A Generalized Brezing-Weng Algorithm for Constructing Pairing-Friendly Ordinary Abelian Varieties

David Freeman

Stanford University, USA

Pairing 2008 1 September 2008

イロト イポト イヨト イヨト

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Result

Pairings for cryptography

- Groups used in pairing-based crypto consist of points of prime order r on abelian varieties A/F_q.
 - Elliptic curves are 1-dimensional abelian varieties.
- Pairings are (variants of) Weil pairing

$$oldsymbol{e}_{\textit{weil}, r}: oldsymbol{A}[r] imes oldsymbol{A}[r] o \mu_r \subset \mathbb{F}_{oldsymbol{g}^k}^{ imes}$$

or Tate pairing (more complicated).

• *k* is the *embedding degree* of *A* with respect to *r*.

Smallest integer such that µ_r ⊂ 𝔽[×]_{q^k} (⇔ q^k ≡ 1 mod r).

- If r, q^k are large, *discrete log problem* (DLP) is infeasible in A[r] and $\mathbb{F}_{q^k}^{\times}$.
- If k is small, pairings can be computed efficiently (Miller).

・ロト ・ 理 ト ・ ヨ ト ・

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Result

Pairing-friendly abelian varieties: first attempts

- Random abelian varieties
 - Embedding degree of random A/\mathbb{F}_q with order-*r* subgroup will be $\approx r$.
 - Typical $r \approx 2^{160}$, so pairing on random A can't even be computed.
- Supersingular abelian varieties
 - Embedding degree in dimension $g \le 6$ is $k \le 7.5g$ (Rubin-Silverberg).
 - These *k* are only acceptable for the lowest security levels.
- Conclusion: need to develop specific constructions of non-supersingular (usually, *ordinary*) abelian vareities.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The Problem

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Result

- Find primes q and ordinary abelian varieties A/\mathbb{F}_q having
 - a subgroup of large prime order r, and
 - Prescribed (small) embedding degree k with respect to r.
 - In practice, want $r > 2^{160}$ and $k \le 50$.
- We call such varieties "pairing-friendly."
- Want to be able to control the number of bits of *r* to construct varieties at varying security levels.
- Want ρ = log(q^g) / log r close to 1 to maximize efficiency in implementations.

イロト イポト イヨト イヨト

Pairing-Based Cryptography Pairing-friendly Abelian Varieties Our Result

Our contribution

We give a method for constructing primes q and ordinary A/F_q that have prescribed embedding degree k.

	arbitrary k,	many k,		
	large ρ	smaller ρ		
elliptic curves	Cocks-Pinch	Brezing-Weng		
higher dimensions	FStevenhagen-Streng	This work		

- Kawazoe-Takahashi (next talk) give another approach to filling in the lower-right corner (dimension 2 only).
- Uses techniques of F.-Stevenhagen-Streng to generalize Brezing-Weng method to arbitrary dimension.

ヘロト ヘワト ヘビト ヘビト

Algorithm for constructing pairing-friendly A.V.

- Inputs: embedding degree k, CM field K
- FSS idea:

Construct a $\pi \in \mathcal{O}_{\mathcal{K}}$ with certain properties modulo r.

- Brezing-Weng idea: Parametrize subgroup order r as polynomial $r(x) \in \mathbb{Z}[x]$.
- Combine ideas: Obtain $\pi(x) \in K[x]$ with FSS properties modulo r(x).
- For certain x₀ ∈ Z, π(x₀) corresponds (in the sense of Honda-Tate theory) to the *Frobenius endomorphism* of an *A*/𝔽_q that has embedding degree *k* with respect to *r*(x₀).
- A can be constructed explicitly using *CM methods*.

ヘロト ヘ戸ト ヘヨト ヘヨト

Constructing Pairing-Friendly Frobenius Elements The Brezing-Weng Algorithm Generalizing the Brezing-Weng method

Complex multiplication: the basics

- For ordinary, simple, g-dimensional A/𝔽_q, End(A) ⊗ ℚ is a CM field K of degree 2g.
 - *K* = totally imaginary quadratic extension of totally real field.
- Frobenius endomorphism π is a *q*-Weil number in $\mathcal{O}_{\mathcal{K}}$.
 - All embeddings $K \hookrightarrow \overline{K}$ have $\pi \overline{\pi} = q$.

