Pairing-friendly Hyperelliptic Curves and Weil Restriction

David Mandell Freeman ${ }^{1}$ (joint work with Takakazu Satoh ${ }^{2}$)
${ }^{1}$ CWI and Universiteit Leiden, Netherlands
${ }^{2}$ Tokyo Institute of Technology, Japan
Intercity Number Theory Seminar Eindhoven, Netherlands 18 September 2009

What is pairing-based cryptography?

- "Pairing-based cryptography" refers to protocols that use a nondegenerate, bilinear map

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}
$$

between finite, cyclic groups.

- Need discrete logarithm problem (DLP) in $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ to be infeasible.
- DLP: Given x, x^{a}, compute a.

Useful pairings: Abelian varieties over finite fields

- For certain abelian varieties A / \mathbb{F}_{q}, subgroups of $A\left(\mathbb{F}_{q}\right)$ of prime order r have the necessary properties.
- Pairings are Weil pairing

$$
e_{\text {weil }, r}: A[r] \times A[r] \rightarrow \mu_{r} \subset \mathbb{F}_{q^{k}}^{\times}
$$

or Tate pairing (similar).

- k is the embedding degree of A with respect to r.
- Smallest integer such that $\mu_{r} \subset \mathbb{F}_{q^{k}}^{\times}\left(\Leftrightarrow q^{k} \equiv 1 \bmod r\right)$.
- If q, r are large, DLP is infeasible in $A[r]$ and $\mathbb{F}_{q^{k}}$.

More about the embedding degree

- If k is small, pairings can be computed efficiently (via Miller's algorithm).
- Embedding degree of random A / \mathbb{F}_{q} with order- r subgroup will be $\approx r$.
- Typical $r \approx 2^{160}$, so pairing on random A can't even be computed.
- Conclusion: abelian varieties with small embedding degree are "special."

The Problem

- Find prime (powers) q and abelian varieties A / \mathbb{F}_{q} having
(1) a subgroup of large prime order r, and
(2) prescribed (small) embedding degree k with respect to r.
- In practice, want $r>2^{160}$ and $k \leq 50$.
- We call such varieties "pairing-friendly."
- Want to be able to control the number of bits of r to construct varieties at varying security levels.
- We consider the problem for abelian surfaces:
- Find genus 2 curves whose Jacobians are pairing-friendly.

Why genus $2 ?$

- Want to make q as small as possible for fixed r.
- A g-dimensional Abelian variety A / \mathbb{F}_{q}, the ratio of full group order (in bits) to subgroup order r (in bits) is measured by

$$
\rho(A)=\frac{\log _{2} q^{g}}{\log _{2} r}, \quad \text { i.e., } q=r^{\rho / g} .
$$

- If $g=2$ and $\rho \approx 1$ (best possible), then $q \approx \sqrt{r}$ - much smaller than field for an order- r elliptic curve.
- If ρ is small, crypto computations on abelian surfaces could be more efficient than on elliptic curves.

An alternative answer...

Genus 1 is solved*; genus 3 is too hard ${ }^{\dagger}$!

*pretty much
 ${ }^{\dagger}$ usually

Some genus 2 constructions

Type	Authors	best ρ	notes
product of elliptic curves	(trivial)	$\mathbf{2}$	can't get $\rho<2$
supersingular curves	G'01,	$\mathbf{1}$	must have $k \leq 12$
ordinary curves	FSS'08,	$\mathbf{4}$	
p-rank 1 curves	HMNS'08	(8 in general)	$\mathbf{1 6}$

Best previous non-supersingular genus 2 result

- Jacobian of

$$
y^{2}=x^{5}+a x
$$

over $\mathbb{F}_{p}, p \equiv 1$ or $3(\bmod 8)\left[K T^{\prime} 08\right]$.

- Best $\rho \approx 3$; in general $\rho \approx 4$.
- Construction works for a single $\overline{\mathbb{F}}_{p}$-isomorphism class of curves.
- Construction is mysterious: uses explicit formula for $\# \operatorname{Jac}(C)\left(\mathbb{F}_{p}\right)$ in terms of the decomposition of p in $\mathbb{Q}(\sqrt{-2})$.
© Explain why the $\left[\mathrm{KT}^{\prime} 08\right]$ construction works.
(2) Generalize [KT'08] construction to other genus 2 curves.
(3) Produce abelian surfaces with $\rho<3$.
- New record: $\rho \approx 2.22$.

