Functional Encryption for Inner Product Predicates from Learning with Errors

Shweta Agrawal ${ }^{1}$, David Mandell Freeman², and Vinod Vaikuntanathan ${ }^{3}$
${ }^{1}$ UCLA, USA; ${ }^{2}$ Stanford University, USA;
${ }^{3}$ University of Toronto, Canada

Asiacrypt 2011
Seoul, Korea
5 December 2011

Traditional Public-Key Encryption [DH76,RSA78,...]

Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

- Ciphertext equipped with attribute a.
- sk equipped with predicate f.
- User with sk_{f} can decrypt iff $f(a)=1$.

Functional Encryption [sW05,GPSW05,BW07,KsW08,...]

- Ciphertext equipped with attribute a.
- sk equipped with predicate f.
- User with sk_{f} can decrypt iff $f(a)=1$.
E.g.: attribute $a=$ (conf="Asiacrypt", year=2011),

Functional Encryption [sW05,GPSW05,BW07,KsW08,...]

- Ciphertext equipped with attribute a.
- sk equipped with predicate f.
- User with sk_{f} can decrypt iff $f(a)=1$.
E.g.: attribute $a=$ (conf="Asiacrypt", year=2011),
predicates $f=$ (conf="Asiacrypt" AND year ≥ 2000),

Functional Encryption [SW05,GPSW05,BW07,KsW08,...]

- Ciphertext equipped with attribute a.
- sk equipped with predicate f.
- User with sk_{f} can decrypt iff $f(a)=1$.
E.g.: attribute $a=$ (conf="Asiacrypt", year=2011),
predicates $f=$ (conf="Asiacrypt" AND year ≥ 2000), $g=($ conf="Eurocrypt" OR year=2011)

Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts \& keys equipped with identity id.
- Decrypt succeeds iff (key id) $=(\mathrm{CT}$ id).
- Achieved using pairings, QR, and lattices. [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts \& keys equipped with identity id.
- Decrypt succeeds iff (key id) $=$ (CT id).
- Achieved using pairings, QR, and lattices. [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:

- CT \leftrightarrow vector \vec{w}; key \leftrightarrow vector \vec{v}
- Key for \vec{v} can decrypt CT for \vec{w} iff $\langle\vec{v}, \vec{w}\rangle=0$.
- Achieved using pairings.

Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts \& keys equipped with identity id.
- Decrypt succeeds iff (key id) = (CT id).
- Achieved using pairings, QR, and lattices. [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:

- CT \leftrightarrow vector \vec{w}; key \leftrightarrow vector \vec{v}
- Key for \vec{v} can decrypt CT for \vec{w} iff $\langle\vec{v}, \vec{w}\rangle=0$.
- Achieved using pairings.
[KSW08]: Inner product predicates allow us to instantiate range, conjunction, disjunction, and polynomial evaluation predicates.

Our Contribution

Functional encryption for inner product predicates based on the learning with errors (LWE) assumption.

- Achieves functionality of [KSW08].
- Worst-case reduction, (conjectured) quantum security.
- Allows inner products over small fields.

Our Contribution

Functional encryption for inner product predicates based on the learning with errors (LWE) assumption.

- Achieves functionality of [KSW08].
- Worst-case reduction, (conjectured) quantum security.
- Allows inner products over small fields.

Privacy property: CT attribute is hidden from users who cannot decrypt ("weakly attribute hiding").

- [KSW08] construction hides attribute from all users.
- Open problem: achieve same privacy property from LWE.

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^{m}$

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:

 pk: lattice $\Lambda \subset \mathbb{Z}^{m}$, vector \mathbf{u}.

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:
pk: lattice $\Lambda \subset \mathbb{Z}^{m}$, vector \mathbf{u}.
sk: short vector \mathbf{s} in $\operatorname{coset} \Lambda^{\perp}+\mathbf{u}$ of dual lattice.

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:
pk: lattice $\Lambda \subset \mathbb{Z}^{m}$, vector \mathbf{u}.
sk: short vector \mathbf{s} in $\operatorname{coset} \Lambda^{\perp}+\mathbf{u}$ of dual lattice.
Enc: vector c close to Λ, scalar c^{\prime} encoding $m \in\{0,1\}$.

