Pairing-friendly Hyperelliptic Curves and Weil Restriction

David Mandell Freeman\(^1\)
(joint work with Takakazu Satoh\(^2\))

\(^1\)CWI and Universiteit Leiden, Netherlands
\(^2\)Tokyo Institute of Technology, Japan

Intercity Number Theory Seminar
Eindhoven, Netherlands
18 September 2009
“Pairing-based cryptography” refers to protocols that use a nondegenerate, bilinear map

$$e : G_1 \times G_2 \to G_T$$

between finite, cyclic groups.

Need *discrete logarithm problem* (DLP) in G_1, G_2, G_T to be infeasible.

DLP: Given x, x^a, compute a.
For certain abelian varieties A/F_q, subgroups of $A(F_q)$ of prime order r have the necessary properties.

Pairings are **Weil pairing**

\[e_{\text{weil},r} : A[r] \times A[r] \rightarrow \mu_r \subset F_{q^k}^{\times} \]

or **Tate pairing** (similar).

- k is the **embedding degree** of A with respect to r.
 - Smallest integer such that $\mu_r \subset F_{q^k}^{\times}$ ($\iff q^k \equiv 1 \mod r$).

- If q, r are large, DLP is infeasible in $A[r]$ and $F_{q^k}^{\times}$.
More about the embedding degree

- If k is small, pairings can be computed efficiently (via Miller’s algorithm).
- Embedding degree of random A/\mathbb{F}_q with order-r subgroup will be $\approx r$.
- Typical $r \approx 2^{160}$, so pairing on random A can’t even be computed.
- Conclusion: abelian varieties with small embedding degree are “special.”
The Problem

- Find prime (powers) q and abelian varieties A/\mathbb{F}_q having
 1. a subgroup of large prime order r, and
 2. prescribed (small) embedding degree k with respect to r.
 - In practice, want $r > 2^{160}$ and $k \leq 50$.
- We call such varieties “pairing-friendly.”
- Want to be able to control the number of bits of r to construct varieties at varying security levels.
- We consider the problem for abelian surfaces:
 - Find genus 2 curves whose Jacobians are pairing-friendly.
Why genus 2?

- Want to make q as small as possible for fixed r.
- A g-dimensional Abelian variety A/\mathbb{F}_q, the ratio of full group order (in bits) to subgroup order r (in bits) is measured by

$$\rho(A) = \frac{\log_2 q^g}{\log_2 r}, \quad \text{i.e., } q = r^{\rho/g}.$$

- If $g = 2$ and $\rho \approx 1$ (best possible), then $q \approx \sqrt{r}$ — much smaller than field for an order-r elliptic curve.
- If ρ is small, crypto computations on abelian surfaces could be more efficient than on elliptic curves.
An alternative answer...

Genus 1 is solved*;
genus 3 is too hard†!

*pretty much
†usually
<table>
<thead>
<tr>
<th>Type</th>
<th>Authors</th>
<th>best ρ</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>product of elliptic curves</td>
<td>(trivial)</td>
<td>2</td>
<td>can’t get $\rho < 2$</td>
</tr>
<tr>
<td>supersingular curves</td>
<td>G’01, RS’02</td>
<td>1</td>
<td>must have $k \leq 12$</td>
</tr>
<tr>
<td>ordinary curves</td>
<td>FSS’08, F’07,F’08</td>
<td>4 (8 in general)</td>
<td></td>
</tr>
<tr>
<td>p-rank 1 curves</td>
<td>HMNS’08</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Best previous non-supersingular genus 2 result

- Jacobian of
 \[y^2 = x^5 + ax \]
 over \(\mathbb{F}_p \), \(p \equiv 1 \text{ or } 3 \pmod{8} \) [KT’08].
- Best \(\rho \approx 3 \); in general \(\rho \approx 4 \).
- Construction works for a single \(\mathbb{F}_p \)-isomorphism class of curves.
- Construction is mysterious:
 uses explicit formula for \(\# \text{Jac}(C)(\mathbb{F}_p) \) in terms of the decomposition of \(p \) in \(\mathbb{Q}(\sqrt{-2}) \).
Our results

