
Functional Encryption for Inner Product
Predicates from Learning with Errors

Shweta Agrawal1, David Mandell Freeman2,
and Vinod Vaikuntanathan3

1UCLA, USA; 2Stanford University, USA;
3University of Toronto, Canada

Asiacrypt 2011
Seoul, Korea

5 December 2011

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 0/13



Traditional Public-Key Encryption [DH76,RSA78,...]

m

skB skC

m must be
encrypted
separately to each
user.

Recipient set must
be decided in
advance.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 1/13



Traditional Public-Key Encryption [DH76,RSA78,...]

m

Enc(m,pkB) Enc(m,pkC)

skB skC

m must be
encrypted
separately to each
user.

Recipient set must
be decided in
advance.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 1/13



Traditional Public-Key Encryption [DH76,RSA78,...]

m

Enc(m,pkB) Enc(m,pkC)

skB skC

m must be
encrypted
separately to each
user.

Recipient set must
be decided in
advance.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 1/13



Traditional Public-Key Encryption [DH76,RSA78,...]

m

Enc(m,pkB) Enc(m,pkC)

skB skC

m must be
encrypted
separately to each
user.

Recipient set must
be decided in
advance.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 1/13



Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

Enc(m,a)

skf skg

Ciphertext equipped
with attribute a.

sk equipped with
predicate f .

User with skf can
decrypt iff f (a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

predicates f = (conf="Asiacrypt" AND year≥2000),
g = (conf="Eurocrypt" OR year=2011)

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 2/13



Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

Enc(m,a)

skf skg

Ciphertext equipped
with attribute a.

sk equipped with
predicate f .

User with skf can
decrypt iff f (a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

predicates f = (conf="Asiacrypt" AND year≥2000),
g = (conf="Eurocrypt" OR year=2011)

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 2/13



Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

Enc(m,a)

skf skg

Ciphertext equipped
with attribute a.

sk equipped with
predicate f .

User with skf can
decrypt iff f (a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

predicates f = (conf="Asiacrypt" AND year≥2000),

g = (conf="Eurocrypt" OR year=2011)

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 2/13



Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

Enc(m,a)

skf skg

Ciphertext equipped
with attribute a.

sk equipped with
predicate f .

User with skf can
decrypt iff f (a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

predicates f = (conf="Asiacrypt" AND year≥2000),
g = (conf="Eurocrypt" OR year=2011)

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 2/13



Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality
predicates.

Ciphertexts & keys equipped with identity id .
Decrypt succeeds iff (key id) = (CT id).
Achieved using pairings, QR, and lattices.
[BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:
CT↔ vector ~w ; key↔ vector ~v
Key for ~v can decrypt CT for ~w iff 〈~v , ~w〉 = 0.
Achieved using pairings.

[KSW08]: Inner product predicates allow us to instantiate range,
conjunction, disjunction, and polynomial evaluation predicates.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 3/13



Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality
predicates.

Ciphertexts & keys equipped with identity id .
Decrypt succeeds iff (key id) = (CT id).
Achieved using pairings, QR, and lattices.
[BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:
CT↔ vector ~w ; key↔ vector ~v
Key for ~v can decrypt CT for ~w iff 〈~v , ~w〉 = 0.
Achieved using pairings.

[KSW08]: Inner product predicates allow us to instantiate range,
conjunction, disjunction, and polynomial evaluation predicates.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 3/13



Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality
predicates.

Ciphertexts & keys equipped with identity id .
Decrypt succeeds iff (key id) = (CT id).
Achieved using pairings, QR, and lattices.
[BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:
CT↔ vector ~w ; key↔ vector ~v
Key for ~v can decrypt CT for ~w iff 〈~v , ~w〉 = 0.
Achieved using pairings.

[KSW08]: Inner product predicates allow us to instantiate range,
conjunction, disjunction, and polynomial evaluation predicates.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 3/13



Our Contribution

Functional encryption for inner product predicates based on the
learning with errors (LWE) assumption.

Achieves functionality of [KSW08].
Worst-case reduction, (conjectured) quantum security.
Allows inner products over small fields.

