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What are they and what are they good for?
Previous Constructions and New Results

LTDFs: What are they?

Functions f (x) that can behave in two ways [PW08]:
1 Injective:

f (x) is 1-to-1.
There is a trapdoor that allows f (x) to be inverted.

2 Lossy:
f (x) loses information: image is smaller than domain.
If |Domain| = 2n and |Image| = 2n−`,
f (x) has ` bits of lossiness.

Security: descriptions of injective functions and lossy functions are
computationally indistinguishable.

Freeman, Goldreich, Kiltz, Rosen, Segev Lossy and Correlation-Secure Trapdoor Functions



Lossy and Correlation-Secure Trapdoor Functions
LTDFs from Quadratic Residuosity
LTDFs from d-Linear assumptions

What are they and what are they good for?
Previous Constructions and New Results

LTDFs: What are they good for?

Modular constructions of cryptographic primitives:
Collision-resistant hash functions [PW08]
Oblivious transfer [PW08]
CCA-secure public-key encryption [PW08]
Deterministic public-key encryption [BFO08]
Security against selective opening attacks [BHY09]
and others...

Given all these uses, we’d like to have a big “library” of LTDFs
based on different computational assumptions.
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Constructions of LTDFs

[PW08] construct LTDFs based on:
1 Decision Diffie-Hellman assumption (DDH)
2 Learning With Errors assumption (LWE) on lattices

We add new constructions based on:
3 Quadratic Residuosity assumption (QR)

Apparently weaker than 2vs3primes of [MY10].
Generalized to eth power residuosity in full version.

4 Composite Residuosity assumption (Paillier)
Discovered concurrently and independently by [BFO08].

5 d-Linear assumption
Simplifies and generalizes DDH construction of [PW08].
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Correlation-Secure Trapdoor Functions

Generalization of one-way function to correlated inputs [RS09]:

Given collection of functions F and distribution C on Domain(F)k

correlation-security says that for

f1, . . . , fk
R← F and (x1, . . . , xk)

R← C,

the function (x1, . . . , xk) 7→
(
f1(x1), . . . , fk(xk)

)
is one-way.

Can be used to construct CCA-secure public key encryption.
Implied by LTDFs (with any amount of lossiness [MY10]).
Our contribution: new construction based on the hardness of
syndrome decoding.
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Some (old) observations

N = PQ, P ≡ Q ≡ 3 mod 4 prime.

Squaring function x 7→ x2 mod N is lossy:
4-to-1 map on Z∗N ⇒ 2 bits of lossiness.

However, x2 can be inverted if we know
1 Jacobi symbol JSN(x) ∈ {−1, 0, 1}
2 Sign of x mod N (represented as integer in −N/2, . . . ,N/2)

Specifically, if (±x0,±x1) are 4 square roots of y mod N, then

JSN(x0) = JSN(−x0) = −JSN(x1) = −JSN(−x1).

So to get injective function from squaring, encode 2 extra bits in
the output (e.g., Williams).
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Creating an injective function

Problem: how to encode extra bits in a computationally
indistinguishable way.

Solution: put them in the exponent of quadratic non-residues.

Define:

h(x) :=

{
1, if x mod N > 0
0, if x mod N < 0

j(x) :=

{
1, if JSN(x) = −1
0, if JSN(x) = 0 or 1

Choose r , s ∈ Z∗
N with JSN(r) = −1, JSN(s) = 1, s a quadratic

non-residue. Then injective function is

fr ,s,N(x) = x2 · r j(x) · sh(x) mod N.
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Recovering the extra bits

fr ,s,N(x) = x2 · r j(x) · sh(x) mod N

h(x) :=
{

1, if x mod N > 0
0, if x mod N < 0 j(x) :=

{
1, if JSN (x) = −1
0, if JSN (x) = 0 or 1

JSN(r) = −1, JSN(s) = 1, s a quadratic non-residue

To learn JSN(x):

JSN(fr ,s,N(x)) = JSN(r j(x)) = JSN(x).

