Pairing-friendly Hyperelliptic Curves and Weil Restriction

David Mandell Freeman¹ (joint work with Takakazu Satoh²)

¹CWI and Universiteit Leiden, Netherlands ²Tokyo Institute of Technology, Japan

Intercity Number Theory Seminar Eindhoven, Netherlands 18 September 2009 "Pairing-based cryptography" refers to protocols that use a nondegenerate, bilinear map

 $\boldsymbol{e}:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_{\mathcal{T}}$

between finite, cyclic groups.

- Need *discrete logarithm problem* (DLP) in $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ to be infeasible.
- DLP: Given x, x^a , compute a.

ヘロン 人間 とくほ とくほ とう

Useful pairings: Abelian varieties over finite fields

- For certain abelian varieties A/𝔽_q, subgroups of A(𝔽_q) of prime order r have the necessary properties.
- Pairings are Weil pairing

$$oldsymbol{e}_{\textit{weil}, r}: oldsymbol{A}[r] imes oldsymbol{A}[r] o \mu_r \subset \mathbb{F}_{oldsymbol{g}^k}^{ imes}$$

or *Tate pairing* (similar).

- *k* is the *embedding degree* of *A* with respect to *r*.
 - Smallest integer such that $\mu_r \subset \mathbb{F}_{q^k}^{\times} \iff q^k \equiv 1 \mod r$.
- If q, r are large, DLP is infeasible in A[r] and $\mathbb{F}_{a^k}^{\times}$.

イロト イポト イヨト イヨト 三日

- If *k* is small, pairings can be computed efficiently (via Miller's algorithm).
- Embedding degree of random A/𝔽_q with order-*r* subgroup will be ≈ *r*.
- Typical r ≈ 2¹⁶⁰, so pairing on random A can't even be computed.
- Conclusion: abelian varieties with small embedding degree are "special."

(日本) (日本) (日本)

The Problem

- Find prime (powers) q and abelian varieties A/\mathbb{F}_q having
 - a subgroup of large prime order r, and
 - Prescribed (small) embedding degree k with respect to r.
 - In practice, want $r > 2^{160}$ and $k \le 50$.
- We call such varieties "pairing-friendly."
- Want to be able to control the number of bits of *r* to construct varieties at varying security levels.
- We consider the problem for *abelian surfaces*:
 - Find genus 2 curves whose Jacobians are pairing-friendly.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Why genus 2?

- Want to make *q* as small as possible for fixed *r*.
- A *g*-dimensional Abelian variety A/F_q, the ratio of full group order (in bits) to subgroup order *r* (in bits) is measured by

$$\rho(\mathbf{A}) = \frac{\log_2 q^g}{\log_2 r}, \quad \text{i.e., } q = r^{\rho/g}.$$

- If g = 2 and $\rho \approx 1$ (best possible), then $q \approx \sqrt{r}$ — much smaller than field for an order-*r* elliptic curve.
- If *ρ* is small, crypto computations on abelian surfaces could be more efficient than on elliptic curves.

ヘロン 不通 とくほ とくほ とう

Genus 1 is solved*; genus 3 is too hard[†]!

*pretty much [†]usually

(< ∃) < ∃)</p>

Туре	Authors	best p	notes
product of	(trivial)	2	can't get
elliptic curves			ho < 2
supersingular	G'01,	1	must have
curves	RS'02		<i>k</i> ≤ 12
ordinary	FSS'08,	4	
curves	F'07,F'08	(8 in general)	
<i>p</i> -rank 1	HMNS'08	16	
curves			

▲御▶ ★ 国▶ ★ 国▶

Jacobian of

$$y^2 = x^5 + ax$$

over \mathbb{F}_p , $p \equiv 1$ or 3 (mod 8) [KT'08].

• Best $\rho \approx$ 3; in general $\rho \approx$ 4.

