
 - Secure under CDH assumption in bilinear group G if *H* is random oracle or Waters hash function.

Construction works for any signatures of the form

$$\operatorname{Sign}(m) = (g^{f(\operatorname{sk},m,r)},\sigma_2)$$

where g generates some group \mathbb{G} and r is random. E.g.:

- **(** [GS02/BB04a/W05]: $sk = \alpha$, Sign $(m) = (g^r, g^{\alpha}H(m)^r)$
 - Secure under CDH assumption in bilinear group G if *H* is random oracle or Waters hash function.
- 2 [BB04b]: sk = α , Sign(*m*) = $g^{1/(m+\alpha)}$.
 - Secure under *q*-SDH assumption in bilinear group G.

Construction works for any signatures of the form

$$\operatorname{Sign}(m) = \left(g^{f(\operatorname{sk},m,r)}, \sigma_2\right)$$

where g generates some group \mathbb{G} and r is random. E.g.:

- **(** [GS02/BB04a/W05]: $sk = \alpha$, Sign $(m) = (g^r, g^{\alpha}H(m)^r)$
 - Secure under CDH assumption in bilinear group G if *H* is random oracle or Waters hash function.
- 2 [BB04b]: sk = α , Sign(*m*) = $g^{1/(m+\alpha)}$.
 - Secure under q-SDH assumption in bilinear group \mathbb{G} .

Generalized homomorphic signature on *i*th vector \mathbf{v}_i for file τ is

$$\sigma = \left(g^{f(\mathsf{sk},\tau,r)}, \sigma_2, (t_i \cdot H_{\mathsf{hom}}(\mathbf{v}_i))^{f(\mathsf{sk},\tau,r)} \right).$$

For details see full version (IACR eprint 2012/060).

The Big Picture

Comparison with [CFW12] (previous talk):

- Theirs are more efficient (no σ_1 component).
- Ours are more general (can use CDH assumption).

Comparison with [CFW12] (previous talk):

- Theirs are more efficient (no σ_1 component).
- Ours are more general (can use CDH assumption).

Open questions:

- Improve efficiency.
- Strengthen adversary allow adv. to choose tags?
- Adapt to lattice setting [BF11a,b] polynomial functions?

Comparison with [CFW12] (previous talk):

- Theirs are more efficient (no σ_1 component).
- Ours are more general (can use CDH assumption).

Open questions:

- Improve efficiency.
- Strengthen adversary allow adv. to choose tags?
- Adapt to lattice setting [BF11a,b] polynomial functions?

Thank you!