ヘロト 人間 ト ヘヨト ヘヨト

Constructing Pairing-Friendly Frobenius Elements The Brezing-Weng Algorithm Generalizing the Brezing-Weng method

Properties of Frobenius make A/\mathbb{F}_q pairing-friendly

- Number of points given by $#A(\mathbb{F}_q) = N_{K/\mathbb{Q}}(\pi 1).$
- Embedding degree k is order of $q = \pi \overline{\pi}$ in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
- A has embedding degree k with respect to r iff

$$N_{\mathcal{K}/\mathbb{Q}}(\pi-1) \equiv 0 \pmod{r}$$
 (1)

$$\Phi_k(\pi\overline{\pi}) \equiv 0 \pmod{r} \tag{2}$$

ヘロト 人間 ト ヘヨト ヘヨト

 $(\Phi_k = k$ th cyclotomic polynomial).

• Goal: construct a $\pi \in \mathcal{O}_{\mathcal{K}}$ with properties (1) and (2).

Constructing Pairing-Friendly Frobenius Elements The Brezing-Weng Algorithm Generalizing the Brezing-Weng method

The Brezing-Weng Algorithm

Construct pairing-friendly elliptic curves via the following algorithm:

- Choose embedding degree k, CM field $K = \mathbb{Q}(\sqrt{-D})$.
- ② Choose irreducible $r(x) \in \mathbb{Z}[x]$ such that $L = \mathbb{Q}[x]/(r(x))$ contains *K* and ζ_k .
- Sompute t(x) mapping to $\zeta_k + 1$ in L.
- Compute y(x) mapping to $(\zeta_k 1)/\sqrt{-D}$ in *L*.

Set
$$q(x) \leftarrow \frac{1}{4}(t(x)^2 + Dy(x)^2).$$

Theorem: If $q(x_0)$ is a prime integer for some x_0 , there is an elliptic curve over $\mathbb{F}_{q(x_0)}$ with an order- $r(x_0)$ subgroup and embedding degree k.

・ロト ・ 理 ト ・ ヨ ト ・

1

Constructing Pairing-Friendly Frobenius Elements The Brezing-Weng Algorithm Generalizing the Brezing-Weng method

Rethinking the Brezing-Weng algorithm

- BW: $t(x) \equiv \zeta_k + 1$ and $y(x) \equiv (\zeta_k 1)/\sqrt{-D} \mod r(x)$.
- Let $\mathfrak{r}(x)$ be a factor of r(x) in K[x].
- Let $\pi(x) = \frac{1}{2}(t(x) + y(x)\sqrt{-D})$. Then

- 2 $\overline{\pi}(x) \equiv 1 \mod \mathfrak{r}(x)$.
- This implies that

$$N_{\mathcal{K}[x]/\mathbb{Q}[x]}(\pi(x)-1) \equiv 0 \mod r(x)$$
(3)

$$\Phi_k(\pi(x)\overline{\pi}(x)) \equiv 0 \mod r(x) \tag{4}$$

ヘロン 人間 とくほ とくほ とう

э.

so when we plug in any integer x, the pairing-friendly conditions (1) and (2) hold.

Constructing Pairing-Friendly Frobenius Elements The Brezing-Weng Algorithm Generalizing the Brezing-Weng method

Main idea: A modular approach

- Easiest case: *K* Galois cyclic, degree 2*g*, $Gal(K/\mathbb{Q}) = \langle \sigma \rangle$.
- If L = Q[x]/(r(x)) is Galois and contains K, then r(x) factors into 2g irreducibles in K[x].
- Pick a factor r(x) of r(x) in K[x], and write

$$r(x) = \mathfrak{r}(x) \cdot \mathfrak{r}(x)^{\sigma} \cdots \mathfrak{r}(x)^{\sigma^{g-1}} \cdot \overline{\mathfrak{r}}(x) \cdot \overline{\mathfrak{r}}(x)^{\sigma} \cdots \overline{\mathfrak{r}}(x)^{\sigma^{g-1}}$$

- σ acts on a polynomial by acting on its coefficients.
- $\sigma^g = \text{complex conjugation.}$

イロト 不得 とくほ とくほとう

Constructing Pairing-Friendly Frobenius Elements The Brezing-Weng Algorithm Generalizing the Brezing-Weng method

⇒ < ⇒ > < ≡</p>

Constructing a $\pi(x)$ with prescribed residues

$$r(x) = \mathfrak{r}(x) \cdot \mathfrak{r}(x)^{\sigma} \cdots \mathfrak{r}(x)^{\sigma^{g-1}} \cdot \overline{\mathfrak{r}(x)} \cdot \overline{\mathfrak{r}(x)}^{\sigma} \cdots \overline{\mathfrak{r}(x)}^{\sigma^{g-1}}$$