- Construction is mysterious: uses explicit formula for # Jac(C)(𝔽_p) in terms of the decomposition of p in Q(√-2).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Explain why the [KT'08] construction works.
- Generalize [KT'08] construction to other genus 2 curves.
- **③** Produce abelian surfaces with ρ < 3.
 - New record: $\rho \approx$ 2.22.

・ 回 ト ・ ヨ ト ・ ヨ ト

If Jacobian of $y^2 = x^5 + ax$ over \mathbb{F}_p is ordinary, then it is

- **1** Simple over \mathbb{F}_{p} ,
- Isogenous over some extension \(\mathbb{F}_{p^d}\) to a product of isomorphic elliptic curves \(E \times E \times E \text{ defined over }\)\(\mathbb{F}_p\).

Theorem: Any abelian variety over \mathbb{F}_{ρ} with these properties is isogenous to a subvariety of the *Weil restriction* of *E* from $\mathbb{F}_{\rho^{d}}$ to \mathbb{F}_{ρ} .

イロト イポト イヨト イヨト

If Jacobian of $y^2 = x^5 + ax$ over \mathbb{F}_p is ordinary, then it is

- **1** Simple over \mathbb{F}_{p} ,
- Isogenous over some extension \(\mathbb{F}_{p^d}\) to a product of isomorphic elliptic curves \(E \times E \times E \text{ defined over } \mathbb{F}_p\).

Theorem: Any abelian variety over \mathbb{F}_p with these properties is isogenous to a subvariety of the *Weil restriction* of *E* from \mathbb{F}_{p^d} to \mathbb{F}_p .

(4回) (1日) (日)

For L/K finite field ext., *Weil restriction* is a functor

 $\operatorname{Res}_{L/K}$: {varieties over L} \rightarrow {varieties over K}

For an affine variety X:

- Choose a *K*-basis $\{\alpha_i\}$ of *L*;
- 2 Write each variable x_i over L as variables over K;
- Separate each equation defining X into [L : K] equations defining Res_{L/K}(X).

Extend to projective varieties by gluing.

ヘロン 人間 とくほ とくほ とう

Example of Weil restriction

•
$$\mathbb{G}_m = Z(xy - 1) \subset \mathbb{A}^2$$
, $L/K = \mathbb{Q}(i)/\mathbb{Q}$.

• Write
$$x = x_1 + ix_2$$
, $y = y_1 + iy_2$.

• From $(x_1 + ix_2)(y_1 + iy_2) - 1 = 0$ we get

 $\operatorname{Res}_{\mathbb{Q}(i)/\mathbb{Q}}(\mathbb{G}_m) = Z(x_1y_1 - x_2y_2 - 1, x_1y_2 + x_2y_1) \subset \mathbb{A}^4$

- Some properties:
 - $Im \operatorname{Res}_{L/K}(X) = [L : K] \operatorname{dim} X.$
 - 2 Res_{L/K}(X)(K) \cong X(L).
 - Res_{L/K} of a group variety is a group variety (and (2) is a group isomorphism).

イロト イポト イヨト イヨト 一臣

Proof of the theorem (M. Streng)

- Let A be a simple g-dimensional abelian variety over K, and L/K a finite extension.
- Given *L*-isogeny $\phi : A \rightarrow E^g$, functoriality gives *K*-isogeny

 $\operatorname{Res}_{L/K}(\phi) : \operatorname{Res}_{L/K}(A) \to \operatorname{Res}_{L/K}(E^g) \cong (\operatorname{Res}_{L/K}(E))^g$

- There is a K-morphism χ : A → Res_{L/K}(A).
 (Choose α₁ = 1, and on affine subsets of A set the variables corresponding to all other basis elements α_i of L/K equal to zero.)
- So we have a K-morphism of group varieties

$$\operatorname{\mathsf{Res}}_{L/K}(\phi) \circ \chi : \mathcal{A} \to (\operatorname{\mathsf{Res}}_{L/K}(E))^g,$$

and since A is simple the image must lie in a single factor.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Decomposing the Weil restriction

• Let *E* be an elliptic curve over \mathbb{F}_{ρ} , $\pi = Frob_{\rho} \in End(E)$.