Key property of KT curves

If Jacobian of $y^{2}=x^{5}+a x$ over \mathbb{F}_{p} is ordinary, then it is
(1) Simple over \mathbb{F}_{p},
(2) Isogenous over some extension $\mathbb{F}_{p^{d}}$ to a product of isomorphic elliptic curves $E \times E$ defined over \mathbb{F}_{p}.
Theorem: Any abelian variety over \mathbb{F}_{p} with these properties is isogenous to a subvariety of the of E from $\mathbb{F}_{p^{d}}$

Key property of KT curves

If Jacobian of $y^{2}=x^{5}+a x$ over \mathbb{F}_{p} is ordinary, then it is
(1) Simple over \mathbb{F}_{p},
(2) Isogenous over some extension $\mathbb{F}_{p^{d}}$ to a product of isomorphic elliptic curves $E \times E$ defined over \mathbb{F}_{p}.
Theorem: Any abelian variety over \mathbb{F}_{p} with these properties is isogenous to a subvariety of the Weil restriction of E from $\mathbb{F}_{p^{d}}$ to \mathbb{F}_{p}.

What is Weil Restriction?

For L / K finite field ext., Weil restriction is a functor
$\operatorname{Res}_{L / K}:\{$ varieties over $L\} \rightarrow\{$ varieties over $K\}$
For an affine variety X :
(1) Choose a K-basis $\left\{\alpha_{i}\right\}$ of L;
(2) Write each variable x_{i} over L as variables over K;
(3) Separate each equation defining X into $[L: K]$ equations defining $\operatorname{Res}_{L / K}(X)$.
Extend to projective varieties by gluing.

Example of Weil restriction

- $\mathbb{G}_{m}=Z(x y-1) \subset \mathbb{A}^{2}, \quad L / K=\mathbb{Q}(i) / \mathbb{Q}$.
- Write $x=x_{1}+i x_{2}, y=y_{1}+i y_{2}$.
- From $\left(x_{1}+i x_{2}\right)\left(y_{1}+i y_{2}\right)-1=0$ we get

$$
\operatorname{Res}_{\mathbb{Q}(i) / \mathbb{Q}}\left(\mathbb{G}_{m}\right)=Z\left(x_{1} y_{1}-x_{2} y_{2}-1, x_{1} y_{2}+x_{2} y_{1}\right) \subset \mathbb{A}^{4}
$$

- Some properties:
(1) $\operatorname{dim} \operatorname{Res}_{L / K}(X)=[L: K] \operatorname{dim} X$.
(2) $\operatorname{Res}_{L / K}(X)(K) \cong X(L)$.
(3) $\operatorname{Res}_{L / K}$ of a group variety is a group variety (and (2) is a group isomorphism).

Proof of the theorem (M. Streng)

- Let A be a simple g-dimensional abelian variety over K, and L / K a finite extension.
- Given L-isogeny $\phi: A \rightarrow E^{g}$, functoriality gives K-isogeny

$$
\operatorname{Res}_{L / K}(\phi): \operatorname{Res}_{L / K}(A) \rightarrow \operatorname{Res}_{L / K}\left(E^{g}\right) \cong\left(\operatorname{Res}_{L / K}(E)\right)^{g}
$$

- There is a K-morphism $\chi: A \hookrightarrow \operatorname{Res}_{L / K}(A)$. (Choose $\alpha_{1}=1$, and on affine subsets of A set the variables corresponding to all other basis elements α_{i} of L / K equal to zero.)
- So we have a K-morphism of group varieties

$$
\operatorname{Res}_{L / K}(\phi) \circ \chi: A \rightarrow\left(\operatorname{Res}_{L / K}(E)\right)^{g}
$$

and since A is simple the image must lie in a single factor.

Decomposing the Weil restriction

- Let E be an elliptic curve over $\mathbb{F}_{p}, \pi=\operatorname{Frob}_{p} \in \operatorname{End}(E)$.
- $E\left(\mathbb{F}_{p^{d}}\right)=\operatorname{ker}\left(\pi^{d}-1\right)$.
- Since $x^{d}-1=\prod_{e \mid d} \Phi_{e}(x)$, there is a subgroup of $E\left(\mathbb{F}_{p^{d}}\right)$ given by $\operatorname{ker}\left(\Phi_{d}(\pi)\right)$.
- Points in this subgroup correspond to \mathbb{F}_{p}-points of a subvariety $V_{d} \subset \operatorname{Res}_{\mathbb{F}_{p^{d}} / \mathbb{F}_{p}}(E)$ of dimension $\varphi(d)$.
- We get a decomposition into primitive subvarieties

$$
\operatorname{Res}_{\mathbb{F}_{p^{d}} / \mathbb{F}_{p}}(E) \sim \bigoplus_{e \mid d} V_{e}(E)
$$

- If E ordinary and $\pi \notin \mathbb{Q}\left(\zeta_{d}\right)$, then $V_{d}(E)$ is simple.