1. Explain why the [KT’08] construction works.
2. Generalize [KT’08] construction to other genus 2 curves.
3. Produce abelian surfaces with $\rho < 3$.
 - New record: $\rho \approx 2.22$.
If Jacobian of $y^2 = x^5 + ax$ over \mathbb{F}_p is ordinary, then it is

1. Simple over \mathbb{F}_p,
2. Isogenous over some extension \mathbb{F}_{p^d} to a product of isomorphic elliptic curves $E \times E$ defined over \mathbb{F}_p.

Theorem: Any abelian variety over \mathbb{F}_p with these properties is isogenous to a subvariety of the *Weil restriction* of E from \mathbb{F}_{p^d} to \mathbb{F}_p.

D. M. Freeman

Pairing-friendly Hyperelliptic Curves and Weil Restriction
If Jacobian of $y^2 = x^5 + ax$ over \mathbb{F}_p is ordinary, then it is

1. Simple over \mathbb{F}_p,
2. Isogenous over some extension \mathbb{F}_{p^d} to a product of isomorphic elliptic curves $E \times E$ defined over \mathbb{F}_p.

Theorem: Any abelian variety over \mathbb{F}_p with these properties is isogenous to a subvariety of the *Weil restriction* of E from \mathbb{F}_{p^d} to \mathbb{F}_p.
What is Weil Restriction?

For L/K finite field ext., **Weil restriction** is a functor

$$\text{Res}_{L/K} : \{\text{varieties over } L\} \rightarrow \{\text{varieties over } K\}$$

For an affine variety X:

1. Choose a K-basis $\{\alpha_i\}$ of L;
2. Write each variable x_i over L as variables over K;

Extend to projective varieties by gluing.
Example of Weil restriction

\[\mathbb{G}_m = Z(xy - 1) \subset \mathbb{A}^2, \quad L/K = \mathbb{Q}(i)/\mathbb{Q}. \]

Write \(x = x_1 + ix_2, \quad y = y_1 + iy_2. \)

From \((x_1 + ix_2)(y_1 + iy_2) - 1 = 0 \) we get

\[\text{Res}_{\mathbb{Q}(i)/\mathbb{Q}}(\mathbb{G}_m) = Z(x_1y_1 - x_2y_2 - 1, x_1y_2 + x_2y_1) \subset \mathbb{A}^4 \]

Some properties:

1. \(\dim \text{Res}_{L/K}(X) = [L : K] \dim X. \)
2. \(\text{Res}_{L/K}(X)(K) \cong X(L). \)
3. \(\text{Res}_{L/K} \) of a group variety is a group variety (and (2) is a group isomorphism).
Proof of the theorem (M. Streng)

Let A be a simple g-dimensional abelian variety over K, and L/K a finite extension.

Given L-isogeny $\phi : A \to E^g$, functoriality gives K-isogeny

$$\text{Res}_{L/K}(\phi) : \text{Res}_{L/K}(A) \to \text{Res}_{L/K}(E^g) \cong (\text{Res}_{L/K}(E))^g$$

There is a K-morphism $\chi : A \to \text{Res}_{L/K}(A)$.

(Choose $\alpha_1 = 1$, and on affine subsets of A set the variables corresponding to all other basis elements α_i of L/K equal to zero.)

So we have a K-morphism of group varieties

$$\text{Res}_{L/K}(\phi) \circ \chi : A \to (\text{Res}_{L/K}(E))^g,$$

and since A is simple the image must lie in a single factor.
Let E be an elliptic curve over \mathbb{F}_p, $\pi = \text{Frob}_p \in \text{End}(E)$.

$E(\mathbb{F}_{p^d}) = \ker(\pi^d - 1)$.

Since $x^d - 1 = \prod_{e|d} \Phi_e(x)$, there is a subgroup of $E(\mathbb{F}_{p^d})$ given by $\ker(\Phi_d(\pi))$.