•
$$E(\mathbb{F}_{p^d}) = \ker(\pi^d - 1).$$

- Since $x^d 1 = \prod_{e|d} \Phi_e(x)$, there is a subgroup of $E(\mathbb{F}_{p^d})$ given by ker $(\Phi_d(\pi))$.
- Points in this subgroup correspond to F_ρ-points of a subvariety V_d ⊂ Res_{F_{ρd}/F_ρ}(E) of dimension φ(d).
- We get a decomposition into primitive subvarieties

$$\operatorname{\mathsf{Res}}_{\mathbb{F}_{p^d}/\mathbb{F}_p}(E) \sim \bigoplus_{e|d} V_e(E).$$

• If *E* ordinary and $\pi \notin \mathbb{Q}(\zeta_d)$, then $V_d(E)$ is simple.

くロト (過) (目) (日)

The situation at present

For A a simple abelian surface,

$$A \xrightarrow[\mathbb{F}_{p^d}]{\sim} E^2 \quad \Rightarrow \quad A \xrightarrow[\mathbb{F}_p]{\sim} \operatorname{Res}_{\mathbb{F}_{p^d}/\mathbb{F}_p}(E).$$

If d = 3 or 4 and $\pi \notin \mathbb{Q}(\zeta_d)$ then

$$A \xrightarrow[\mathbb{F}_p]{\sim} V_d(E) \subset \operatorname{Res}_{\mathbb{F}_p^d/\mathbb{F}_p}(E).$$

If $E(\mathbb{F}_{p^d})$ is pairing-friendly with *d* minimal, (i.e., $r \mid \#E(\mathbb{F}_{p^d})$ and $r \mid p^k - 1$) then $V_d(E)(\mathbb{F}_p)$ is pairing-friendly.

Problem: Given such an E, construct C with

$$\operatorname{Jac}(C) \xrightarrow{\sim} E^2.$$

一回 ト イヨト イヨト

Let C/\mathbb{F}_{ρ} be the hyperelliptic curve given by

$$y^2 = x^5 + ax^3 + bx.$$

Over $\mathbb{F}_{p}(b^{1/8})$, *C* maps to two elliptic curves *E*, *E'* defined over $\mathbb{F}_{p}(\sqrt{b})$.

- *E* and *E'* are isomorphic over $\mathbb{F}_{p}(i)$,
- \Rightarrow Jac(*C*) is isogenous over $\mathbb{F}_{p}(b^{1/8}, i)$ to $E \times E$,

Theorem: Suppose $b \in (\mathbb{F}_p^*)^2 \setminus (\mathbb{F}_p^*)^4$, *E* ordinary, $\pi_E \notin \mathbb{Q}(i)$. Then Jac(*C*) is simple and isogenous over \mathbb{F}_p to $V_4(E)$.

• If
$$c = a/\sqrt{b}$$
, then $j(E) = \frac{2^6(3c-10)^3}{(c-2)(c+2)^2}$

• Given j(E), we can find equation for *C*.

ヘロン 人間 とくほ とくほ とう

Let C/\mathbb{F}_p be the hyperelliptic curve given by

$$y^2 = x^5 + ax^3 + bx.$$

Over $\mathbb{F}_{p}(b^{1/8})$, *C* maps to two elliptic curves *E*, *E'* defined over $\mathbb{F}_{p}(\sqrt{b})$.

- *E* and *E'* are isomorphic over $\mathbb{F}_{p}(i)$,
- \Rightarrow Jac(*C*) is isogenous over $\mathbb{F}_{\rho}(b^{1/8}, i)$ to $E \times E$,

Theorem: Suppose $b \in (\mathbb{F}_p^*)^2 \setminus (\mathbb{F}_p^*)^4$, *E* ordinary, $\pi_E \notin \mathbb{Q}(i)$. Then Jac(*C*) is simple and isogenous over \mathbb{F}_p to $V_4(E)$.