Privacy property: CT attribute is hidden from users who cannot
decrypt (“weakly attribute hiding”).

[KSW08] construction hides attribute from all users.
Open problem: achieve same privacy property from LWE.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 4/13



Our Contribution

Functional encryption for inner product predicates based on the
learning with errors (LWE) assumption.

Achieves functionality of [KSW08].
Worst-case reduction, (conjectured) quantum security.
Allows inner products over small fields.

Privacy property: CT attribute is hidden from users who cannot
decrypt (“weakly attribute hiding”).

[KSW08] construction hides attribute from all users.
Open problem: achieve same privacy property from LWE.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 4/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm

, vector u.

sk: short vector s in coset Λ⊥ + u
of dual lattice.

Enc: vector c close to Λ,
scalar c′ encoding m ∈ {0,1}.

Dec: use 〈s,c〉 to decode c′.

O

Two ways to generate keys for Λ:

Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm

, vector u.
sk: short vector s in coset Λ⊥ + u

of dual lattice.
Enc: vector c close to Λ,

scalar c′ encoding m ∈ {0,1}.
Dec: use 〈s,c〉 to decode c′.

O

b1

b2

Two ways to generate keys for Λ:

Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm, vector u.

sk: short vector s in coset Λ⊥ + u
of dual lattice.

Enc: vector c close to Λ,
scalar c′ encoding m ∈ {0,1}.

Dec: use 〈s,c〉 to decode c′.

O

b1

b2

u

Two ways to generate keys for Λ:

Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm, vector u.
sk: short vector s in coset Λ⊥ + u

of dual lattice.

Enc: vector c close to Λ,
scalar c′ encoding m ∈ {0,1}.

Dec: use 〈s,c〉 to decode c′.

O

b1

b2

s

u

Two ways to generate keys for Λ:

Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm, vector u.
sk: short vector s in coset Λ⊥ + u

of dual lattice.
Enc: vector c close to Λ,

scalar c′ encoding m ∈ {0,1}.

Dec: use 〈s,c〉 to decode c′.

O

b1

b2

s c

u

Two ways to generate keys for Λ:

Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm, vector u.
sk: short vector s in coset Λ⊥ + u

of dual lattice.
Enc: vector c close to Λ,

scalar c′ encoding m ∈ {0,1}.
Dec: use 〈s,c〉 to decode c′.

O

b1

b2

s c

u

Two ways to generate keys for Λ:

Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm, vector u.
sk: short vector s in coset Λ⊥ + u

of dual lattice.
Enc: vector c close to Λ,

scalar c′ encoding m ∈ {0,1}.
Dec: use 〈s,c〉 to decode c′.

O

b1

b2

s c

u

Two ways to generate keys for Λ:
Choose short sk s, compute pk vector u.

Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm, vector u.
sk: short vector s in coset Λ⊥ + u

of dual lattice.
Enc: vector c close to Λ,

scalar c′ encoding m ∈ {0,1}.
Dec: use 〈s,c〉 to decode c′.

O

b1

b2

s c

u

Two ways to generate keys for Λ:
Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm, vector u.
sk: short vector s in coset Λ⊥ + u

of dual lattice.
Enc: vector c close to Λ,

scalar c′ encoding m ∈ {0,1}.
Dec: use 〈s,c〉 to decode c′.

O
s1

s2

s c

u

Two ways to generate keys for Λ:
Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm, vector u.
sk: short vector s in coset Λ⊥ + u

of dual lattice.
Enc: vector c close to Λ,

scalar c′ encoding m ∈ {0,1}.
Dec: use 〈s,c〉 to decode c′.

O
s1

s2

s c

u

Two ways to generate keys for Λ:
Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 5/13



Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity id defines a lattice Λid .
CT is GPV encryption relative to Λid .
Trapdoor for Λid used to derive sk for id .
Can decrypt iff sk lattice matches CT lattice.

IBE schemes don’t seem to generalize to functional encryption:
In functional encryption, many sk can decrypt each CT.