Points in this subgroup correspond to \mathbb{F}_p-points of a subvariety $V_d \subset \text{Res}_{\mathbb{F}_{p^d}/\mathbb{F}_p}(E)$ of dimension $\varphi(d)$.

We get a decomposition into \textit{primitive subvarieties}

$$
\text{Res}_{\mathbb{F}_{p^d}/\mathbb{F}_p}(E) \sim \bigoplus_{e|d} V_e(E).
$$

If E ordinary and $\pi \notin \mathbb{Q}(\zeta_d)$, then $V_d(E)$ is simple.
The situation at present

For a simple abelian surface, \(A \sim \rightarrow \mathbb{E}^2 \) and \(A \rightarrow \text{Res}_{\mathbb{F}_{pd}/\mathbb{F}_p}(E) \).

If \(d = 3 \) or \(4 \) and \(\pi \notin \mathbb{Q}(\zeta_d) \) then

\[
A \sim \rightarrow \mathbb{V}_d(E) \subseteq \text{Res}_{\mathbb{F}_{pd}/\mathbb{F}_p}(E).
\]

If \(E(\mathbb{F}_{pd}) \) is pairing-friendly with \(d \) minimal,

(i.e., \(r \mid \#E(\mathbb{F}_{pd}) \) and \(r \mid p^k - 1 \))

then \(V_d(E)(\mathbb{F}_p) \) is pairing-friendly.

Problem: Given such an \(E \), construct \(C \) with

\[
\text{Jac}(C) \sim \rightarrow \mathbb{E}^2.
\]
A generalization of KT curves

Let C/\mathbb{F}_p be the hyperelliptic curve given by

$$y^2 = x^5 + ax^3 + bx.$$

Over $\mathbb{F}_p(b^{1/8})$, C maps to two elliptic curves E, E' defined over $\mathbb{F}_p(\sqrt{b})$.

- E and E' are isomorphic over $\mathbb{F}_p(i)$,
- \Rightarrow Jac(C) is isogenous over $\mathbb{F}_p(b^{1/8}, i)$ to $E \times E$,

Theorem: Suppose $b \in (\mathbb{F}_p^*)^2 \setminus (\mathbb{F}_p^*)^4$, E ordinary, $\pi_E \not\in \mathbb{Q}(i)$. Then Jac($C$) is simple and isogenous over \mathbb{F}_p to $V_4(E)$.

- If $c = a/\sqrt{b}$, then $j(E) = \frac{2^6(3c-10)^3}{(c-2)(c+2)^2}$
- Given $j(E)$, we can find equation for C.

D. M. Freeman

Pairing-friendly Hyperelliptic Curves and Weil Restriction
Let C/\mathbb{F}_p be the hyperelliptic curve given by

$$y^2 = x^5 + ax^3 + bx.$$

Over $\mathbb{F}_p(b^{1/8})$, C maps to two elliptic curves E, E' defined over $\mathbb{F}_p(\sqrt{b})$.

- E and E' are isomorphic over $\mathbb{F}_p(i)$,
- \Rightarrow Jac(C) is isogenous over $\mathbb{F}_p(b^{1/8}, i)$ to $E \times E$,

Theorem: Suppose $b \in (\mathbb{F}_p^*)^2 \setminus (\mathbb{F}_p^*)^4$, E ordinary, $\pi_E \not\in \mathbb{Q}(i)$.

Then Jac(C) is simple and isogenous over \mathbb{F}_p to $V_4(E)$.

- If $c = a/\sqrt{b}$, then $j(E) = \frac{2^6(3c-10)^3}{(c-2)(c+2)^2}$
- Given $j(E)$, we can find equation for C.

A second family of curves

Analogous results hold for the hyperelliptic curve C/\mathbb{F}_p given by

$$y^2 = x^6 + ax^3 + b.$$

If certain conditions hold, there is an elliptic curve E/\mathbb{F}_p such that $\text{Jac}(C)$ is simple and isogenous over \mathbb{F}_p to $V_3(E)$.