• If
$$c = a/\sqrt{b}$$
, then $j(E) = \frac{2^6(3c-10)^3}{(c-2)(c+2)^2}$

• Given *j*(*E*), we can find equation for *C*.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Analogous results hold for the hyperelliptic curve C/\mathbb{F}_{ρ} given by

$$y^2 = x^6 + ax^3 + b.$$

If certain conditions hold, there is an elliptic curve E/\mathbb{F}_p such that Jac(C) is simple and isogenous over \mathbb{F}_p to $V_3(E)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

One final problem

- Recall: if E(𝔽_{p^d}) is pairing-friendly with *d* minimal, (i.e., *r* | #E(𝔽_{p^d}) and *r* | p^k − 1) then V_d(E)(𝔽_p) is pairing-friendly.
- Given such an *E*, with *d* = 3 or 4, we can (often)* construct *C* such that Jac(*C*) ~ *V*_d(*E*).
- Question: How to construct such an E?
- Answer: adapt algorithm of Cocks-Pinch.
 - Input: quadratic imaginary field *K*, integers *k* and *d*.
 - Output: Frobenius element $\pi \in \mathcal{O}_K$, subgroup order *r*.
 - Use *CM method* to find *j*(*E*) for *E* with Frobenius element π (requires *K* "small").
- We can now construct a pairing-friendly genus 2 curve C!

^{*}Assuming that the equation involving j(E) has a solution in $\mathbb{F}_{\overline{\rho}} \to \mathbb{F}_{\overline{\rho}}$

Best results

- Brezing-Weng modification of Cocks-Pinch algorithm:
 - Parametrize Frobenius as π(x) ∈ K[x] and subgroup order as r(x) ∈ ℤ[x].
 - Sind x_0 with $p(x_0) = \pi(x_0)\overline{\pi}(x_0)$ and $r(x_0)$ both prime.
 - Continue construction as before to find a pairing-friendly hyperelliptic cuve C/F_{p(x0)}.

• For large
$$x_0$$
, $\rho(\operatorname{Jac}(C)) = \frac{\log p(x_0)^2}{\log r(x_0)} \approx \frac{4 \deg \pi}{\deg r}$.

Best result: k = 27, d = 3, $K = \mathbb{Q}(i)$, $r(x) = \Phi_{108}(x)$,

 $\pi(x) = \frac{1}{2} \left(-x^{20} + x^{18} + ix^{11} + ix^9 + x^2 - 1 \right), \quad \rho \approx 20/9 \approx 2.22.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Best results

(

- Brezing-Weng modification of Cocks-Pinch algorithm:
 - Parametrize Frobenius as π(x) ∈ K[x] and subgroup order as r(x) ∈ ℤ[x].
 - Sind x_0 with $p(x_0) = \pi(x_0)\overline{\pi}(x_0)$ and $r(x_0)$ both prime.
 - Continue construction as before to find a pairing-friendly hyperelliptic cuve C/F_{p(x0)}.

• For large
$$x_0$$
, $\rho(\operatorname{Jac}(C)) = \frac{\log p(x_0)^2}{\log r(x_0)} \approx \frac{4 \deg \pi}{\deg r}$.

Best result: k = 27, d = 3, $K = \mathbb{Q}(i)$, $r(x) = \Phi_{108}(x)$,

$$\pi(x) = \frac{1}{2} \left(-x^{20} + x^{18} + ix^{11} + ix^9 + x^2 - 1 \right), \quad \rho \approx 20/9 \approx 2.22.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Extra roots of unity cause problems

- On inputs d = 4, $K = \mathbb{Q}(\zeta_3)$, algorithm produces E/\mathbb{F}_p with j(E) = 0 and $V_4(E)$ pairing-friendly.
- Can always find C/𝔽_p with Jac(C) ~_{𝒴p4} E' × E', j(E') = 0, and Jac(C) simple (so Jac(C) ~_{𝒴p} V₄(E')).
- $Frob_p(E) = \alpha \cdot Frob_p(E')$ for some α with $\alpha^6 = 1$.
- Good case: if $\alpha = \pm 1$ then Jac(C) $\sim V_4(E') \sim V_4(E)$.
- Bad case: if α ≠ ±1 then Jac(C) ~ V₄(E') ~ A for some 2-dimensional subvariety A ⊂ V₁₂(E).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Heuristically, if parameters are "random" then we expect the good case $\alpha = \pm 1$ one third of the time.

