Can You Spot the Fakes? On the Limitations of User Feedback in Online Social Networks

Head of Anti-Abuse and Anomaly Detection Relevance

David Mandell Freeman

Fake accounts in social networks

Popular social networks attract bad actors

- · scams
- malware
- phishing
- \cdot etc.

To carry out abuse, bad guys need fake (or compromised) accounts.

How do we find them?

DO YOU KNOW DAVE?

Reporting fake accounts

Acting on flagging signals

Flagging is a low-precision signal.

· 35% precision in our LinkedIn data set.

Need to accrue multiple flags before taking action.

• This takes time.

We could act faster & more accurately if we knew that some flags were more precise than others.

Research question: is there such a thing a "super-flagger"?

How do we test whether "super-flaggers" exist?

If flagging is a real skill, it must be:

measurable — possible to distinguish from random guessing

repeatable — persistent over repeated sampling

Our contribution

Framework for assessing flagging skill.

Apply framework to LinkedIn data:

- · profile report spam
- invitation reject
- invitation accept (signal for real accounts)

Conclusion: skilled flaggers exist but are very rare.

no noticeable impact on metrics

Prior work

[Zheleva et al. '08], [Chen et al. '15]: Framework to upweight high-precision

- Assumes an initial set of high-precision reporters can be identified.
- · Assumes identified reporters will continue to be high-precision.

[Wang et al. '13], [Cresci et al. '17]: Crowdsourcing studies.

- \cdot "People can identify differences between [fake] and legitimate profiles, but most individual testers are not accurate enough to be reliable."
- · Low accuracy on "social spambots"

[Moore-Clayton '08] [Chia-Knapskog '11]: "wisdom of crowds"

• Frequent reporters have higher accuracy (counter to our findings)

reporters in spam classification algorithms, mechanism for reputation to evolve.

Profile flagging data set

Data: all LinkedIn "fake profile" flags over 6-month period

- · 293K flags, 227K reporters, 238K reports
- · Anti-Abuse team labeled flagged accounts as real or fake
- · 35% overall precision

Precision does not improve with number of flags:

Number of flags per member

(last bucket is all members with ≥18 flags)

Number of flags per member

Measurability: Precision

How many flags did the user get right?

$$P(u) = \frac{\# \text{ correct flags}}{\# \text{ flags}}$$

Problem: insensitive to number of flags

 \cdot 1 out of 1 is as good as 50 out of 50

Solution: smoothing

$$P_s(u) = \frac{\# \text{ correct flags} + \pi}{\# \text{ flags} + 2\alpha}$$

 \cdot find α by optimizing on a test set

lpha

Measurability: Precision

How many flags did the user get right?

$$P(u) = \frac{\# \text{ correct flags}}{\# \text{ flags}}$$

Problem: insensitive to number of flags

 \cdot 1 out of 1 is as good as 50 out of 50

Solution: smoothing

$$P_s(u) = \frac{\# \text{ correct flags} + \pi}{\# \text{ flags} + 2\alpha}$$

 \cdot find α by optimizing on a test set

eport	Ignore
5	95
5	5
$=\frac{5}{10}=$	= 0.5

Precision is insensitive to level of fake account exposure:

u	Report	Ignore	u'	Report	Ignore
Real	5	5	Real	5	95
Fake	5	5	Fake	5	5
prec	$vision = \frac{5}{10}$	$\frac{1}{5} = 0.5$	precisi	on $= \frac{5}{10} =$	= 0.5

Precision is insensitive to level of fake account exposure:

u	Report	Ignore	$u' \mid$	Report	Ignore
Real	5	5	Real	5	95
Fake	5	5	Fake	5	5
precision $=\frac{5}{10}=0.5$			precisi	on $=\frac{5}{10}=$	= 0.5

Informedness: How much better is the user at flagging fake accounts than real ones? $I(u) = \text{TPR} - \text{FPR} = \frac{\# \text{ flags of fakes}}{\# \text{ fakes seen}} - \frac{\# \text{ flags of reals}}{\# \text{ reals seen}}$

Precision is insensitive to level of fake account exposure:

u	Report	Ignore	u'	Report	Ignore	
Real	5	5	Real	5	95	
Fake	5	5	Fake	5	5	
prec	$vision = \frac{5}{10}$	= 0.5	precisi	on $=\frac{5}{10}=$	= 0.5	
informed	$lness = \frac{5}{10}$	$-\frac{5}{10}=0$	informed	dness = $\frac{5}{10}$	$-\frac{5}{100} =$: 0.45

Informedness: How much better is the user at flagging fake accounts than real ones? $I(u) = \text{TPR} - \text{FPR} = \frac{\# \text{ flags of fakes}}{\# \text{ fakes seen}} - \frac{\# \text{ flags of reals}}{\# \text{ reals seen}}$

