Pairing-friendly Hyperelliptic Curves and Weil Restriction

David Mandell Freeman¹ (joint work with Takakazu Satoh²)

¹CWI and Universiteit Leiden, Netherlands ²Tokyo Institute of Technology, Japan

Fields/IRMACS Workshop on Discovery and Experimentation in Number Theory Toronto, Canada 23 September 2009

What is pairing-based cryptography?

 "Pairing-based cryptography" refers to protocols that use a nondegenerate, bilinear map

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_7$$

between finite, cyclic groups.

- Need discrete logarithm problem (DLP) in G₁, G₂, G₇ to be infeasible.
- DLP: Given x, x^a, compute a.

Useful pairings: Abelian varieties over finite fields

- For certain abelian varieties A/\mathbb{F}_q , subgroups of $A(\mathbb{F}_q)$ of prime order r have the necessary properties.
- Pairings are Weil pairing

$$e_{\textit{weil},r}: \textit{A}[r] \times \textit{A}[r]
ightarrow \mu_r \subset \mathbb{F}_{q^k}^{\times}$$

or Tate pairing (similar).

- *k* is the *embedding degree* of *A* with respect to *r*.
 - Smallest integer such that $\mu_r \subset \mathbb{F}_{q^k}^{\times} \ (\Leftrightarrow q^k \equiv 1 \mod r)$.
- If q^k , r are large, DLP is infeasible in A[r] and $\mathbb{F}_{q^k}^{\times}$.
- If k is small, pairings can be computed efficiently (via Miller's algorithm).

The Problem

- Find prime (powers) q and abelian varieties A/\mathbb{F}_q having
 - a subgroup of large prime order r, and
 - 2 prescribed (small) embedding degree k with respect to r.
 - In practice, want $r > 2^{160}$ and $k \le 50$.
- We call such varieties "pairing-friendly."
 - Random varieties very unlikely to be pairing-friendly.
- We consider the problem for abelian surfaces:
 - Find genus 2 curves whose Jacobians are pairing-friendly.

Why genus 2?

- Want to make q as small as possible for fixed r.
- For a g-dimensional Abelian variety A/\mathbb{F}_q , the ratio of full group order (in bits) to subgroup order r (in bits) is measured by

$$\rho(A) = \frac{\log_2 q^g}{\log_2 r}, \quad \text{i.e., } q = r^{\rho/g}.$$

• If ρ is small, crypto computations on abelian surfaces could be more efficient than on elliptic curves.

An alternative answer...

Genus 1 is solved*; genus 3 is too hard[†]!

^{*}pretty much †usually

Some genus 2 constructions

- Product of a pairing-friendly elliptic curve E/\mathbb{F}_q with any E'/\mathbb{F}_q .
 - Minimum possible ρ -value is \approx 2.
- Genus 2 curves with supersingular Jacobian [G'01,RS'02]:
 - Can get $\rho \approx 1$, but embedding degree $k \le 12$.

Best previous non-supersingular genus 2 result

• [KT'08]: Jacobian of

$$y^2 = x^5 + ax$$

over \mathbb{F}_p , $p \equiv 1$ or 3 (mod 8).

- Best $\rho \approx 3$; in general $\rho \approx 4$.
- Construction works for a single $\overline{\mathbb{F}}_{\rho}$ -isomorphism class of curves.
- Construction is mysterious.

Our results

- Explain why the [KT'08] construction works.
- Generalize [KT'08] construction to other genus 2 curves.
- **3** Produce abelian surfaces with ρ < 3.
 - New record: $\rho \approx$ 2.2.

Key property of KT curves

If Jacobian of $y^2 = x^5 + ax$ over \mathbb{F}_p is ordinary, then it is

- **1** Simple over \mathbb{F}_p ,
- ② Isogenous over some extension \mathbb{F}_{p^d} to a product of isomorphic elliptic curves $E \times E$ defined over \mathbb{F}_p .

Theorem: Any abelian variety over \mathbb{F}_p with these properties is isogenous to a subvariety of the *Weil restriction* of *E* from \mathbb{F}_{p^d} to \mathbb{F}_p .