CT for ~w decryptable by sk for any ~v with 〈~v , ~w〉 = 0.

Conclude: can’t require CT lattice to match sk lattice.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 6/13



Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity id defines a lattice Λid .
CT is GPV encryption relative to Λid .
Trapdoor for Λid used to derive sk for id .
Can decrypt iff sk lattice matches CT lattice.

IBE schemes don’t seem to generalize to functional encryption:
In functional encryption, many sk can decrypt each CT.

CT for ~w decryptable by sk for any ~v with 〈~v , ~w〉 = 0.

Conclude: can’t require CT lattice to match sk lattice.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 6/13



Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity id defines a lattice Λid .
CT is GPV encryption relative to Λid .
Trapdoor for Λid used to derive sk for id .
Can decrypt iff sk lattice matches CT lattice.

IBE schemes don’t seem to generalize to functional encryption:
In functional encryption, many sk can decrypt each CT.

CT for ~w decryptable by sk for any ~v with 〈~v , ~w〉 = 0.

Conclude: can’t require CT lattice to match sk lattice.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 6/13



Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity id defines a lattice Λid .
CT is GPV encryption relative to Λid .
Trapdoor for Λid used to derive sk for id .
Can decrypt iff sk lattice matches CT lattice.

IBE schemes don’t seem to generalize to functional encryption:
In functional encryption, many sk can decrypt each CT.

CT for ~w decryptable by sk for any ~v with 〈~v , ~w〉 = 0.

Conclude: can’t require CT lattice to match sk lattice.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 6/13



Building Functional Encryption

Encrypt relative to
attribute lattice Λ~w ⊂ Zr

O
c

“short”
linear map

T~v : Zr→ Zs

sk corresponds to
predicate lattice Λ~v ⊂ Zs

O

T~v (Λ~w ) = Λ~v iff 〈~v , ~w〉 = 0

If 〈~v , ~w〉 = 0, T~v (c) is a CT relative to Λ~v
⇒ key for Λ~v can decrypt T~v (c).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 7/13



Building Functional Encryption

Encrypt relative to
attribute lattice Λ~w ⊂ Zr

O
c

“short”
linear map

T~v : Zr→ Zs

sk corresponds to
predicate lattice Λ~v ⊂ Zs

O

T~v (Λ~w ) = Λ~v iff 〈~v , ~w〉 = 0

If 〈~v , ~w〉 = 0, T~v (c) is a CT relative to Λ~v
⇒ key for Λ~v can decrypt T~v (c).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 7/13



Building Functional Encryption

Encrypt relative to
attribute lattice Λ~w ⊂ Zr

O
c

“short”
linear map

T~v : Zr→ Zs

sk corresponds to
predicate lattice Λ~v ⊂ Zs

O

T~v (Λ~w ) = Λ~v iff 〈~v , ~w〉 = 0

If 〈~v , ~w〉 = 0, T~v (c) is a CT relative to Λ~v
⇒ key for Λ~v can decrypt T~v (c).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 7/13



Building Functional Encryption

Encrypt relative to
attribute lattice Λ~w ⊂ Zr

O
c

“short”
linear map

T~v : Zr→ Zs

sk corresponds to
predicate lattice Λ~v ⊂ Zs

O

T~v (c)

T~v (Λ~w ) = Λ~v iff 〈~v , ~w〉 = 0

If 〈~v , ~w〉 = 0, T~v (c) is a CT relative to Λ~v

⇒ key for Λ~v can decrypt T~v (c).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 7/13



Building Functional Encryption

Encrypt relative to
attribute lattice Λ~w ⊂ Zr

O
c

“short”
linear map

T~v : Zr→ Zs

sk corresponds to
predicate lattice Λ~v ⊂ Zs

O

T~v (c)

T~v (Λ~w ) = Λ~v iff 〈~v , ~w〉 = 0

If 〈~v , ~w〉 = 0, T~v (c) is a CT relative to Λ~v
⇒ key for Λ~v can decrypt T~v (c).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 7/13



What Lattices are Used?

