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What is pairing-based cryptography?

“Pairing-based cryptography” refers to protocols that use a
nondegenerate, bilinear map

e : G1 ×G2 → GT

between finite, cyclic groups.
Need discrete logarithm problem (DLP) in G1,G2,GT to be
infeasible.
DLP: Given x , xa, compute a.
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Useful pairings: Abelian varieties over finite fields

For certain abelian varieties A/Fq, subgroups of A(Fq) of
prime order r have the necessary properties.
Pairings are Weil pairing

eweil,r : A[r ]× A[r ]→ µr ⊂ F×qk

or Tate pairing (similar).
k is the embedding degree of A with respect to r .

Smallest integer such that µr ⊂ F×qk (⇔ qk ≡ 1 mod r ).

If q, r are large, DLP is infeasible in A[r ] and F×qk .
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More about the embedding degree

If k is small, pairings can be computed efficiently
(via Miller’s algorithm).
Embedding degree of random A/Fq with order-r subgroup
will be ≈ r .
Typical r ≈ 2160, so pairing on random A can’t even be
computed.
Conclusion: abelian varieties with small embedding degree
are “special.”

D. M. Freeman Pairing-friendly Hyperelliptic Curves and Weil Restriction



The Problem

Find prime (powers) q and abelian varieties A/Fq having
1 a subgroup of large prime order r , and
2 prescribed (small) embedding degree k with respect to r .

In practice, want r > 2160 and k ≤ 50.

We call such varieties “pairing-friendly.”
Want to be able to control the number of bits of r to
construct varieties at varying security levels.
We consider the problem for abelian surfaces:

Find genus 2 curves whose Jacobians are pairing-friendly.
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Why genus 2?

Want to make q as small as possible for fixed r .
A g-dimensional Abelian variety A/Fq,
the ratio of full group order (in bits) to
subgroup order r (in bits) is measured by

ρ(A) =
log2 qg

log2 r
, i.e., q = rρ/g .

If g = 2 and ρ ≈ 1 (best possible), then q ≈
√

r
— much smaller than field for an order-r elliptic curve.
If ρ is small, crypto computations on abelian surfaces could
be more efficient than on elliptic curves.
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An alternative answer...

Genus 1 is solved∗;
genus 3 is too hard†!

∗pretty much
†usually
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Some genus 2 constructions

Type Authors best ρ notes
product of (trivial) 2 can’t get
elliptic curves ρ < 2
supersingular G’01, 1 must have
curves RS’02 k ≤ 12
ordinary FSS’08, 4
curves F’07,F’08 (8 in general)
p-rank 1 HMNS’08 16
curves
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Best previous non-supersingular genus 2 result

Jacobian of
y2 = x5 + ax

over Fp, p ≡ 1 or 3 (mod 8) [KT’08].
Best ρ ≈ 3; in general ρ ≈ 4.
Construction works for a single Fp-isomorphism class of
curves.
Construction is mysterious:
uses explicit formula for # Jac(C)(Fp) in terms of the
decomposition of p in Q(

√
−2).
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Our results

1 Explain why the [KT’08] construction works.

2 Generalize [KT’08] construction to other genus 2 curves.

3 Produce abelian surfaces with ρ < 3.
New record: ρ ≈ 2.22.
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Key property of KT curves

If Jacobian of y2 = x5 + ax over Fp is ordinary, then it is
1 Simple over Fp,
2 Isogenous over some extension Fpd to a product of

isomorphic elliptic curves E × E defined over Fp.
Theorem: Any abelian variety over Fp with these properties is
isogenous to a subvariety of the Weil restriction of E from Fpd

to Fp.
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What is Weil Restriction?

For L/K finite field ext., Weil restriction is a functor

ResL/K : {varieties over L} → {varieties over K}

For an affine variety X :
1 Choose a K -basis {αi} of L;
2 Write each variable xi over L as variables over K ;
3 Separate each equation defining X into [L : K ] equations

defining ResL/K (X ).
Extend to projective varieties by gluing.
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Example of Weil restriction

Gm = Z (xy − 1) ⊂ A2, L/K = Q(i)/Q.
Write x = x1 + ix2, y = y1 + iy2.
From (x1 + ix2)(y1 + iy2)− 1 = 0 we get

ResQ(i)/Q(Gm) = Z (x1y1 − x2y2 − 1, x1y2 + x2y1) ⊂ A4

Some properties:
1 dim ResL/K (X ) = [L : K ] dim X .
2 ResL/K (X )(K ) ∼= X (L).
3 ResL/K of a group variety is a group variety

(and (2) is a group isomorphism).
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Proof of the theorem (M. Streng)

Let A be a simple g-dimensional abelian variety over K ,
and L/K a finite extension.
Given L-isogeny φ : A→ Eg , functoriality gives K -isogeny

ResL/K (φ) : ResL/K (A)→ ResL/K (Eg) ∼= (ResL/K (E))g

There is a K -morphism χ : A ↪→ ResL/K (A).
(Choose α1 = 1, and on affine subsets of A set the variables
corresponding to all other basis elements αi of L/K equal to zero.)

So we have a K -morphism of group varieties

ResL/K (φ) ◦ χ : A→ (ResL/K (E))g ,

and since A is simple the image must lie in a single factor.
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Decomposing the Weil restriction

Let E be an elliptic curve over Fp, π = Frobp ∈ End(E).
E(Fpd ) = ker(πd − 1).