The situation at present

For A a simple abelian surface,

$$
A \underset{\mathbb{F}_{p^{d}}}{\sim} E^{2} \Rightarrow A \underset{\mathbb{F}_{p}}{\longrightarrow} \operatorname{Res}_{\mathbb{F}_{p^{d}} / \mathbb{F}_{p}}(E) .
$$

If $d=3$ or 4 and $\pi \notin \mathbb{Q}\left(\zeta_{d}\right)$ then

$$
A \underset{\mathbb{F}_{p}}{\sim} V_{d}(E) \subset \operatorname{Res}_{\mathbb{F}_{p^{d}} / \mathbb{F}_{p}}(E) .
$$

If $E\left(\mathbb{F}_{p^{d}}\right)$ is pairing-friendly with d minimal, (i.e., $r \mid \# E\left(\mathbb{F}_{p^{d}}\right)$ and $r \mid p^{k}-1$)
then $V_{d}(E)\left(\mathbb{F}_{p}\right)$ is pairing-friendly.
Problem: Given such an E, construct C with

$$
\operatorname{Jac}(C) \xrightarrow[\mathbb{F}_{p^{d}}]{\sim} E^{2}
$$

A generalization of KT curves

Let C / \mathbb{F}_{p} be the hyperelliptic curve given by

$$
y^{2}=x^{5}+a x^{3}+b x .
$$

Over $\mathbb{F}_{p}\left(b^{1 / 8}\right), C$ maps to two elliptic curves E, E^{\prime} defined over $\mathbb{F}_{p}(\sqrt{b})$.

- E and E^{\prime} are isomorphic over $\mathbb{F}_{p}(i)$,
- $\Rightarrow \operatorname{Jac}(C)$ is isogenous over $\mathbb{F}_{p}\left(b^{1 / 8}, i\right)$ to $E \times E$,

Then $\operatorname{Jac}(C)$ is simple and isogenous over \mathbb{F}_{p} to $V_{4}(E)$.

- If $c=a / \sqrt{b}$, then $j(E)=\frac{2^{6}(3 c-10)^{3}}{(c-2)(c+2)^{2}}$
- Given $j(E)$, we can find equation for C.

A generalization of KT curves

Let C / \mathbb{F}_{p} be the hyperelliptic curve given by

$$
y^{2}=x^{5}+a x^{3}+b x .
$$

Over $\mathbb{F}_{p}\left(b^{1 / 8}\right), C$ maps to two elliptic curves E, E^{\prime} defined over $\mathbb{F}_{p}(\sqrt{b})$.

- E and E^{\prime} are isomorphic over $\mathbb{F}_{p}(i)$,
- $\Rightarrow \operatorname{Jac}(C)$ is isogenous over $\mathbb{F}_{p}\left(b^{1 / 8}, i\right)$ to $E \times E$,

Theorem: Suppose $b \in\left(\mathbb{F}_{p}^{*}\right)^{2} \backslash\left(\mathbb{F}_{p}^{*}\right)^{4}, E$ ordinary, $\pi_{E} \notin \mathbb{Q}(i)$. Then $\mathrm{Jac}(C)$ is simple and isogenous over \mathbb{F}_{p} to $V_{4}(E)$.

- If $c=a / \sqrt{b}$, then $j(E)=\frac{2^{6}(3 c-10)^{3}}{(c-2)(c+2)^{2}}$
- Given $j(E)$, we can find equation for C.

A second family of curves

Analogous results hold for the hyperelliptic curve C / \mathbb{F}_{p} given by

$$
y^{2}=x^{6}+a x^{3}+b .
$$

If certain conditions hold, there is an elliptic curve E / \mathbb{F}_{p} such that $\operatorname{Jac}(C)$ is simple and isogenous over \mathbb{F}_{p} to $V_{3}(E)$.

