Functional Encryption for Inner Product Predicates from Learning with Errors

Shweta Agrawal¹, **David Mandell Freeman**², and Vinod Vaikuntanathan³

¹UCLA, USA; ²Stanford University, USA; ³University of Toronto, Canada

> Asiacrypt 2011 Seoul, Korea 5 December 2011

- *m* must be encrypted separately to each user.
- Recipient set must be decided in advance.

- Ciphertext equipped with attribute *a*.
- sk equipped with predicate f.
- User with sk_f can decrypt iff f(a) = 1.

- Ciphertext equipped with attribute *a*.
- sk equipped with predicate f.
- User with sk_f can decrypt iff f(a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

- Ciphertext equipped with attribute *a*.
- sk equipped with predicate f.
- User with sk_f can decrypt iff f(a) = 1.

E.g.: attribute *a* = (conf="Asiacrypt", year=2011),

predicates $f = (conf="Asiacrypt" AND year \ge 2000)$,

- Ciphertext equipped with attribute *a*.
- sk equipped with predicate f.
- User with sk_f can decrypt iff f(a) = 1.

E.g.: attribute *a* = (conf="Asiacrypt", year=2011),

predicates $f = (conf="Asiacrypt" AND year \ge 2000),$ g = (conf="Eurocrypt" OR year=2011)

Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts & keys equipped with identity id.
- Decrypt succeeds iff (key *id*) = (CT *id*).
- Achieved using pairings, QR, and lattices. [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts & keys equipped with identity *id*.
- Decrypt succeeds iff (key *id*) = (CT *id*).
- Achieved using pairings, QR, and lattices. [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:

- CT \leftrightarrow vector \vec{w} ; key \leftrightarrow vector \vec{v}
- Key for \vec{v} can decrypt CT for \vec{w} iff $\langle \vec{v}, \vec{w} \rangle = 0$.
- Achieved using pairings.

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts & keys equipped with identity id.
- Decrypt succeeds iff (key *id*) = (CT *id*).
- Achieved using pairings, QR, and lattices. [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:

- CT \leftrightarrow vector \vec{w} ; key \leftrightarrow vector \vec{v}
- Key for \vec{v} can decrypt CT for \vec{w} iff $\langle \vec{v}, \vec{w} \rangle = 0$.
- Achieved using pairings.

[KSW08]: Inner product predicates allow us to instantiate range, conjunction, disjunction, and polynomial evaluation predicates.

Functional encryption for inner product predicates based on the *learning with errors* (LWE) assumption.

- Achieves functionality of [KSW08].
- Worst-case reduction, (conjectured) quantum security.
- Allows inner products over small fields.

Functional encryption for inner product predicates based on the *learning with errors* (LWE) assumption.

- Achieves functionality of [KSW08].
- Worst-case reduction, (conjectured) quantum security.
- Allows inner products over small fields.

Privacy property: CT attribute is hidden from users who cannot decrypt ("*weakly attribute hiding*").

- [KSW08] construction hides attribute from all users.
- Open problem: achieve same privacy property from LWE.

Lattice-based PKE [GPV08 "dual Regev"]:

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

Lattice-based PKE [GPV08 "dual Regev"]:

- pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.
- sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Lattice-based PKE [GPV08 "dual Regev"]:

- pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.
- sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.
- Enc: vector **c** close to Λ , scalar *c*' encoding $m \in \{0, 1\}$.

Lattice-based PKE [GPV08 "dual Regev"]:

- pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.
- sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.
- Enc: vector **c** close to Λ , scalar *c*' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Lattice-based PKE [GPV08 "dual Regev"]:

- pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.
- sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector **c** close to Λ , scalar *c'* encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Two ways to generate keys for Λ :

• Choose short sk s, compute pk vector u.

Lattice-based PKE [GPV08 "dual Regev"]:

- pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.
- sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector **c** close to Λ , scalar c' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Two ways to generate keys for Λ :

- Choose short sk s, compute pk vector u.
- Given **u**, use short basis of Λ^{\perp} to find **s**.