Key property of KT curves

If Jacobian of $y^2 = x^5 + ax$ over \mathbb{F}_p is ordinary, then it is

- **1** Simple over \mathbb{F}_p ,
- ② Isogenous over some extension \mathbb{F}_{p^d} to a product of isomorphic elliptic curves $E \times E$ defined over \mathbb{F}_p .

Theorem: Any abelian variety over \mathbb{F}_p with these properties is isogenous to a subvariety of the *Weil restriction* of *E* from \mathbb{F}_{p^d} to \mathbb{F}_p .

What is Weil Restriction?

For L/K finite field ext., Weil restriction is a functor

$$Res_{L/K}$$
: {varieties over L } \rightarrow {varieties over K }

with K-points of $Res_{L/K}(X)$ corresponding to L-points of X.

For an affine variety *X*:

- **①** Choose a K-basis $\{\alpha_i\}$ of L;
- ② Write each variable x_i over L as variables over K;
- Separate each equation defining X into [L:K] equations defining $Res_{L/K}(X)$.
 - dim $Res_{L/K}(X) = [L : K] \dim X$

Extend to projective and/or group varieties by gluing.

Decomposing the Weil restriction

- Let *E* be an elliptic curve over \mathbb{F}_p , $\pi = Frob_p \in End(E)$.
- $E(\mathbb{F}_{p^d}) = \ker(\pi^d 1)$.
- Since $x^d 1 = \prod_{e|d} \Phi_e(x)$, there is a subgroup of $E(\mathbb{F}_{p^d})$ given by $\ker(\Phi_d(\pi))$.
- Points in this subgroup correspond to F_p-points of a subvariety V_d ⊂ Res_{F_pd}/F_p(E) of dimension φ(d).
- We get a decomposition into primitive subvarieties

$$\mathsf{Res}_{\mathbb{F}_{p^d}/\mathbb{F}_p}(E) \ \sim \ \bigoplus_{e \mid d} V_e(E).$$

• If *E* ordinary, then $V_d(E)$ is simple iff $\pi \notin \mathbb{Q}(\zeta_d)$.

The situation at present

For A a simple abelian surface,

$$A \xrightarrow{\sim} E^2 \quad \Rightarrow \quad A \xrightarrow{\mathbb{F}_p} \mathsf{Res}_{\mathbb{F}_p^d/\mathbb{F}_p}(E).$$

If d=3 or 4 and $\pi
ot\in \mathbb{Q}(\zeta_d)$ then

$$A \stackrel{\sim}{\longrightarrow} V_d(E) \subset \mathsf{Res}_{\mathbb{F}_{p^d}/\mathbb{F}_p}(E).$$

If $E(\mathbb{F}_{p^d})$ is pairing-friendly with d minimal, (i.e., $r \mid \#E(\mathbb{F}_{p^d})$ and $r \mid p^k - 1$) then $V_d(E)(\mathbb{F}_p)$ is pairing-friendly.

Problem: Given such an E, construct C with

$$\operatorname{Jac}(C) \xrightarrow{\sim} E^2$$
.

A generalization of KT curves

Let C/\mathbb{F}_p be a hyperelliptic curve given by

$$y^2 = x^5 + ax^3 + bx.$$

Over $\mathbb{F}_p(b^{1/8}, i)$, there are two maps from C to an elliptic curve E defined over $\mathbb{F}_p(\sqrt{b})$.

• \Rightarrow Jac(C) is isogenous over $\mathbb{F}_p(b^{1/8}, i)$ to $E \times E$,

Theorem: Suppose $b \in (\mathbb{F}_p^*)^2 \setminus (\mathbb{F}_p^*)^4$, E ordinary, $\pi_E \notin \mathbb{Q}(i)$ Then Jac(C) is simple and isogenous over \mathbb{F}_p to $V_4(E)$.

- If $c = a/\sqrt{b}$, then $j(E) = \frac{2^6(3c-10)^3}{(c-2)(c+2)^2}$
- Given j(E), we can find equation for C.