D. M. Freeman

Pairing-friendly Hyperelliptic Curves and Weil Restriction
One final problem

- Recall: if $E(\mathbb{F}_{p^d})$ is pairing-friendly with d minimal,

 (i.e., $r \mid \#E(\mathbb{F}_{p^d})$ and $r \mid p^k - 1$)

 then $V_d(E)(\mathbb{F}_p)$ is pairing-friendly.

- Given such an E, with $d = 3$ or 4, we can (often)* construct C such that $\text{Jac}(C) \sim V_d(E)$.

- **Question**: How to construct such an E?

- **Answer**: adapt algorithm of Cocks-Pinch.

 - Input: quadratic imaginary field K, integers k and d.
 - Output: Frobenius element $\pi \in \mathcal{O}_K$, subgroup order r.
 - Use **CM method** to find $j(E)$ for E with Frobenius element π
 (requires K “small”).

- We can now construct a pairing-friendly genus 2 curve C!

*Assuming that the equation involving $j(E)$ has a solution in \mathbb{F}_p.
Best results

- **Brezing-Weng modification of Cocks-Pinch algorithm:**
 1. Parametrize Frobenius as $\pi(x) \in K[x]$ and subgroup order as $r(x) \in \mathbb{Z}[x]$.
 2. Find x_0 with $p(x_0) = \pi(x_0)\overline{\pi}(x_0)$ and $r(x_0)$ both prime.
 3. Continue construction as before to find a pairing-friendly hyperelliptic curve $C/\mathbb{F}_{p(x_0)}$.

- For large x_0, $\rho(\text{Jac}(C)) = \frac{\log p(x_0)^2}{\log r(x_0)} \approx \frac{4 \deg \pi}{\deg r}$.

Best result: $k = 27$, $d = 3$, $K = \mathbb{Q}(i)$, $r(x) = \Phi_{108}(x)$,

\[
\pi(x) = \frac{1}{2} (-x^{20} + x^{18} + ix^{11} + ix^9 + x^2 - 1), \quad \rho \approx 20/9 \approx 2.22.
\]
Brezing-Weng modification of Cocks-Pinch algorithm:

1. Parametrize Frobenius as \(\pi(x) \in K[x] \) and subgroup order as \(r(x) \in \mathbb{Z}[x] \).
2. Find \(x_0 \) with \(p(x_0) = \pi(x_0)\overline{\pi}(x_0) \) and \(r(x_0) \) both prime.
3. Continue construction as before to find a pairing-friendly hyperelliptic curve \(C/\mathbb{F}_{p(x_0)} \).

For large \(x_0 \), \(\rho(\text{Jac}(C)) = \frac{\log p(x_0)^2}{\log r(x_0)} \approx \frac{4 \deg \pi}{\deg r} \).

Best result: \(k = 27, d = 3, K = \mathbb{Q}(i), r(x) = \Phi_{108}(x) \),

\[
\pi(x) = \frac{1}{2} (-x^{20} + x^{18} + ix^{11} + ix^9 + x^2 - 1), \quad \rho \approx 20/9 \approx 2.22.
\]
Extra roots of unity cause problems

- On inputs $d = 4, K = \mathbb{Q}(\zeta_3)$, algorithm produces E/\mathbb{F}_p with $j(E) = 0$ and $V_4(E)$ pairing-friendly.

- Can always find C/\mathbb{F}_p with $\text{Jac}(C) \sim_{\mathbb{F}_p^4} E' \times E'$, $j(E') = 0$, and $\text{Jac}(C)$ simple (so $\text{Jac}(C) \sim_{\mathbb{F}_p} V_4(E')$).

- $\text{Frob}_p(E) = \alpha \cdot \text{Frob}_p(E')$ for some α with $\alpha^6 = 1$.

- **Good case:** if $\alpha = \pm 1$ then $\text{Jac}(C) \sim V_4(E') \sim V_4(E)$.

- **Bad case:** if $\alpha \neq \pm 1$ then $\text{Jac}(C) \sim V_4(E') \sim A$ for some 2-dimensional subvariety $A \subset V_{12}(E)$.
Heuristically, if parameters are “random” then we expect the good case $\alpha = \pm 1$ one third of the time.