- π not parametrized as a polynomial: in 1000 trials, **323** curves fall into the good case.
- $\pi(x) = \frac{1}{6} ((\gamma 3)x^3 (\gamma + 3)x^2 2\gamma x + 2\gamma) \quad [\gamma = \sqrt{-3}]:$ in 1000 trials, **1000** curves fall into the good case.
- $\pi(x) = \frac{1}{12} \left((\gamma 1)x^2 + (-2\gamma + 6)x + (6\gamma 6) \right)$ [Kachisa]: in 1000 trials, **0** curves fall into in the good case.

A pairing-friendly curve *C* produced from the last π would set a record: $\rho(\text{Jac}(C)) \approx 2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Heuristically, if parameters are "random" then we expect the good case $\alpha = \pm 1$ one third of the time.

- π not parametrized as a polynomial: in 1000 trials, **323** curves fall into the good case.
- $\pi(x) = \frac{1}{6} \left((\gamma 3)x^3 (\gamma + 3)x^2 2\gamma x + 2\gamma \right) \quad [\gamma = \sqrt{-3}]:$ in 1000 trials, **1000** curves fall into the good case.
- $\pi(x) = \frac{1}{12} \left((\gamma 1)x^2 + (-2\gamma + 6)x + (6\gamma 6) \right)$ [Kachisa]: in 1000 trials, **0** curves fall into in the good case.

A pairing-friendly curve *C* produced from the last π would set a record: $\rho(Jac(C)) \approx 2$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Some questions

- Explain this experimental behavior.
- If Jac(C) ~ A ⊂ V₁₂(E), is V₄(E) isogenous to Jac(C') for any curve C'/𝔽_p?
- How do we find a curve C'/F_p with Jac(C') ~ V₄(E) in this case?

If $p \equiv 3 \pmod{4}$ then $y^2 = x^5 + ax^3 + bx$ splits over \mathbb{F}_p or maps to elliptic curves defined over \mathbb{F}_{p^2} — our method fails!

G For *E*/𝔽_p produced from our algorithm, find *C*'/𝔽_p with Jac(*C*') ∼ *V*₄(*E*), or show none exists.

Answers?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Some questions

- Explain this experimental behavior.
- If Jac(C) ~ A ⊂ V₁₂(E), is V₄(E) isogenous to Jac(C') for any curve C'/𝔽_p?
- How do we find a curve C'/F_p with Jac(C') ~ V₄(E) in this case?

If $p \equiv 3 \pmod{4}$ then $y^2 = x^5 + ax^3 + bx$ splits over \mathbb{F}_p or maps to elliptic curves defined over \mathbb{F}_{p^2} — our method fails!

G For *E*/𝔽_p produced from our algorithm, find *C*'/𝔽_p with Jac(*C*') ∼ *V*₄(*E*), or show none exists.

Answers?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Some questions

- Explain this experimental behavior.
- If Jac(C) ~ A ⊂ V₁₂(E), is V₄(E) isogenous to Jac(C') for any curve C'/𝔽_p?
- How do we find a curve C'/F_p with Jac(C') ~ V₄(E) in this case?

If $p \equiv 3 \pmod{4}$ then $y^2 = x^5 + ax^3 + bx$ splits over \mathbb{F}_p or maps to elliptic curves defined over \mathbb{F}_{p^2} — our method fails!

Sor *E*/𝔽_p produced from our algorithm, find *C*'/𝔽_p with Jac(*C*') ∼ *V*₄(*E*), or show none exists.

Answers?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)