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:
pk: lattice $\Lambda \subset \mathbb{Z}^{m}$, vector \mathbf{u}.
sk: short vector \mathbf{s} in $\operatorname{coset} \Lambda^{\perp}+\mathbf{u}$ of dual lattice.
Enc: vector c close to Λ, scalar c^{\prime} encoding $m \in\{0,1\}$.
Dec: use $\langle\mathbf{s}, \mathbf{c}\rangle$ to decode c^{\prime}.

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:
pk: lattice $\Lambda \subset \mathbb{Z}^{m}$, vector \mathbf{u}.
sk: short vector \mathbf{s} in $\operatorname{coset} \Lambda^{\perp}+\mathbf{u}$ of dual lattice.
Enc: vector c close to Λ, scalar c^{\prime} encoding $m \in\{0,1\}$.
Dec: use $\langle\mathbf{s}, \mathbf{c}\rangle$ to decode c^{\prime}.

Two ways to generate keys for \wedge :

- Choose short sk s, compute pk vector u.

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:
pk: lattice $\Lambda \subset \mathbb{Z}^{m}$, vector \mathbf{u}.
sk: short vector \mathbf{s} in $\operatorname{coset} \Lambda^{\perp}+\mathbf{u}$ of dual lattice.
Enc: vector c close to Λ, scalar c^{\prime} encoding $m \in\{0,1\}$.
Dec: use $\langle\mathbf{s}, \mathbf{c}\rangle$ to decode c^{\prime}.

Two ways to generate keys for Λ :

- Choose short sk s, compute pk vector u.
- Given \mathbf{u}, use short basis of Λ^{\perp} to find \mathbf{s}.

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:
pk: lattice $\Lambda \subset \mathbb{Z}^{m}$, vector \mathbf{u}.
sk: short vector \mathbf{s} in $\operatorname{coset} \Lambda^{\perp}+\mathbf{u}$ of dual lattice.
Enc: vector c close to Λ, scalar c^{\prime} encoding $m \in\{0,1\}$.
Dec: use $\langle\mathbf{s}, \mathbf{c}\rangle$ to decode c^{\prime}.

Two ways to generate keys for Λ :

- Choose short sk s, compute pk vector u.
- Given \mathbf{u}, use short basis of Λ^{\perp} to find \mathbf{s}.

Building Blocks

Lattice-based PKE [GPV08 "dual Regev"]:
pk: lattice $\Lambda \subset \mathbb{Z}^{m}$, vector \mathbf{u}.
sk: short vector \mathbf{s} in $\operatorname{coset} \Lambda^{\perp}+\mathbf{u}$ of dual lattice.
Enc: vector c close to Λ, scalar c^{\prime} encoding $m \in\{0,1\}$.
Dec: use $\langle\mathbf{s}, \mathbf{c}\rangle$ to decode c^{\prime}.

Two ways to generate keys for \wedge :

- Choose short sk s, compute pk vector u.
- Given \mathbf{u}, use short basis of Λ^{\perp} to find \mathbf{s}.
[A99,AP09]: Can generate a random lattice \wedge along with short basis of $\Lambda^{\perp}=$ trapdoor for Λ.

Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity id defines a lattice $\Lambda_{i d}$.

- CT is GPV encryption relative to $\Lambda_{i d}$.
- Trapdoor for $\Lambda_{i d}$ used to derive sk for id.
- Can decrypt iff sk lattice matches CT lattice.

Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity id defines a lattice $\Lambda_{i d}$.

- CT is GPV encryption relative to $\Lambda_{i d}$.
- Trapdoor for $\Lambda_{i d}$ used to derive sk for id.
- Can decrypt iff sk lattice matches CT lattice.

IBE schemes don't seem to generalize to functional encryption:

- In functional encryption, many sk can decrypt each CT. CT for \vec{w} decryptable by sk for any \vec{v} with $\langle\vec{v}, \vec{w}\rangle=0$.

Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity id defines a lattice $\Lambda_{i d}$.

- CT is GPV encryption relative to $\Lambda_{i d}$.
- Trapdoor for $\Lambda_{i d}$ used to derive sk for id.
- Can decrypt iff sk lattice matches CT lattice.