A generalization of KT curves

Let C/\mathbb{F}_p be a hyperelliptic curve given by

$$y^2 = x^5 + ax^3 + bx.$$

Over $\mathbb{F}_p(b^{1/8}, i)$, there are two maps from C to an elliptic curve E defined over $\mathbb{F}_p(\sqrt{b})$.

• \Rightarrow Jac(C) is isogenous over $\mathbb{F}_p(b^{1/8}, i)$ to $E \times E$,

Theorem: Suppose $b \in (\mathbb{F}_p^*)^2 \setminus (\mathbb{F}_p^*)^4$, E ordinary, $\pi_E \notin \mathbb{Q}(i)$. Then Jac(C) is simple and isogenous over \mathbb{F}_p to $V_4(E)$.

- If $c = a/\sqrt{b}$, then $j(E) = \frac{2^6(3c-10)^3}{(c-2)(c+2)^2}$
- Given j(E), we can find equation for C.

A second family of curves

Analogous results hold for the hyperelliptic curve C/\mathbb{F}_p given by

$$y^2 = x^6 + ax^3 + b$$
.

If certain conditions hold, there is an elliptic curve E/\mathbb{F}_p such that Jac(C) is simple and isogenous over \mathbb{F}_p to $V_3(E)$.

One final problem

- Recall: if $E(\mathbb{F}_{p^d})$ is pairing-friendly with d minimal, (i.e., $r \mid \#E(\mathbb{F}_{p^d})$ and $r \mid p^k - 1$) then $V_d(E)(\mathbb{F}_p)$ is pairing-friendly.
- Given such an E, with d = 3 or 4, we can (often)* construct C such that $Jac(C) \sim V_d(E)$.
- Question: How to construct such an E?
- Answer: adapt algorithm of Cocks-Pinch.
 - Input: quadratic imaginary field K, integers k and d.
 - Output: Frobenius element $\pi \in \mathcal{O}_K$, subgroup order r.
 - Use *CM method* to find j(E) for *E* with Frobenius element π (requires *K* "small").
- We can now construct a pairing-friendly genus 2 curve C!

^{*}Assuming that the equation involving j(E) has a solution in $\mathbb{F}_{\bar{p}} \to \mathbb{F}_{\bar{p}} \to \mathbb{F}_{\bar{p}} \to \mathbb{F}_{\bar{p}}$

Best results

- Brezing-Weng modification of Cocks-Pinch algorithm:
 - Parametrize Frobenius as $\pi(x) \in K[x]$ and subgroup order as $r(x) \in \mathbb{Z}[x]$.
 - 2 Find x_0 with $p(x_0) = \pi(x_0)\overline{\pi}(x_0)$ and $r(x_0)$ both prime.
 - **3** Continue construction as before to find a pairing-friendly hyperelliptic cuve $C/\mathbb{F}_{p(x_0)}$.

Best result:
$$k = 27$$
, $d = 3$, $K = \mathbb{Q}(i)$,

$$\pi(x) = \frac{1}{2} \left(-x^{20} + x^{18} + ix^{11} + ix^9 + x^2 - 1 \right),$$

 $\rho \approx$ 2.2 for large x_0

Best results

- Brezing-Weng modification of Cocks-Pinch algorithm:
 - Parametrize Frobenius as $\pi(x) \in K[x]$ and subgroup order as $r(x) \in \mathbb{Z}[x]$.
 - 2 Find x_0 with $p(x_0) = \pi(x_0)\overline{\pi}(x_0)$ and $r(x_0)$ both prime.
 - **3** Continue construction as before to find a pairing-friendly hyperelliptic cuve $C/\mathbb{F}_{p(x_0)}$.