Lattice-based PKE [GPV08 "dual Regev"]:

- pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.
- sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector **c** close to Λ , scalar c' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Two ways to generate keys for Λ :

- Choose short sk s, compute pk vector u.
- Given **u**, use short basis of Λ^{\perp} to find **s**.

Lattice-based PKE [GPV08 "dual Regev"]:

- pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.
- sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector **c** close to Λ , scalar c' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Two ways to generate keys for Λ :

- Choose short sk s, compute pk vector u.
- Given **u**, use short basis of Λ^{\perp} to find **s**.

[A99,AP09]: Can generate a random lattice Λ along with short basis of $\Lambda^{\perp}= trapdoor$ for $\Lambda.$

Building Block: Lattice-Based IBE [CHKP10, ABB10ab]

Each identity *id* defines a lattice Λ_{id} .

- CT is GPV encryption relative to Λ_{id} .
- Trapdoor for Λ_{id} used to derive sk for *id*.
- Can decrypt iff sk lattice matches CT lattice.

Each identity *id* defines a lattice Λ_{id} .

- CT is GPV encryption relative to Λ_{id} .
- Trapdoor for Λ_{id} used to derive sk for *id*.
- Can decrypt iff sk lattice matches CT lattice.

IBE schemes don't seem to generalize to functional encryption:

• In functional encryption, many sk can decrypt each CT. CT for \vec{w} decryptable by sk for any \vec{v} with $\langle \vec{v}, \vec{w} \rangle = 0$. Each identity *id* defines a lattice Λ_{id} .

- CT is GPV encryption relative to Λ_{id} .
- Trapdoor for Λ_{id} used to derive sk for *id*.
- Can decrypt iff sk lattice matches CT lattice.

IBE schemes don't seem to generalize to functional encryption:

• In functional encryption, many sk can decrypt each CT. CT for \vec{w} decryptable by sk for any \vec{v} with $\langle \vec{v}, \vec{w} \rangle = 0$.

Conclude: can't require CT lattice to match sk lattice.

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$

sk corresponds to predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^s$

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$ sk corresponds to predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^s$

 $T_{\vec{v}}(\Lambda_{\vec{w}}) = \Lambda_{\vec{v}} \quad \text{iff} \quad \langle \vec{v}, \vec{w} \rangle = 0$

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$ sk corresponds to predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^s$ "short" linear map $\overline{T_{\vec{v}} : \mathbb{Z}^r \to \mathbb{Z}^s}$

$$T_{\vec{v}}(\Lambda_{\vec{w}}) = \Lambda_{\vec{v}} \quad \text{iff} \quad \langle \vec{v}, \vec{w} \rangle = 0$$

If $\langle \vec{v}, \vec{w} \rangle = 0$, $T_{\vec{v}}(\mathbf{c})$ is a CT relative to $\Lambda_{\vec{v}}$

O C

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$ sk corresponds to predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^s$ "short" linear map $T_{\vec{v}} : \mathbb{Z}^r \to \mathbb{Z}^s$

If $\langle \vec{v}, \vec{w} \rangle = 0$, $T_{\vec{v}}(\mathbf{c})$ is a CT relative to $\Lambda_{\vec{v}}$ \Rightarrow key for $\Lambda_{\vec{v}}$ can decrypt $T_{\vec{v}}(\mathbf{c})$. Regev/GPV lattice Λ defined by matrix $\mathbf{A}_0 \in \mathbb{Z}_q^{n \times m}$, n < m:

 $\Lambda = \Lambda_q(\mathbf{A}_0) = \left\{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{v} \bmod q = \mathbf{r}^t \cdot \mathbf{A}_0 \text{ for some } \mathbf{r} \in \mathbb{Z}_q^n
ight\}$

 i.e., vectors in Z^m that (mod q) are linear combinations of rows of A₀. Regev/GPV lattice Λ defined by matrix $\mathbf{A}_0 \in \mathbb{Z}_q^{n \times m}$, n < m:

 $\Lambda = \Lambda_q(\mathbf{A}_0) = \left\{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{v} \bmod q = \mathbf{r}^t \cdot \mathbf{A}_0 \text{ for some } \mathbf{r} \in \mathbb{Z}_q^n
ight\}$

 i.e., vectors in Z^m that (mod q) are linear combinations of rows of A₀.