One final problem

- Recall: if $E\left(\mathbb{F}_{p^{d}}\right)$ is pairing-friendly with d minimal, (i.e., $r \mid \# E\left(\mathbb{F}_{p^{d}}\right)$ and $\left.r \mid p^{k}-1\right)$ then $V_{d}(E)\left(\mathbb{F}_{p}\right)$ is pairing-friendly.
- Given such an E, with $d=3$ or 4 , we can (often)* construct C such that $\operatorname{Jac}(C) \sim V_{d}(E)$.
- Question: How to construct such an E ?
- Answer: adapt algorithm of Cocks-Pinch.
- Input: quadratic imaginary field K, integers k and d.
- Output: Frobenius element $\pi \in \mathcal{O}_{K}$, subgroup order r.
- Use CM method to find $j(E)$ for E with Frobenius element π (requires K "small").
- We can now construct a pairing-friendly genus 2 curve C !

[^0]
Best results

- Brezing-Weng modification of Cocks-Pinch algorithm:
(1) Parametrize Frobenius as $\pi(x) \in K[x]$ and subgroup order as $r(x) \in \mathbb{Z}[x]$.
(2) Find x_{0} with $p\left(x_{0}\right)=\pi\left(x_{0}\right) \bar{\pi}\left(x_{0}\right)$ and $r\left(x_{0}\right)$ both prime.
(3) Continue construction as before to find a pairing-friendly hyperelliptic cuve $C / \mathbb{F}_{p\left(x_{0}\right)}$.
- For large $x_{0}, \rho(\operatorname{Jac}(C))=\frac{\log p\left(x_{0}\right)^{2}}{\log r\left(x_{0}\right)} \approx \frac{4 \operatorname{deg} \pi}{\operatorname{deg} r}$.

Best result: $k=27, d=3, K=\mathbb{Q}(i), r(x)=\Phi_{108}(x)$,

Best results

- Brezing-Weng modification of Cocks-Pinch algorithm:
(1) Parametrize Frobenius as $\pi(x) \in K[x]$ and subgroup order as $r(x) \in \mathbb{Z}[x]$.
(2) Find x_{0} with $p\left(x_{0}\right)=\pi\left(x_{0}\right) \bar{\pi}\left(x_{0}\right)$ and $r\left(x_{0}\right)$ both prime.
(3) Continue construction as before to find a pairing-friendly hyperelliptic cuve $C / \mathbb{F}_{p\left(x_{0}\right)}$.
- For large $x_{0}, \rho(\operatorname{Jac}(C))=\frac{\log p\left(x_{0}\right)^{2}}{\log r\left(x_{0}\right)} \approx \frac{4 \operatorname{deg} \pi}{\operatorname{deg} r}$.

Best result: $k=27, d=3, K=\mathbb{Q}(i), r(x)=\Phi_{108}(x)$,
$\pi(x)=\frac{1}{2}\left(-x^{20}+x^{18}+i x^{11}+i x^{9}+x^{2}-1\right), \quad \rho \approx 20 / 9 \approx 2.22$.

Extra roots of unity cause problems

- On inputs $d=4, K=\mathbb{Q}\left(\zeta_{3}\right)$, algorithm produces E / \mathbb{F}_{p} with $j(E)=0$ and $V_{4}(E)$ pairing-friendly.
- Can always find C / \mathbb{F}_{p} with $\operatorname{Jac}(C) \sim_{\mathbb{F}_{p^{4}}} E^{\prime} \times E^{\prime}, j\left(E^{\prime}\right)=0$, and $\operatorname{Jac}(C)$ simple $\left(\operatorname{so~} \operatorname{Jac}(C) \sim_{\mathbb{F}_{p}} V_{4}\left(E^{\prime}\right)\right)$.
- $\operatorname{Frob}_{p}(E)=\alpha \cdot \operatorname{Frob}_{p}\left(E^{\prime}\right)$ for some α with $\alpha^{6}=1$.
- Good case: if $\alpha= \pm 1$ then $\operatorname{Jac}(C) \sim V_{4}\left(E^{\prime}\right) \sim V_{4}(E)$.
- Bad case: if $\alpha \neq \pm 1$ then $\operatorname{Jac}(C) \sim V_{4}\left(E^{\prime}\right) \sim A$ for some 2-dimensional subvariety $A \subset V_{12}(E)$.

Experimental data

Heuristically, if parameters are "random" then we expect the good case $\alpha= \pm 1$ one third of the time.

