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Traditional Public-Key Encryption [DH76,RSA78,...]

m

skB skC

m must be
encrypted
separately to each
user.

Recipient set must
be decided in
advance.
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Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

Enc(m,a)

skf skg

Ciphertext equipped
with attribute a.

sk equipped with
predicate f .

User with skf can
decrypt iff f (a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

predicates f = (conf="Asiacrypt" AND year≥2000),
g = (conf="Eurocrypt" OR year=2011)

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 2/13



Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

Enc(m,a)

skf skg

Ciphertext equipped
with attribute a.

sk equipped with
predicate f .

User with skf can
decrypt iff f (a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

predicates f = (conf="Asiacrypt" AND year≥2000),
g = (conf="Eurocrypt" OR year=2011)

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 2/13



Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

Enc(m,a)

skf skg

Ciphertext equipped
with attribute a.

sk equipped with
predicate f .

User with skf can
decrypt iff f (a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

predicates f = (conf="Asiacrypt" AND year≥2000),

g = (conf="Eurocrypt" OR year=2011)

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 2/13



Functional Encryption [SW05,GPSW05,BW07,KSW08,...]

Enc(m,a)

skf skg

Ciphertext equipped
with attribute a.

sk equipped with
predicate f .

User with skf can
decrypt iff f (a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

predicates f = (conf="Asiacrypt" AND year≥2000),
g = (conf="Eurocrypt" OR year=2011)

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE 2/13



Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality
predicates.

Ciphertexts & keys equipped with identity id .
Decrypt succeeds iff (key id) = (CT id).
Achieved using pairings, QR, and lattices.
[BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:
CT↔ vector ~w ; key↔ vector ~v
Key for ~v can decrypt CT for ~w iff 〈~v , ~w〉 = 0.
Achieved using pairings.

[KSW08]: Inner product predicates allow us to instantiate range,
conjunction, disjunction, and polynomial evaluation predicates.
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Our Contribution

Functional encryption for inner product predicates based on the
learning with errors (LWE) assumption.

Achieves functionality of [KSW08].
Worst-case reduction, (conjectured) quantum security.
Allows inner products over small fields.

Privacy property: CT attribute is hidden from users who cannot
decrypt (“weakly attribute hiding”).

[KSW08] construction hides attribute from all users.
Open problem: achieve same privacy property from LWE.
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Building Blocks

Lattice-based PKE [GPV08 “dual Regev”]:

pk: lattice Λ ⊂ Zm

, vector u.

sk: short vector s in coset Λ⊥ + u
of dual lattice.

Enc: vector c close to Λ,
scalar c′ encoding m ∈ {0,1}.

Dec: use 〈s,c〉 to decode c′.

O

Two ways to generate keys for Λ:

Choose short sk s, compute pk vector u.
Given u, use short basis of Λ⊥ to find s.

[A99,AP09]: Can generate a random lattice Λ along with
short basis of Λ⊥ = trapdoor for Λ.
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Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity id defines a lattice Λid .
CT is GPV encryption relative to Λid .
Trapdoor for Λid used to derive sk for id .
Can decrypt iff sk lattice matches CT lattice.

IBE schemes don’t seem to generalize to functional encryption:
In functional encryption, many sk can decrypt each CT.

CT for ~w decryptable by sk for any ~v with 〈~v , ~w〉 = 0.

Conclude: can’t require CT lattice to match sk lattice.
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Building Functional Encryption

Encrypt relative to
attribute lattice Λ~w ⊂ Zr

O
c

“short”
linear map

T~v : Zr→ Zs

sk corresponds to
predicate lattice Λ~v ⊂ Zs

O

T~v (Λ~w ) = Λ~v iff 〈~v , ~w〉 = 0

If 〈~v , ~w〉 = 0, T~v (c) is a CT relative to Λ~v
⇒ key for Λ~v can decrypt T~v (c).
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What Lattices are Used?

Regev/GPV lattice Λ defined by matrix A0 ∈ Zn×m
q , n < m:

Λ = Λq(A0) =
{

v ∈ Zm : v mod q = rt · A0 for some r ∈ Zn
q
}

i.e., vectors in Zm that (mod q) are linear combinations of
rows of A0.

[ABB10a] IBE: to encrypt to identity id , use lattice

Λid = Λq(A0 ‖ A1 + H(id)B) ⊂ Z2m.

public A0,A1,B ∈ Zn×m
q .

H : {0,1}∗ → Zn×n
q is a hash function.

Secret key for Λid can be computed using trapdoor for A0.
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A Functional Encryption Scheme

To compute CT for vector ~w = (w1, . . . ,w`), use lattice

Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B) ⊂ Z(1+`)m.

public Ai ,B ∈ Zn×m
q .

To generate sk for vector ~v = (v1, . . . , v`), use lattice

Λ~v = Λq(A0 ‖
∑

viAi) ⊂ Z2m.

Use trapdoor for A0 + [CHKP10] “delegation” technique.

To decrypt, apply transformation T~v : Z(1+`)m → Z2m given by

T~v (c0, . . . ,c`) = (c0,
∑

vici).

Then
T~v (Λ~w ) = Λq(A0 ‖

∑
viAi + 〈~v , ~w〉B)

So sk for Λ~v can decrypt T~v (CT ) iff 〈~v , ~w〉 = 0 (and ~v is short).
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(Selective) Security Model

Challenger

b R←{0,1}
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pk
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←−−−−−−−−−−−−−−−−−−−
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Adversary

b′ ∈ {0,1}

Definition
Scheme is weakly attribute hiding if

∣∣Pr[b′ = b]− 1
2

∣∣
is negligible for all efficient A.
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Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed s ∈ Zn
q, “noisy inner products” with s are

indistinguishable from random:{
ai , 〈s,ai〉+ ei

}m
i=1 ≈c

{
ai , ri

}m
i=1

for random ai ∈ Zn
q, small ei ∈ Z, and random ri ∈ Zq.

[R05,P09]: Algorithms that break LWE assumption can be
used to solve worst-case lattice problems.

Theorem
If the LWE assumption holds, then our inner product encryption
scheme is weakly attribute hiding.
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Proof Idea

CT lattice: Λ~w = Λq(A0 ‖ A1 + w1B ‖ · · · ‖ A` + w`B).
sk lattice: Λ~v = Λq(A0 ‖

∑
viAi).

[ABB10a] technique: Trapdoor for B can be used to answer sk
queries for ~v with 〈~v , ~w〉 6= 0.

Embed LWE challenge in the matrix A0.
If LWE challenge is “noisy inner products” 〈s,ai〉+ ei ,
obtain real CT.
If LWE challenge is random ri , obtain uniformly random CT
(no info. about message or attribute).

Adversary that breaks system can break LWE assumption.
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Open Questions

1 Fully attribute-hiding system.
Answer sk queries for ~v when 〈~v , ~w〉 = 0. [requires m0 = m1]

2 Fully secure system.
Allow adversary to make key queries before choosing
attributes ~wj .

3 Improve efficiency.
Current system is efficient for ~v , ~w over small fields.

4 Functional encryption for larger class of predicates.
Leverage techniques from fully homomorphic encryption?

Thank you!
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