IBE schemes don't seem to generalize to functional encryption:

- In functional encryption, many sk can decrypt each CT. CT for \vec{w} decryptable by sk for any \vec{v} with $\langle\vec{v}, \vec{w}\rangle=0$.

Conclude: can't require CT lattice to match sk lattice.

Building Functional Encryption

Encrypt relative to

attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^{r}$

Building Functional Encryption

Encrypt relative to
attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^{r}$

sk corresponds to
predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^{s}$

Building Functional Encryption

Encrypt relative to
attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^{r}$

$$
T_{\vec{v}}\left(\Lambda_{\vec{w}}\right)=\Lambda_{\vec{v}} \quad \text { iff } \quad\langle\vec{v}, \vec{w}\rangle=0
$$

Building Functional Encryption

Encrypt relative to
attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^{r}$

sk corresponds to
predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^{s}$
"short"
linear map
$T_{\vec{v}}: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{s}$

$$
T_{\vec{v}}\left(\Lambda_{\vec{w}}\right)=\Lambda_{\vec{v}} \quad \text { iff } \quad\langle\vec{v}, \vec{w}\rangle=0
$$

If $\langle\vec{v}, \vec{w}\rangle=0, T_{\vec{v}}(\mathbf{c})$ is a CT relative to $\Lambda_{\vec{v}}$

Building Functional Encryption

Encrypt relative to
attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^{r}$

sk corresponds to
predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^{s}$

$$
\underbrace{\text { "short" }}_{T_{\vec{v}}: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{s}}
$$

$$
T_{\vec{v}}\left(\Lambda_{\vec{w}}\right)=\Lambda_{\vec{v}} \quad \text { iff } \quad\langle\vec{v}, \vec{w}\rangle=0
$$

If $\langle\vec{v}, \vec{w}\rangle=0, T_{\vec{v}}(\mathbf{c})$ is a CT relative to $\Lambda_{\vec{v}}$ \Rightarrow key for $\Lambda_{\vec{v}}$ can decrypt $T_{\vec{v}}(\mathbf{c})$.

What Lattices are Used?

Regev/GPV lattice Λ defined by matrix $\mathbf{A}_{0} \in \mathbb{Z}_{q}^{n \times m}, n<m$:
$\Lambda=\Lambda_{q}\left(\mathbf{A}_{0}\right)=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{v} \bmod q=\mathbf{r}^{t} \cdot \mathbf{A}_{0}\right.$ for some $\left.\mathbf{r} \in \mathbb{Z}_{q}^{n}\right\}$

- i.e., vectors in \mathbb{Z}^{m} that $(\bmod q)$ are linear combinations of rows of \mathbf{A}_{0}.

What Lattices are Used?

Regev/GPV lattice Λ defined by matrix $\mathbf{A}_{0} \in \mathbb{Z}_{q}^{n \times m}, n<m$:
$\Lambda=\Lambda_{q}\left(\mathbf{A}_{0}\right)=\left\{\mathbf{v} \in \mathbb{Z}^{m}: \mathbf{v} \bmod q=\mathbf{r}^{t} \cdot \mathbf{A}_{0}\right.$ for some $\left.\mathbf{r} \in \mathbb{Z}_{q}^{n}\right\}$

- i.e., vectors in \mathbb{Z}^{m} that $(\bmod q)$ are linear combinations of rows of \mathbf{A}_{0}.
[ABB10a] IBE: to encrypt to identity id, use lattice

$$
\Lambda_{i d}=\Lambda_{q}\left(\mathbf{A}_{0} \| \mathbf{A}_{1}+H(i d) \mathbf{B}\right) \subset \mathbb{Z}^{2 m}
$$

- public $\mathbf{A}_{0}, \mathbf{A}_{1}, \mathbf{B} \in \mathbb{Z}_{q}^{n \times m}$.
- $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{n \times n}$ is a hash function.

Secret key for $\Lambda_{i d}$ can be computed using trapdoor for \mathbf{A}_{0}.