Since xd − 1 =
∏

e|d Φe(x), there is a subgroup of E(Fpd )
given by ker(Φd (π)).
Points in this subgroup correspond to Fp-points of a
subvariety Vd ⊂ ResFpd /Fp

(E) of dimension ϕ(d).

We get a decomposition into primitive subvarieties

ResFpd /Fp
(E) ∼

⊕
e|d

Ve(E).

If E ordinary and π 6∈ Q(ζd ), then Vd (E) is simple.
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The situation at present

For A a simple abelian surface,

A ∼−−−−→
Fpd

E2 ⇒ A −−−→
Fp

ResFpd /Fp
(E).

If d = 3 or 4 and π 6∈ Q(ζd ) then

A ∼−−−−→
Fp

Vd (E) ⊂ ResFpd /Fp
(E).

If E(Fpd ) is pairing-friendly with d minimal,`
i.e., r | #E(Fpd ) and r | pk − 1

´
then Vd (E)(Fp) is pairing-friendly.

Problem: Given such an E , construct C with

Jac(C)
∼−−−−→

Fpd
E2.
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A generalization of KT curves

Let C/Fp be the hyperelliptic curve given by

y2 = x5 + ax3 + bx .

Over Fp(b1/8), C maps to two elliptic curves E ,E ′ defined over
Fp(
√

b).
E and E ′ are isomorphic over Fp(i),
⇒ Jac(C) is isogenous over Fp(b1/8, i) to E × E ,

Theorem: Suppose b ∈ (F∗p)2 \ (F∗p)4, E ordinary, πE 6∈ Q(i).
Then Jac(C) is simple and isogenous over Fp to V4(E).

If c = a/
√

b, then j(E) = 26(3c−10)3

(c−2)(c+2)2

Given j(E), we can find equation for C.
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A second family of curves

Analogous results hold for the hyperelliptic curve C/Fp given by

y2 = x6 + ax3 + b.

If certain conditions hold, there is an elliptic curve E/Fp such
that Jac(C) is simple and isogenous over Fp to V3(E).
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One final problem

Recall: if E(Fpd ) is pairing-friendly with d minimal,`
i.e., r | #E(Fpd ) and r | pk − 1

´
then Vd (E)(Fp) is pairing-friendly.
Given such an E , with d = 3 or 4, we can (often)∗

construct C such that Jac(C) ∼ Vd (E).
Question: How to construct such an E?
Answer: adapt algorithm of Cocks-Pinch.

Input: quadratic imaginary field K , integers k and d .
Output: Frobenius element π ∈ OK , subgroup order r .
Use CM method to find j(E) for E with Frobenius element π
(requires K “small”).

We can now construct a pairing-friendly genus 2 curve C!

∗Assuming that the equation involving j(E) has a solution in Fp
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Best results

Brezing-Weng modification of Cocks-Pinch algorithm:
1 Parametrize Frobenius as π(x) ∈ K [x ] and subgroup order

as r(x) ∈ Z[x ].
2 Find x0 with p(x0) = π(x0)π(x0) and r(x0) both prime.
3 Continue construction as before to find a pairing-friendly

hyperelliptic cuve C/Fp(x0).

For large x0, ρ(Jac(C)) = log p(x0)
2

log r(x0)
≈ 4 degπ

deg r .

Best result: k = 27, d = 3, K = Q(i), r(x) = Φ108(x),

π(x) = 1
2

(
−x20 + x18 + ix11 + ix9 + x2 − 1

)
, ρ ≈ 20/9 ≈ 2.22.
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Extra roots of unity cause problems

On inputs d = 4, K = Q(ζ3), algorithm produces
E/Fp with j(E) = 0 and V4(E) pairing-friendly.
Can always find C/Fp with Jac(C) ∼Fp4 E ′ × E ′, j(E ′) = 0,
and Jac(C) simple (so Jac(C) ∼Fp V4(E ′)).

Frobp(E) = α · Frobp(E ′) for some α with α6 = 1.
Good case: if α = ±1 then Jac(C) ∼ V4(E ′) ∼ V4(E).
Bad case: if α 6= ±1 then Jac(C) ∼ V4(E ′) ∼ A for some
2-dimensional subvariety A ⊂ V12(E).
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Experimental data

Heuristically, if parameters are “random” then we expect the
good case α = ±1 one third of the time.

π not parametrized as a polynomial:
in 1000 trials, 323 curves fall into the good case.
π(x) = 1

6

(
(γ − 3)x3 − (γ + 3)x2 − 2γx + 2γ

)
[γ =

√
−3]:

in 1000 trials, 1000 curves fall into the good case.
π(x) = 1

12

(
(γ − 1)x2 + (−2γ + 6)x + (6γ − 6)

)
[Kachisa]:

in 1000 trials, 0 curves fall into in the good case.
A pairing-friendly curve C produced from the last π would set a
record: ρ(Jac(C)) ≈ 2.
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Some questions

1 Explain this experimental behavior.

2 If Jac(C) ∼ A ⊂ V12(E), is V4(E) isogenous to Jac(C′)
for any curve C′/Fp?

3 How do we find a curve C′/Fp with Jac(C′) ∼ V4(E) in this
case?

If p ≡ 3 (mod 4) then y2 = x5 + ax3 + bx splits over Fp or
maps to elliptic curves defined over Fp2 — our method fails!

4 For E/Fp produced from our algorithm, find C′/Fp with
Jac(C′) ∼ V4(E), or show none exists.

Answers?
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