Precision is insensitive to level of fake account exposure:

u	Report	Ignore	u'	Re
Real	5	5	Real	
Fake	5	5	Fake	
prec	$vision = \frac{5}{10}$	= 0.5	precisi	on =
	$lness = \frac{5}{10}$	5	informed	dnes

Informedness: How much better is the user at flagging fake accounts than real ones? $I(u) = \text{TPR} - \text{FPR} = \frac{\# \text{ flags of fakes}}{\# \text{ fakes seen}} - \frac{\# \text{ flags of reals}}{\# \text{ reals seen}}$

eport Ignore 5 955 5 $1 = \frac{5}{10} = 0.5$ percentile $ess = \frac{5}{10} - \frac{5}{100} = 0.45$

Informedness of Profile Flaggers

Is it skill or luck?

Use a statistical hypothesis test to distinguish the two! *Fisher's exact test* on the 2 x 2 contingency table. Null hypothesis: user is equally likely to flag real and fake accounts. *p*-value: probability of finding a matrix "at least as extreme" as *M*.

re	v'	Report	Ignore	
	Real	20	20	_
	Fake	10	0	_
0.5	inform	dness =		$\frac{20}{40} = 0.5$

Is it skill or luck?

Use a statistical hypothesis test to distinguish the two!

Fisher's exact test on the 2 x 2 contingency table.

Null hypothesis: user is equally likely to flag real and fake accounts.

p-value: probability of finding a matrix "at least as extreme" as M.

Measurability: Hypothesis Testing

Fisher's test produces a *p*-value: probability of finding a matrix "at least as extreme" as M. — define "Fisher Score" = 1 – p-value

Problem: statistically significant flaggers may not be good flaggers

w	Report	Ignore
Real	20	80
Fake	5	5
preci	25 5	= 0.2 $\frac{20}{100} = 0.3$
Fisher s	core = 1 - 0	0.05 = 0.95

95

Repeatability — Correlation

Pearson correlation coefficient: linear correlation of scores.

Flagging Score Smoothed Precisic Informedness Fisher Score

Problem: independent of score magnitude

user	A score	B score	
a	0.94	0.1	
b	0.95	0.2	Perfect
\mathcal{C}	0.96	0.3	correlation!
d	0.97	0.4	
e	0.98	0.5	

- Are skilled flaggers in data set A the same as skilled flaggers in data set B?

 - Spearman correlation coefficient: Pearson correlation of rank vectors.

	Pearson	Spearman
on	0.69	0.66
	0.52	0.49
	0.62	0.63

Repeatability — Persistence

in data set *B*?

Define *persistence* at score β to be

Persistence on flagging data:

Probability that user with a good score in data set A also has a good score

 $\pi(\beta) = \frac{\# \text{ users with score} > \beta \text{ in } A \text{ and } B}{\# \text{ users with score} > \beta \text{ in } A \text{ or } B}$

Putting it all together

Compute skill threshold for each m out test set.

 \cdot Threshold is such that error rate is less than half the average.

Define "skilled flagger" to be one will on **2 different data sets**

- high smoothed flagging precision
- · flags real and fake accounts in different proportion
- · difference in behavior in flagging real and fake accounts is statistically significant

Compute skill threshold for each measurement based on precision on a held-

Define "skilled flagger" to be one who is above the threshold on 2 of 3 metrics,

5600 skilled flaggers

- \cdot 31% of those who flagged \geq 2 times
- · 2.4% of all flaggers
- · 82% cumulative precision

4300 high-precision skilled flaggers

- · 13940 accounts flagged (77/day)
- 97% cumulative precision

Profile flagging — skilled flaggers

Data set 2: Invitation response

Invitation *reject*: reporting signal on *fake* accounts Invitation accept: reporting signal on real accounts **Evaluation**:

- 500,000 members from June 2016 receiving \geq 2 spam and \geq 3 non-spam invitations
- look at responses within the first 24 hours
- 1.3% were skilled at *rejecting fakes*
- · 3.8% were skilled at accepting reals

An experiment

Simulation: replace member's responses to *fake* accounts with binomial samples distributed like responses to *real* accounts.

	Report	
Real	5	
Fake	8	
Simulated Fake		
$\sim B(0.25)$	2	

- Fisher scores are lower for simulated data
- · persistence drops to zero much more quickly for simulated data

Conclusions

Motivating question: Are there some social network users who are good at identifying fake accounts?

Answer: yes, but not enough to make acting on the signal worthwhile:

- \cdot < 2.4% of profile flaggers
- \cdot < 1.3% of members rejecting invitations
- \cdot < 3.8% of members accepting invitations (i.e. identifying real accounts) Further work:
 - investigate UI changes to improve flagging ability
 - find other features correlated with skill (e.g. geo)

dfreeman@linkedin.com

Questions?

©2014 LinkedIn Corporation. All Rights Reserved.