- π not parametrized as a polynomial:
 in 1000 trials, 323 curves fall into the good case.

- $\pi(x) = \frac{1}{6} ((\gamma - 3)x^3 - (\gamma + 3)x^2 - 2\gamma x + 2\gamma)$ [\gamma = \sqrt{-3}]:
 in 1000 trials, 1000 curves fall into the good case.

- $\pi(x) = \frac{1}{12} ((\gamma - 1)x^2 + (-2\gamma + 6)x + (6\gamma - 6))$ [Kachisa]:
 in 1000 trials, 0 curves fall into in the good case.

A pairing-friendly curve C produced from the last π would set a record: $\rho(\text{Jac}(C)) \approx 2$.

D. M. Freeman
Pairing-friendly Hyperelliptic Curves and Weil Restriction
Heuristically, if parameters are “random” then we expect the good case $\alpha = \pm 1$ one third of the time.

- π not parametrized as a polynomial: in 1000 trials, 323 curves fall into the good case.
- $\pi(x) = \frac{1}{6} ((\gamma - 3)x^3 - (\gamma + 3)x^2 - 2\gamma x + 2\gamma)$ [$\gamma = \sqrt{-3}$]: in 1000 trials, 1000 curves fall into the good case.
- $\pi(x) = \frac{1}{12} ((\gamma - 1)x^2 + (-2\gamma + 6)x + (6\gamma - 6))$ [Kachisa]: in 1000 trials, 0 curves fall into in the good case.

A pairing-friendly curve C produced from the last π would set a record: $\rho(\text{Jac}(C)) \approx 2$.
Some questions

1. Explain this experimental behavior.

2. If Jac$(C) \sim A \subset V_{12}(E)$, is $V_4(E)$ isogenous to Jac(C') for any curve C'/\mathbb{F}_p?

3. How do we find a curve C'/\mathbb{F}_p with Jac$(C') \sim V_4(E)$ in this case?

 If $p \equiv 3 \pmod{4}$ then $y^2 = x^5 + ax^3 + bx$ splits over \mathbb{F}_p or maps to elliptic curves defined over \mathbb{F}_p^2 — our method fails!

4. For E/\mathbb{F}_p produced from our algorithm, find C'/\mathbb{F}_p with Jac$(C') \sim V_4(E)$, or show none exists.

Answers?
Some questions

1. Explain this experimental behavior.

2. If \(\text{Jac}(C) \sim A \subseteq V_{12}(E) \), is \(V_4(E) \) isogenous to \(\text{Jac}(C') \) for any curve \(C'/\mathbb{F}_p \)?

3. How do we find a curve \(C'/\mathbb{F}_p \) with \(\text{Jac}(C') \sim V_4(E) \) in this case?

 If \(p \equiv 3 \pmod{4} \) then \(y^2 = x^5 + ax^3 + bx \) splits over \(\mathbb{F}_p \) or maps to elliptic curves defined over \(\mathbb{F}_{p^2} \) — our method fails!

4. For \(E/\mathbb{F}_p \) produced from our algorithm, find \(C'/\mathbb{F}_p \) with \(\text{Jac}(C') \sim V_4(E) \), or show none exists.

Answers?
Some questions

1. Explain this experimental behavior.

2. If $\text{Jac}(C) \sim A \subset V_{12}(E)$, is $V_4(E)$ isogenous to $\text{Jac}(C')$ for any curve C'/\mathbb{F}_p?

3. How do we find a curve C'/\mathbb{F}_p with $\text{Jac}(C') \sim V_4(E)$ in this case?

 If $p \equiv 3 \pmod{4}$ then $y^2 = x^5 + ax^3 + bx$ splits over \mathbb{F}_p or maps to elliptic curves defined over \mathbb{F}_{p^2} — our method fails!

4. For E/\mathbb{F}_p produced from our algorithm, find C'/\mathbb{F}_p with $\text{Jac}(C') \sim V_4(E)$, or show none exists.

Answers?