A Functional Encryption Scheme

A Functional Encryption Scheme

To compute CT for vector $\vec{w}=\left(w_{1}, \ldots, w_{\ell}\right)$, use lattice

$$
\Lambda_{\vec{w}}=\Lambda_{q}\left(\mathbf{A}_{0}\left\|\mathbf{A}_{1}+w_{1} \mathbf{B}\right\| \cdots \| \mathbf{A}_{\ell}+w_{\ell} \mathbf{B}\right) \subset \mathbb{Z}^{(1+\ell) m}
$$

- public $\mathbf{A}_{i}, \mathbf{B} \in \mathbb{Z}_{q}^{n \times m}$.

A Functional Encryption Scheme

To compute CT for vector $\vec{w}=\left(w_{1}, \ldots, w_{\ell}\right)$, use lattice

$$
\Lambda_{\vec{w}}=\Lambda_{q}\left(\mathbf{A}_{0}\left\|\mathbf{A}_{1}+w_{1} \mathbf{B}\right\| \cdots \| \mathbf{A}_{\ell}+w_{\ell} \mathbf{B}\right) \subset \mathbb{Z}^{(1+\ell) m}
$$

- public $\mathbf{A}_{i}, \mathbf{B} \in \mathbb{Z}_{q}^{n \times m}$.

To generate sk for vector $\vec{v}=\left(v_{1}, \ldots, v_{\ell}\right)$, use lattice

$$
\Lambda_{\vec{v}}=\Lambda_{q}\left(\mathbf{A}_{0} \| \sum v_{i} \mathbf{A}_{i}\right) \subset \mathbb{Z}^{2 m}
$$

- Use trapdoor for $\mathbf{A}_{0}+[\mathrm{CHKP10]}$ "delegation" technique.

A Functional Encryption Scheme

To compute CT for vector $\vec{w}=\left(w_{1}, \ldots, w_{\ell}\right)$, use lattice

$$
\Lambda_{\vec{w}}=\Lambda_{q}\left(\mathbf{A}_{0}\left\|\mathbf{A}_{1}+w_{1} \mathbf{B}\right\| \cdots \| \mathbf{A}_{\ell}+w_{\ell} \mathbf{B}\right) \subset \mathbb{Z}^{(1+\ell) m}
$$

- public $\mathbf{A}_{i}, \mathbf{B} \in \mathbb{Z}_{q}^{n \times m}$.

To generate sk for vector $\vec{v}=\left(v_{1}, \ldots, v_{\ell}\right)$, use lattice

$$
\Lambda_{\vec{v}}=\Lambda_{q}\left(\mathbf{A}_{0} \| \sum v_{i} \mathbf{A}_{i}\right) \subset \mathbb{Z}^{2 m}
$$

- Use trapdoor for $\mathbf{A}_{0}+$ [CHKP10] "delegation" technique.

To decrypt, apply transformation $T_{\vec{v}}: \mathbb{Z}^{(1+\ell) m} \rightarrow \mathbb{Z}^{2 m}$ given by

$$
T_{\vec{v}}\left(\mathbf{c}_{0}, \ldots, \mathbf{c}_{\ell}\right)=\left(\mathbf{c}_{0}, \sum v_{i} \mathbf{c}_{i}\right)
$$

A Functional Encryption Scheme

To compute CT for vector $\vec{w}=\left(w_{1}, \ldots, w_{\ell}\right)$, use lattice

$$
\Lambda_{\vec{w}}=\Lambda_{q}\left(\mathbf{A}_{0}\left\|\mathbf{A}_{1}+w_{1} \mathbf{B}\right\| \cdots \| \mathbf{A}_{\ell}+w_{\ell} \mathbf{B}\right) \subset \mathbb{Z}^{(1+\ell) m}
$$

- public $\mathbf{A}_{i}, \mathbf{B} \in \mathbb{Z}_{q}^{n \times m}$.

To generate sk for vector $\vec{v}=\left(v_{1}, \ldots, v_{\ell}\right)$, use lattice

$$
\Lambda_{\vec{v}}=\Lambda_{q}\left(\mathbf{A}_{0} \| \sum v_{i} \mathbf{A}_{i}\right) \subset \mathbb{Z}^{2 m}
$$

- Use trapdoor for $\mathbf{A}_{0}+[\mathrm{CHKP10]}$ "delegation" technique.