[ABB10a] IBE: to encrypt to identity id, use lattice

$$\Lambda_{id} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + H(id)\mathbf{B}) \subset \mathbb{Z}^{2m}.$$

• public $\mathbf{A}_0, \mathbf{A}_1, \mathbf{B} \in \mathbb{Z}_q^{n \times m}$.

• $H: \{0,1\}^* \to \mathbb{Z}_q^{n \times n}$ is a hash function.

Secret key for Λ_{id} can be computed using trapdoor for \mathbf{A}_0 .

A Functional Encryption Scheme

To compute CT for vector $\vec{w} = (w_1, \ldots, w_\ell)$, use lattice

 $\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_{\ell} + w_{\ell} \mathbf{B}) \subset \mathbb{Z}^{(1+\ell)m}.$

• public $\mathbf{A}_i, \mathbf{B} \in \mathbb{Z}_q^{n \times m}$.

To compute CT for vector $\vec{w} = (w_1, \ldots, w_\ell)$, use lattice

$$\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}) \subset \mathbb{Z}^{(1+\ell)m}$$

• public
$$\mathbf{A}_i, \mathbf{B} \in \mathbb{Z}_q^{n imes m}$$
.

To generate sk for vector $\vec{v} = (v_1, \ldots, v_\ell)$, use lattice

$$\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i) \subset \mathbb{Z}^{2m}.$$

• Use trapdoor for **A**₀ + [CHKP10] "delegation" technique.

To compute CT for vector $\vec{w} = (w_1, \ldots, w_\ell)$, use lattice

$$\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}) \subset \mathbb{Z}^{(1+\ell)m}$$

• public
$$\mathbf{A}_i, \mathbf{B} \in \mathbb{Z}_q^{n imes m}$$
.

To generate sk for vector $\vec{v} = (v_1, \ldots, v_\ell)$, use lattice

$$\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i) \subset \mathbb{Z}^{2m}.$$

• Use trapdoor for **A**₀ + [CHKP10] "delegation" technique.

To decrypt, apply transformation $T_{\vec{v}} : \mathbb{Z}^{(1+\ell)m} \to \mathbb{Z}^{2m}$ given by

$$T_{\vec{v}}(\mathbf{c}_0,\ldots,\mathbf{c}_\ell)=(\mathbf{c}_0,\sum v_i\mathbf{c}_i).$$

To compute CT for vector $\vec{w} = (w_1, \ldots, w_\ell)$, use lattice

$$\Lambda_{\vec{w}} = \Lambda_q(\mathsf{A}_0 \parallel \mathsf{A}_1 + w_1\mathsf{B} \parallel \cdots \parallel \mathsf{A}_\ell + w_\ell\mathsf{B}) \subset \mathbb{Z}^{(1+\ell)m}$$

• public
$$\mathbf{A}_i, \mathbf{B} \in \mathbb{Z}_q^{n imes m}$$
.

To generate sk for vector $\vec{v} = (v_1, \ldots, v_\ell)$, use lattice

$$\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i) \subset \mathbb{Z}^{2m}.$$

• Use trapdoor for **A**₀ + [CHKP10] "delegation" technique.

To decrypt, apply transformation $T_{\vec{v}} : \mathbb{Z}^{(1+\ell)m} \to \mathbb{Z}^{2m}$ given by

$$T_{\vec{v}}(\mathbf{c}_0,\ldots,\mathbf{c}_\ell)=(\mathbf{c}_0,\sum v_i\mathbf{c}_i).$$

Then

$$\mathcal{T}_{ec{v}}(\Lambda_{ec{w}}) = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i + \langle ec{v}, ec{w} \rangle \mathbf{B})$$

So sk for $\Lambda_{\vec{v}}$ can decrypt $T_{\vec{v}}(CT)$ iff $\langle \vec{v}, \vec{w} \rangle = 0$ (and \vec{v} is short).

Challenger

Definition

Scheme is *weakly attribute hiding* if $|\Pr[b' = b] - \frac{1}{2}|$ is negligible for all efficient A.