- π not parametrized as a polynomial: in 1000 trials, 323 curves fall into the good case.
- $\pi(x)=\frac{1}{6}\left((\gamma-3) x^{3}-(\gamma+3) x^{2}-2 \gamma x+2 \gamma\right) \quad[\gamma=\sqrt{-3}]:$ in 1000 trials, 1000 curves fall into the good case.
- $\pi(x)=\frac{1}{12}\left((\gamma-1) x^{2}+(-2 \gamma+6) x+(6 \gamma-6)\right)$ [Kachisa]: in 1000 trials, $\mathbf{0}$ curves fall into in the good case.
A pairing-friendly curve C produced from the last π would set a record: $\rho(\operatorname{Jac}(C)) \approx 2$.

Experimental data

Heuristically, if parameters are "random" then we expect the good case $\alpha= \pm 1$ one third of the time.

- π not parametrized as a polynomial: in 1000 trials, 323 curves fall into the good case.
- $\pi(x)=\frac{1}{6}\left((\gamma-3) x^{3}-(\gamma+3) x^{2}-2 \gamma x+2 \gamma\right) \quad[\gamma=\sqrt{-3}]$: in 1000 trials, $\mathbf{1 0 0 0}$ curves fall into the good case.
- $\pi(x)=\frac{1}{12}\left((\gamma-1) x^{2}+(-2 \gamma+6) x+(6 \gamma-6)\right)$ [Kachisa]: in 1000 trials, $\mathbf{0}$ curves fall into in the good case.
A pairing-friendly curve C produced from the last π would set a record: $\rho(\operatorname{Jac}(C)) \approx 2$.

Some questions

(1) Explain this experimental behavior.
(2) If $\operatorname{Jac}(C) \sim A \subset V_{12}(E)$, is $V_{4}(E)$ isogenous to $\operatorname{Jac}\left(C^{\prime}\right)$ for any curve $C^{\prime} / \mathbb{F}_{p}$?
(3) How do we find a curve $C^{\prime} / \mathbb{F}_{p}$ with $\operatorname{Jac}\left(C^{\prime}\right) \sim V_{4}(E)$ in this case?
If $p \equiv 3(\bmod 4)$ then $y^{2}=x^{5}+a x^{3}+b x$ splits over \mathbb{F}_{p} or maps to elliptic curves defined over $\mathbb{F}_{p^{2}}$ - our method fails!
(4) For E / \mathbb{F}_{p} produced from our algorithm, find $C^{\prime} / \mathbb{F}_{p}$ with $\operatorname{Jac}\left(C^{\prime}\right) \sim V_{4}(E)$, or show none exists.

Some questions

- Explain this experimental behavior.
(2) If $\operatorname{Jac}(C) \sim A \subset V_{12}(E)$, is $V_{4}(E)$ isogenous to $\operatorname{Jac}\left(C^{\prime}\right)$ for any curve $C^{\prime} / \mathbb{F}_{p}$?
(3) How do we find a curve $C^{\prime} / \mathbb{F}_{p}$ with $\operatorname{Jac}\left(C^{\prime}\right) \sim V_{4}(E)$ in this case?
If $p \equiv 3(\bmod 4)$ then $y^{2}=x^{5}+a x^{3}+b x$ splits over \mathbb{F}_{p} or maps to elliptic curves defined over $\mathbb{F}_{p^{2}}$ - our method fails!
(1) For E / \mathbb{F}_{p} produced from our algorithm, find $C^{\prime} / \mathbb{F}_{p}$ with $\mathrm{Jac}\left(C^{\prime}\right) \sim V_{4}(E)$, or show none exists.

Some questions

- Explain this experimental behavior.
(2) If $\mathrm{Jac}(C) \sim A \subset V_{12}(E)$, is $V_{4}(E)$ isogenous to $\mathrm{Jac}\left(C^{\prime}\right)$ for any curve $C^{\prime} / \mathbb{F}_{p}$?
(3) How do we find a curve $C^{\prime} / \mathbb{F}_{p}$ with $\operatorname{Jac}\left(C^{\prime}\right) \sim V_{4}(E)$ in this case?
If $p \equiv 3(\bmod 4)$ then $y^{2}=x^{5}+a x^{3}+b x$ splits over \mathbb{F}_{p} or maps to elliptic curves defined over $\mathbb{F}_{p^{2}}$ - our method fails!
(1) For E / \mathbb{F}_{p} produced from our algorithm, find $C^{\prime} / \mathbb{F}_{p}$ with $\mathrm{Jac}\left(C^{\prime}\right) \sim V_{4}(E)$, or show none exists.

Answers?

[^0]: *Assuming that the equation involving $j(E)$ has a solution in $\mathbb{F}_{\bar{p}}$