Given $\xi(x) \in K[x]$, write residues of ξ modulo factors of r(x) in K[x] as

 $(\alpha_1, \alpha_2, \ldots, \alpha_g, \beta_1, \ldots, \beta_g) \in L^{2g}.$

Then residues of $\xi(x)^{\sigma^{-1}}$ are

$$(\alpha_2, \alpha_3, \ldots, \beta_1, \beta_2, \ldots, \alpha_1) \in L^{2g},$$

and so on for each $\xi(x)^{\sigma^{-i}}$, until residues of $\xi(x)^{\sigma^{g-1}}$ are

$$(\alpha_g, \beta_1, \ldots, \beta_{g-1}, \beta_g, \ldots, \alpha_{g-1}) \in L^{2g}$$

Define $\pi(x) = \prod_{i=0}^{g-1} \xi(x)^{\sigma^{-i}}$. Then $\pi(x) \mod \mathfrak{r}(x) = \prod_{i=1}^{g} \alpha_i, \pi(x) \mod \overline{\mathfrak{r}(x)} = \prod_{i=1}^{g} \beta_i \in L$.

Constructing Pairing-Friendly Frobenius Elements The Brezing-Weng Algorithm Generalizing the Brezing-Weng method

Imposing the pairing-friendly conditions

• Given $\xi(x) \in K[x]$ with residues α_i, β_i , construct $\pi(x)$ with

$$\pi(x) \mod \mathfrak{r}(x) = \prod_{i=1}^{g} \alpha_i,$$

$$\pi(x) \mod \overline{\mathfrak{r}(x)} = \overline{\pi}(x) \mod \mathfrak{r}(x) = \prod_{i=1}^{g} \beta_i.$$

• Choose α_i, β_i in advance so that

•
$$\prod_{i=1}^{g} \alpha_i = 1$$
 in *L*,
• $\prod_{i=1}^{g} \beta_i$ is a primitive *k*th root of unity in *L*,

and construct $\xi(x)$ via Chinese Remainder theorem.

Then

ヘロト ヘ戸ト ヘヨト ヘヨト

Constructing Pairing-Friendly Frobenius Elements The Brezing-Weng Algorithm Generalizing the Brezing-Weng method

Finding an individual variety

- We've constructed $\pi(x) \in K[x]$ that satisfies the pairing-friendly conditions for polynomials.
- To find individual varieties: look for $x_0 \in \mathbb{Z}$ such that
 - $q(x_0) = \pi(x_0)\overline{\pi}(x_0)$ is an integer prime,
 - $r(x_0)$ is (nearly) prime.
- Then π(x₀) is the Frobenius endomorphism of an abelian variety A/F_q that has embedding degree k with respect to a subgroup of order r(x₀).
- Use *CM methods* to construct *A* explicitly.
 - Methods construct abelian varieties in characteristic zero with prescribed endomorphism ring.
 - Only developed for $g \leq 3$.
 - Only practical when K is "small."

ヘロト 人間 ト ヘヨト ヘヨト

Producing Small *ρ*-values Generalizing to Arbitrary CM Fields

Expected ρ -value is $< 2g^2$

- ξ(x) ∈ K[x] constructed via CRT has degree < deg r(x).
- π(x) has degree < g deg r(x) (since it's a product of g conjugates of ξ).
- If $q = \pi(x_0)\overline{\pi}(x_0)$ and $r = r(x_0)$, then for large x_0

$$ho=rac{\log(q(x_0)^g)}{\log(r(x_0))}pproxrac{2g\deg\pi(x)}{\deg r(x)}<2g^2.$$

- Compare with FSS algorithm: expect $\rho \approx 2g^2$.
- If r(x) and residues of ξ(x) are chosen cleverly, can obtain significantly better ρ-values.

イロト 不得 とくほ とくほ とうほ

Producing Small *ρ*-values Generalizing to Arbitrary CM Fields

Best results for selected k

• Best results when $r(x) = \Phi_k(x), K \subset \mathbb{Q}(\zeta_k)$.

Dimension $g =$ 2				Dimension $g = 3$			
k	ρ	CM field					
5	4	$\mathbb{Q}(\zeta_5)$	ſ	k	ρ	CM field	
10	6	$\mathbb{Q}(\zeta_5)$	ľ	7	12	$\mathbb{Q}(\zeta_7)$	
13	6.7	$\left \mathbb{Q}(\sqrt{-13}+2\sqrt{13}) \right $		9	15	$\mathbb{Q}(\zeta_9)$	
16	7	$\mathbb{Q}(\sqrt{-2+\sqrt{2}})$		18	15	$\mathbb{Q}(\zeta_9)$	
20	6	$\mathbb{Q}(\zeta_5)$					

- Compare with FSS: $\rho = 8$ for g = 2 and $\rho = 18$ for g = 3.
- Ultimate goal: varieties of prime order ($\rho \approx 1$).
 - Not there yet, but this is a start!

ヘロト 人間 ト ヘヨト ヘヨト