To learn the sign of x :

fr ,s,N(x) · r−j(x) = x2 · sh(x) is a quadratic residue⇔ h(x) = 0.
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Inverting injective functions

fr ,s,N(x) = x2 · r j(x) · sh(x) mod N

Given the factorization of N, we can invert fr ,s,N(x) by:
1 Compute JSN(fr ,s,N(x)) to learn JSN(x).
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Inverting injective functions

fr ,s,N(x) = x2 · r j(x) · sh(x) mod N

Given the factorization of N, we can invert fr ,s,N(x) by:
1 Compute JSN(fr ,s,N(x)) to learn JSN(x).
2 Multiply by r−j(x).
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Inverting injective functions
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Given the factorization of N, we can invert fr ,s,N(x) by:
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Inverting injective functions

fr ,s,N(x) · r−j(x) · s−h(x) = x2 mod N

Given the factorization of N, we can invert fr ,s,N(x) by:
1 Compute JSN(fr ,s,N(x)) to learn JSN(x).
2 Multiply by r−j(x).
3 Determine whether result is a quadratic residue to learn h(x).
4 Multiply by s−h(x).
5 Compute four square roots and output the one that matches

h(x), j(x).
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Creating lossy functions

fr ,s,N(x) = x2 · r j(x) · sh(x) mod N

JSN(r) = −1, JSN(s) = 1, s a quadratic non-residue

To create a lossy function, choose s with JSN(s) = 1 and s a
quadratic residue.

Function fr ,s,N(x) is now 2-to-1 (one bit of lossiness) — loses
information about the sign of x .
Lossy functions fr ,s,N are indistinguishable from injective
functions fr ,s,N under quadratic residuosity assumption.
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Extending the system

Functions with index-independent domains (necessary for some
applications):

Can achieve log2(4/3) bits of lossiness.
Using eth power residuosity assumption for e > 2:

Can achieve log2(e) bits of lossiness for e < N1/4 with small
prime factors.
Inversion uses Eisenstein reciprocity in number fields.

See full version at http://eprint.iacr.org/2009/590 for
details.
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A motivating observation

View x ∈ {0, 1}n as a length-n vector ~x .
Let M be an n × n matrix over Fp. Consider

fM(~x) := M · ~x ∈ Fn
p

This function can be lossy or injective!
1 Injective:

If M has rank n, then fM(x) is invertible.
Need to know M−1 to invert.

2 Lossy:
If M has rank d , then fM(x) has image of size at most pd .
If pd < 2n then image is smaller than domain.

But we can easily distinguish these two cases by computing
rank(M).
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Making injective and lossy functions indistinguishable

Idea: encode M in exponent of a group where discrete log is hard.

G = group of order p, g a generator, M = (mij) ∈ Fn×n
p

Function description is gM := (gmij ) ∈ Gn×n; trapdoor is M−1.
Evaluation:

fgM (~x) := gM·~x ∈ Gn .
Can be easily computed from gM and ~x .

Inversion (if M is full rank):
1 Apply M−1 in exponent to recover g~x ∈ Gn (also easy).
2 Take discrete logs to recover ~x (easy since ~x ∈ {0, 1}n).
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Security

Theorem [BHHO08,NS09]: if d-linear assumption holds in G, then

{gM : rank(M) = n} and {gM : rank(M) = d}

are computationally indistinguishable.
d -Linear assumption: generalization of DDH that may hold in
groups with a d -linear map [BBS04,HK07,S07].
d = 1 is DDH; d = 2 is “decision linear.”

When rank(M) = d , amount of lossiness is n − d log2 p bits.
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Observations and extensions

1 Simplifies and generalizes [PW08] ElGamal-based construction
Save space by using random M instead of M ∈ {0, 1}n×n.
Avoid generalized ElGamal encryption (d times as large).

2 Can choose parameters to achieve varying amounts of
lossiness.

3 Admits an “all-but-one” generalization (DDH only).
Needed for [PW08] construction of CCA-secure encryption.
Details in full paper.
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Conclusions

We showed constructions of lossy trapdoor functions based on
quadratic residuosity and d-Linear assumptions.

Also in paper: composite residuosity (Paillier) assumption,
correlation-security from syndrome decoding.

Expanding our “library” of LTDFs expands the methods we have for
creating cryptosystems in a simple and modular way.
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Conclusions

We showed constructions of lossy trapdoor functions based on
quadratic residuosity and d-Linear assumptions.

Also in paper: composite residuosity (Paillier) assumption,
correlation-security from syndrome decoding.

Expanding our “library” of LTDFs expands the methods we have for
creating cryptosystems in a simple and modular way.

Thank you!
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