S. Agrawal, D.M. Freeman, and V. Vaikuntanathan Functional Encryption from LWE

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_q^n$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$\left\{\mathbf{a}_{i}, \langle \mathbf{s}, \mathbf{a}_{i} \rangle + e_{i} \right\}_{i=1}^{m} \approx_{c} \left\{\mathbf{a}_{i}, r_{i} \right\}_{i=1}^{m}$$

for random $\mathbf{a}_i \in \mathbb{Z}_q^n$, small $e_i \in \mathbb{Z}$, and random $r_i \in \mathbb{Z}_q$.

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_q^n$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$\left\{\mathbf{a}_{i}, \langle \mathbf{s}, \mathbf{a}_{i} \rangle + e_{i} \right\}_{i=1}^{m} \approx_{c} \left\{\mathbf{a}_{i}, r_{i} \right\}_{i=1}^{m}$$

for random $\mathbf{a}_i \in \mathbb{Z}_q^n$, small $e_i \in \mathbb{Z}$, and random $r_i \in \mathbb{Z}_q$.

• [R05,P09]: Algorithms that break LWE assumption can be used to solve worst-case lattice problems.

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_q^n$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$\left\{\mathbf{a}_{i}, \langle \mathbf{s}, \mathbf{a}_{i} \rangle + e_{i} \right\}_{i=1}^{m} \approx_{c} \left\{\mathbf{a}_{i}, r_{i} \right\}_{i=1}^{m}$$

for random $\mathbf{a}_i \in \mathbb{Z}_q^n$, small $e_i \in \mathbb{Z}$, and random $r_i \in \mathbb{Z}_q$.

 [R05,P09]: Algorithms that break LWE assumption can be used to solve worst-case lattice problems.

Theorem

If the LWE assumption holds, then our inner product encryption scheme is weakly attribute hiding.

Proof Idea

CT lattice: $\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}).$ sk lattice: $\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i).$

Proof Idea

CT lattice: $\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}).$ sk lattice: $\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i).$

[ABB10a] technique: Trapdoor for **B** can be used to answer sk queries for \vec{v} with $\langle \vec{v}, \vec{w} \rangle \neq 0$.

CT lattice: $\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}).$ sk lattice: $\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i).$

[ABB10a] technique: Trapdoor for **B** can be used to answer sk queries for \vec{v} with $\langle \vec{v}, \vec{w} \rangle \neq 0$.

Embed LWE challenge in the matrix A_0 .

- If LWE challenge is "noisy inner products" (s, a_i) + e_i, obtain real CT.
- If LWE challenge is random r_i, obtain uniformly random CT (no info. about message or attribute).

CT lattice: $\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}).$ sk lattice: $\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i).$

[ABB10a] technique: Trapdoor for **B** can be used to answer sk queries for \vec{v} with $\langle \vec{v}, \vec{w} \rangle \neq 0$.

Embed LWE challenge in the matrix A_0 .

- If LWE challenge is "noisy inner products" (s, a_i) + e_i, obtain real CT.
- If LWE challenge is random r_i, obtain uniformly random CT (no info. about message or attribute).

Adversary that breaks system can break LWE assumption.

Fully attribute-hiding system.

• Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]
- Pully secure system.
 - Allow adversary to make key queries before choosing attributes w_j.

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]
- Pully secure system.
 - Allow adversary to make key queries before choosing attributes w_j.
- Improve efficiency.
 - Current system is efficient for \vec{v} , \vec{w} over small fields.

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]
- Pully secure system.
 - Allow adversary to make key queries before choosing attributes w_j.
- Improve efficiency.
 - Current system is efficient for \vec{v} , \vec{w} over small fields.
- Functional encryption for larger class of predicates.
 - Leverage techniques from fully homomorphic encryption?

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]
- Pully secure system.
 - Allow adversary to make key queries before choosing attributes w_j.
- Improve efficiency.
 - Current system is efficient for \vec{v}, \vec{w} over small fields.
- Functional encryption for larger class of predicates.
 - Leverage techniques from fully homomorphic encryption?

Thank you!