Best result:
$$k = 27$$
, $d = 3$, $K = \mathbb{Q}(i)$,

$$\pi(x) = \frac{1}{2} \left(-x^{20} + x^{18} + ix^{11} + ix^9 + x^2 - 1 \right),$$

$$\rho \approx$$
 2.2 for large x_0

Extra roots of unity cause problems

- On inputs d=4, $K=\mathbb{Q}(\zeta_3)$, algorithm produces E/\mathbb{F}_p with j(E)=0 and $V_4(E)$ pairing-friendly.
- Can always find C/\mathbb{F}_p with $Jac(C) \sim_{\mathbb{F}_{p^4}} E' \times E', j(E') = 0$, and Jac(C) simple (so $Jac(C) \sim_{\mathbb{F}_p} V_4(E')$).
- $Frob_p(E) = \alpha \cdot Frob_p(E')$ for some α with $\alpha^6 = 1$.
- Good case: if $\alpha = \pm 1$ then $Jac(C) \sim V_4(E') \sim V_4(E)$.
- Bad case: if $\alpha \neq \pm 1$ then $Jac(C) \sim V_4(E') \sim A$ for some 2-dimensional subvariety $A \subset V_{12}(E)$.

Experimental data

Heuristically, if parameters are "random" then we expect the good case $\alpha=\pm 1$ one third of the time.

- π not parametrized as a polynomial:
 in 1000 trials, 323 curves fall into the good case.
- $\pi(x) = \frac{1}{6} \left((\gamma 3)x^3 (\gamma + 3)x^2 2\gamma x + 2\gamma \right) \ [\gamma = \sqrt{-3}]$: in 1000 trials, **1000** curves fall into the good case.
- $\pi(x) = \frac{1}{12} ((\gamma 1)x^2 + (-2\gamma + 6)x + (6\gamma 6))$ [Kachisa]: in 1000 trials, **0** curves fall into in the good case.

A pairing-friendly curve C produced from the last π would set a record: $\rho(\operatorname{Jac}(C)) \approx 2$.

Experimental data

Heuristically, if parameters are "random" then we expect the good case $\alpha=\pm 1$ one third of the time.

- π not parametrized as a polynomial:
 in 1000 trials, 323 curves fall into the good case.
- $\pi(x) = \frac{1}{6} \left((\gamma 3)x^3 (\gamma + 3)x^2 2\gamma x + 2\gamma \right) \ [\gamma = \sqrt{-3}]$: in 1000 trials, **1000** curves fall into the good case.
- $\pi(x) = \frac{1}{12} ((\gamma 1)x^2 + (-2\gamma + 6)x + (6\gamma 6))$ [Kachisa]: in 1000 trials, **0** curves fall into in the good case.

A pairing-friendly curve C produced from the last π would set a record: $\rho(\operatorname{Jac}(C)) \approx 2$.

Some questions

- Explain this experimental behavior.
- ② If $Jac(C) \sim A \subset V_{12}(E)$, how do we find a curve C'/\mathbb{F}_p with $Jac(C') \sim V_4(E)$?
 - If $p \equiv 3 \pmod{4}$ then $y^2 = x^5 + ax^3 + bx$ splits over \mathbb{F}_p or maps to elliptic curves defined over \mathbb{F}_{p^2} our method fails
- ⑤ For E/\mathbb{F}_p produced from our algorithm, find C'/\mathbb{F}_p with $Jac(C') \sim V_4(E)$.

Answers?

Some questions

- Explain this experimental behavior.
- ② If $Jac(C) \sim A \subset V_{12}(E)$, how do we find a curve C'/\mathbb{F}_p with $Jac(C') \sim V_4(E)$?
 - If $p \equiv 3 \pmod{4}$ then $y^2 = x^5 + ax^3 + bx$ splits over \mathbb{F}_p or maps to elliptic curves defined over \mathbb{F}_{p^2} our method fails!
- § For E/\mathbb{F}_p produced from our algorithm, find C'/\mathbb{F}_p with $Jac(C') \sim V_4(E)$.

Answers?

Some questions

- Explain this experimental behavior.
- ② If $Jac(C) \sim A \subset V_{12}(E)$, how do we find a curve C'/\mathbb{F}_p with $Jac(C') \sim V_4(E)$?
 - If $p \equiv 3 \pmod{4}$ then $y^2 = x^5 + ax^3 + bx$ splits over \mathbb{F}_p or maps to elliptic curves defined over \mathbb{F}_{p^2} our method fails!
- § For E/\mathbb{F}_p produced from our algorithm, find C'/\mathbb{F}_p with $Jac(C') \sim V_4(E)$.

Answers?