Regev/GPV lattice Λ defined by matrix A0 ∈ Zn×m
q , n < m:

Λ = Λq(A0) =
{

v ∈ Zm : v mod q = rt · A0 for some r ∈ Zn
q
}

i.e., vectors in Zm that (mod q) are linear combinations of
rows of A0.

[ABB10a] IBE: to encrypt to identity id , use lattice

Λid = Λq(A0 ‖ A1 + H(id)B) ⊂ Z2m.

public A0,A1,B ∈ Zn×m
q .

H : {0,1}∗ → Zn×n
q is a hash function.

Secret key for Λid can be computed using trapdoor for A0.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 8/13



What Lattices are Used?

Regev/GPV lattice Λ defined by matrix A0 ∈ Zn×m
q , n < m:

Λ = Λq(A0) =
{

v ∈ Zm : v mod q = rt · A0 for some r ∈ Zn
q
}

i.e., vectors in Zm that (mod q) are linear combinations of
rows of A0.

[ABB10a] IBE: to encrypt to identity id , use lattice

Λid = Λq(A0 ‖ A1 + H(id)B) ⊂ Z2m.

public A0,A1,B ∈ Zn×m
q .

H : {0,1}∗ → Zn×n
q is a hash function.

Secret key for Λid can be computed using trapdoor for A0.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 8/13



A Functional Encryption Scheme

To compute CT for vector ~w = (w1, . . . ,w`), use lattice

Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B) ⊂ Z(1+`)m.

public Ai ,B ∈ Zn×m
q .

To generate sk for vector ~v = (v1, . . . , v`), use lattice

Λ~v = Λq(A0 ‖
∑

viAi) ⊂ Z2m.

Use trapdoor for A0 + [CHKP10] “delegation” technique.

To decrypt, apply transformation T~v : Z(1+`)m → Z2m given by

T~v (c0, . . . ,c`) = (c0,
∑

vici).

Then
T~v (Λ~w ) = Λq(A0 ‖

∑
viAi + 〈~v , ~w〉B)

So sk for Λ~v can decrypt T~v (CT ) iff 〈~v , ~w〉 = 0 (and ~v is short).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 9/13



A Functional Encryption Scheme

To compute CT for vector ~w = (w1, . . . ,w`), use lattice

Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B) ⊂ Z(1+`)m.

public Ai ,B ∈ Zn×m
q .

To generate sk for vector ~v = (v1, . . . , v`), use lattice

Λ~v = Λq(A0 ‖
∑

viAi) ⊂ Z2m.

Use trapdoor for A0 + [CHKP10] “delegation” technique.

To decrypt, apply transformation T~v : Z(1+`)m → Z2m given by

T~v (c0, . . . ,c`) = (c0,
∑

vici).

Then
T~v (Λ~w ) = Λq(A0 ‖

∑
viAi + 〈~v , ~w〉B)

So sk for Λ~v can decrypt T~v (CT ) iff 〈~v , ~w〉 = 0 (and ~v is short).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 9/13



A Functional Encryption Scheme

To compute CT for vector ~w = (w1, . . . ,w`), use lattice

Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B) ⊂ Z(1+`)m.

public Ai ,B ∈ Zn×m
q .

To generate sk for vector ~v = (v1, . . . , v`), use lattice

Λ~v = Λq(A0 ‖
∑

viAi) ⊂ Z2m.

Use trapdoor for A0 + [CHKP10] “delegation” technique.

To decrypt, apply transformation T~v : Z(1+`)m → Z2m given by

T~v (c0, . . . ,c`) = (c0,
∑

vici).

Then
T~v (Λ~w ) = Λq(A0 ‖

∑
viAi + 〈~v , ~w〉B)

So sk for Λ~v can decrypt T~v (CT ) iff 〈~v , ~w〉 = 0 (and ~v is short).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 9/13



A Functional Encryption Scheme

To compute CT for vector ~w = (w1, . . . ,w`), use lattice

Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B) ⊂ Z(1+`)m.

public Ai ,B ∈ Zn×m
q .