To decrypt, apply transformation $T_{\vec{v}}: \mathbb{Z}^{(1+\ell) m} \rightarrow \mathbb{Z}^{2 m}$ given by

$$
T_{\vec{v}}\left(\mathbf{c}_{0}, \ldots, \mathbf{c}_{\ell}\right)=\left(\mathbf{c}_{0}, \sum v_{i} \mathbf{c}_{i}\right)
$$

Then

$$
T_{\vec{v}}\left(\Lambda_{\vec{w}}\right)=\Lambda_{q}\left(\mathbf{A}_{0} \| \sum v_{i} \mathbf{A}_{i}+\langle\vec{v}, \vec{w}\rangle \mathbf{B}\right)
$$

So sk for $\Lambda_{\vec{v}}$ can decrypt $T_{\vec{v}}(C T)$ iff $\langle\vec{v}, \vec{w}\rangle=0$ (and \vec{v} is short).

(Selective) Security Model

Challenger

Adversary

(Selective) Security Model

attributes \vec{w}_{0}, \vec{w}_{1}
Challenger

Adversary

(Selective) Security Model

(Selective) Security Model

attributes \vec{w}_{0}, \vec{w}_{1}
Challenger

$\mathrm{b} \stackrel{R}{\leftarrow}\{0,1\}$

Adversary
$b^{\prime} \in\{0,1\}$

Definition

Scheme is weakly attribute hiding if $\left|\operatorname{Pr}\left[b^{\prime}=b\right]-\frac{1}{2}\right|$ is negligible for all efficient \mathcal{A}.

Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$
\left\{\mathbf{a}_{i},\left\langle\mathbf{s}, \mathbf{a}_{i}\right\rangle+e_{i}\right\}_{i=1}^{m} \approx_{c}\left\{\mathbf{a}_{i}, r_{i}\right\}_{i=1}^{m}
$$

for random $\mathbf{a}_{i} \in \mathbb{Z}_{q}^{n}$, small $e_{i} \in \mathbb{Z}$, and random $r_{i} \in \mathbb{Z}_{q}$.

Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$
\left\{\mathbf{a}_{i},\left\langle\mathbf{s}, \mathbf{a}_{i}\right\rangle+\mathbf{e}_{i}\right\}_{i=1}^{m} \approx_{c}\left\{\mathbf{a}_{i}, r_{i}\right\}_{i=1}^{m}
$$

for random $\mathbf{a}_{i} \in \mathbb{Z}_{q}^{n}$, small $e_{i} \in \mathbb{Z}$, and random $r_{i} \in \mathbb{Z}_{q}$.

- [R05,P09]: Algorithms that break LWE assumption can be used to solve worst-case lattice problems.

Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$
\left\{\mathbf{a}_{i},\left\langle\mathbf{s}, \mathbf{a}_{i}\right\rangle+e_{i}\right\}_{i=1}^{m} \approx_{c}\left\{\mathbf{a}_{i}, r_{i}\right\}_{i=1}^{m}
$$

for random $\mathbf{a}_{i} \in \mathbb{Z}_{q}^{n}$, small $e_{i} \in \mathbb{Z}$, and random $r_{i} \in \mathbb{Z}_{q}$.

- [R05,P09]: Algorithms that break LWE assumption can be used to solve worst-case lattice problems.

Theorem

If the LWE assumption holds, then our inner product encryption scheme is weakly attribute hiding.

CT lattice: $\Lambda_{\vec{w}}=\Lambda_{q}\left(\mathbf{A}_{0}\left\|\mathbf{A}_{1}+w_{1} \mathbf{B}\right\| \cdots \| \mathbf{A}_{\ell}+w_{\ell} \mathbf{B}\right)$. sk lattice: $\Lambda_{\vec{v}}=\Lambda_{q}\left(\mathbf{A}_{0} \| \sum v_{i} \mathbf{A}_{i}\right)$.

$$
\begin{aligned}
& \text { CT lattice: } \Lambda_{\vec{w}}=\Lambda_{q}\left(\mathbf{A}_{0}\left\|\mathbf{A}_{1}+w_{1} \mathbf{B}\right\| \cdots \| \mathbf{A}_{\ell}+w_{\ell} \mathbf{B}\right) . \\
& \text { sk lattice: } \Lambda_{\vec{v}}=\Lambda_{q}\left(\mathbf{A}_{0} \| \sum v_{i} \mathbf{A}_{i}\right) .
\end{aligned}
$$

[ABB10a] technique: Trapdoor for B can be used to answer sk queries for \vec{v} with $\langle\vec{v}, \vec{w}\rangle \neq 0$.