To generate sk for vector ~v = (v1, . . . , v`), use lattice

Λ~v = Λq(A0 ‖
∑

viAi) ⊂ Z2m.

Use trapdoor for A0 + [CHKP10] “delegation” technique.

To decrypt, apply transformation T~v : Z(1+`)m → Z2m given by

T~v (c0, . . . ,c`) = (c0,
∑

vici).

Then
T~v (Λ~w ) = Λq(A0 ‖

∑
viAi + 〈~v , ~w〉B)

So sk for Λ~v can decrypt T~v (CT ) iff 〈~v , ~w〉 = 0 (and ~v is short).

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 9/13



A Functional Encryption Scheme

To compute CT for vector ~w = (w1, . . . ,w`), use lattice

Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B) ⊂ Z(1+`)m.

public Ai ,B ∈ Zn×m
q .

To generate sk for vector ~v = (v1, . . . , v`), use lattice

Λ~v = Λq(A0 ‖
∑

viAi) ⊂ Z2m.

Use trapdoor for A0 + [CHKP10] “delegation” technique.

To decrypt, apply transformation T~v : Z(1+`)m → Z2m given by

T~v (c0, . . . ,c`) = (c0,
∑

vici).

Then
T~v (Λ~w ) = Λq(A0 ‖

∑
viAi + 〈~v , ~w〉B)

So sk for Λ~v can decrypt T~v (CT ) iff 〈~v , ~w〉 = 0 (and ~v is short).
S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 9/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−

pk
−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−

Enc(mb, ~wb)
−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−

Enc(mb, ~wb)
−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→
predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



(Selective) Security Model

Challenger

b R←{0,1}

attributes ~w0, ~w1←−−−−−−−−−−−−−−−−−−−
pk

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

messages m0,m1←−−−−−−−−−−−−−−−−−−−−
Enc(mb, ~wb)

−−−−−−−−−−−−−−−−−−−→

predicate ~v : 〈~v , ~wb〉 6= 0
←−−−−−−−−−−−−−−−−−−−

sk~v−−−−−−−−−−−−−−−−−−−→

 repeat

Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 10/13



Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed s ∈ Zn
q, “noisy inner products” with s are

indistinguishable from random:{
ai , 〈s,ai〉+ ei

}m
i=1 ≈c

{
ai , ri

}m
i=1

for random ai ∈ Zn
q, small ei ∈ Z, and random ri ∈ Zq.

[R05,P09]: Algorithms that break LWE assumption can be
used to solve worst-case lattice problems.

Theorem
If the LWE assumption holds, then our inner product encryption
scheme is weakly attribute hiding.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 11/13



Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed s ∈ Zn
q, “noisy inner products” with s are

indistinguishable from random:{
ai , 〈s,ai〉+ ei

}m
i=1 ≈c

{
ai , ri

}m
i=1

for random ai ∈ Zn
q, small ei ∈ Z, and random ri ∈ Zq.

[R05,P09]: Algorithms that break LWE assumption can be
used to solve worst-case lattice problems.

Theorem
If the LWE assumption holds, then our inner product encryption
scheme is weakly attribute hiding.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 11/13



Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed s ∈ Zn
q, “noisy inner products” with s are

indistinguishable from random:{
ai , 〈s,ai〉+ ei

}m
i=1 ≈c

{
ai , ri

}m
i=1

for random ai ∈ Zn
q, small ei ∈ Z, and random ri ∈ Zq.

[R05,P09]: Algorithms that break LWE assumption can be
used to solve worst-case lattice problems.

Theorem
If the LWE assumption holds, then our inner product encryption
scheme is weakly attribute hiding.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 11/13



Proof Idea

CT lattice: Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B).
sk lattice: Λ~v = Λq(A0 ‖

∑
viAi).

[ABB10a] technique: Trapdoor for B can be used to answer sk
queries for ~v with 〈~v , ~w〉 6= 0.

Embed LWE challenge in the matrix A0.
If LWE challenge is “noisy inner products” 〈s,ai〉+ ei ,
obtain real CT.
If LWE challenge is random ri , obtain uniformly random CT
(no info. about message or attribute).