CT lattice: $\Lambda_{\vec{w}}=\Lambda_{q}\left(\mathbf{A}_{0}\left\|\mathbf{A}_{1}+w_{1} \mathbf{B}\right\| \cdots \| \mathbf{A}_{\ell}+w_{\ell} \mathbf{B}\right)$. sk lattice: $\Lambda_{\vec{v}}=\Lambda_{q}\left(\mathbf{A}_{0} \| \sum v_{i} \mathbf{A}_{i}\right)$.
[ABB10a] technique: Trapdoor for B can be used to answer sk queries for \vec{v} with $\langle\vec{v}, \vec{w}\rangle \neq 0$.

Embed LWE challenge in the matrix \mathbf{A}_{0}.

- If LWE challenge is "noisy inner products" $\left\langle\mathbf{s}, \mathbf{a}_{i}\right\rangle+e_{i}$, obtain real CT.
- If LWE challenge is random r_{i}, obtain uniformly random CT (no info. about message or attribute).

CT lattice: $\Lambda_{\vec{w}}=\Lambda_{q}\left(\mathbf{A}_{0}\left\|\mathbf{A}_{1}+w_{1} \mathbf{B}\right\| \cdots \| \mathbf{A}_{\ell}+w_{\ell} \mathbf{B}\right)$. sk lattice: $\Lambda_{\vec{v}}=\Lambda_{q}\left(\mathbf{A}_{0} \| \sum v_{i} \mathbf{A}_{i}\right)$.
[ABB10a] technique: Trapdoor for B can be used to answer sk queries for \vec{v} with $\langle\vec{v}, \vec{w}\rangle \neq 0$.

Embed LWE challenge in the matrix \mathbf{A}_{0}.

- If LWE challenge is "noisy inner products" $\left\langle\mathbf{s}, \mathbf{a}_{i}\right\rangle+e_{i}$, obtain real CT.
- If LWE challenge is random r_{i}, obtain uniformly random CT (no info. about message or attribute).

Adversary that breaks system can break LWE assumption.

Open Questions

(1) Fully attribute-hiding system.

- Answer sk queries for \vec{v} when $\langle\vec{v}, \vec{w}\rangle=0$. [requires $m_{0}=m_{1}$]

Open Questions

(1) Fully attribute-hiding system.

- Answer sk queries for \vec{v} when $\langle\vec{v}, \vec{w}\rangle=0$. [requires $m_{0}=m_{1}$]
(2) Fully secure system.
- Allow adversary to make key queries before choosing attributes \vec{w}_{j}.

Open Questions

(1) Fully attribute-hiding system.

- Answer sk queries for \vec{v} when $\langle\vec{v}, \vec{w}\rangle=0$. [requires $m_{0}=m_{1}$]
(2) Fully secure system.
- Allow adversary to make key queries before choosing attributes \vec{w}_{j}.
(3) Improve efficiency.
- Current system is efficient for \vec{v}, \vec{w} over small fields.

Open Questions

(1) Fully attribute-hiding system.

- Answer sk queries for \vec{v} when $\langle\vec{v}, \vec{w}\rangle=0$. [requires $m_{0}=m_{1}$]
(2) Fully secure system.
- Allow adversary to make key queries before choosing attributes \vec{w}_{j}.
(3) Improve efficiency.
- Current system is efficient for \vec{v}, \vec{w} over small fields.
(4) Functional encryption for larger class of predicates.
- Leverage techniques from fully homomorphic encryption?

Open Questions

(1) Fully attribute-hiding system.

- Answer sk queries for \vec{v} when $\langle\vec{v}, \vec{w}\rangle=0$. [requires $m_{0}=m_{1}$]
(2) Fully secure system.
- Allow adversary to make key queries before choosing attributes \vec{w}_{j}.
(3) Improve efficiency.
- Current system is efficient for \vec{v}, \vec{w} over small fields.
(4) Functional encryption for larger class of predicates.
- Leverage techniques from fully homomorphic encryption?

Thank you!