Adversary that breaks system can break LWE assumption.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 12/13



Proof Idea

CT lattice: Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B).
sk lattice: Λ~v = Λq(A0 ‖

∑
viAi).

[ABB10a] technique: Trapdoor for B can be used to answer sk
queries for ~v with 〈~v , ~w〉 6= 0.

Embed LWE challenge in the matrix A0.
If LWE challenge is “noisy inner products” 〈s,ai〉+ ei ,
obtain real CT.
If LWE challenge is random ri , obtain uniformly random CT
(no info. about message or attribute).

Adversary that breaks system can break LWE assumption.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 12/13



Proof Idea

CT lattice: Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B).
sk lattice: Λ~v = Λq(A0 ‖

∑
viAi).

[ABB10a] technique: Trapdoor for B can be used to answer sk
queries for ~v with 〈~v , ~w〉 6= 0.

Embed LWE challenge in the matrix A0.
If LWE challenge is “noisy inner products” 〈s,ai〉+ ei ,
obtain real CT.
If LWE challenge is random ri , obtain uniformly random CT
(no info. about message or attribute).

Adversary that breaks system can break LWE assumption.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 12/13



Proof Idea

CT lattice: Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B).
sk lattice: Λ~v = Λq(A0 ‖

∑
viAi).

[ABB10a] technique: Trapdoor for B can be used to answer sk
queries for ~v with 〈~v , ~w〉 6= 0.

Embed LWE challenge in the matrix A0.
If LWE challenge is “noisy inner products” 〈s,ai〉+ ei ,
obtain real CT.
If LWE challenge is random ri , obtain uniformly random CT
(no info. about message or attribute).

Adversary that breaks system can break LWE assumption.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 12/13



Open Questions

1 Fully attribute-hiding system.
Answer sk queries for ~v when 〈~v , ~w〉 = 0. [requires m0 = m1]

2 Fully secure system.
Allow adversary to make key queries before choosing
attributes ~wj .

3 Improve efficiency.
Current system is efficient for ~v , ~w over small fields.

4 Functional encryption for larger class of predicates.
Leverage techniques from fully homomorphic encryption?

Thank you!

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 13/13



Open Questions

1 Fully attribute-hiding system.
Answer sk queries for ~v when 〈~v , ~w〉 = 0. [requires m0 = m1]

2 Fully secure system.
Allow adversary to make key queries before choosing
attributes ~wj .

3 Improve efficiency.
Current system is efficient for ~v , ~w over small fields.

4 Functional encryption for larger class of predicates.
Leverage techniques from fully homomorphic encryption?

Thank you!

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 13/13



Open Questions

1 Fully attribute-hiding system.
Answer sk queries for ~v when 〈~v , ~w〉 = 0. [requires m0 = m1]

2 Fully secure system.
Allow adversary to make key queries before choosing
attributes ~wj .

3 Improve efficiency.
Current system is efficient for ~v , ~w over small fields.

4 Functional encryption for larger class of predicates.
Leverage techniques from fully homomorphic encryption?

Thank you!

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 13/13



Open Questions

1 Fully attribute-hiding system.
Answer sk queries for ~v when 〈~v , ~w〉 = 0. [requires m0 = m1]

2 Fully secure system.
Allow adversary to make key queries before choosing
attributes ~wj .

3 Improve efficiency.
Current system is efficient for ~v , ~w over small fields.

4 Functional encryption for larger class of predicates.
Leverage techniques from fully homomorphic encryption?

Thank you!

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 13/13



Open Questions

1 Fully attribute-hiding system.
Answer sk queries for ~v when 〈~v , ~w〉 = 0. [requires m0 = m1]

2 Fully secure system.
Allow adversary to make key queries before choosing
attributes ~wj .

3 Improve efficiency.
Current system is efficient for ~v , ~w over small fields.

4 Functional encryption for larger class of predicates.
Leverage techniques from fully homomorphic encryption?

Thank you!

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 13/13


