
The Load Rebalancing Problem

Gagan Aggarwal
∗

gagan@cs.stanford.edu
Rajeev Motwani

†

rajeev@cs.stanford.edu
An Zhu

‡

anzhu@cs.stanford.edu

Department of Computer Science
Stanford University
Stanford, CA 94305

ABSTRACT
In the classical load balancing or multiprocessor scheduling prob-
lem, we are given a sequence of jobs of varying sizes and are asked
to assign each job to one of them empty processors. A typical ob-
jective is to minimize makespan, the load on the heaviest loaded
processor. Since in most real world scenarios the load is a dynamic
measure, the initial assignment may be not remain optimal with
time. Motivated by such considerations in a variety of systems, we
formulate the problem ofload rebalancing— given a possibly sub-
optimal assignment of jobs to processors, relocate a set of the jobs
so as to decrease the makespan. Specifically, the goal is to achieve
the best possible makespan under the constraint that no more than
k jobs are relocated. We also consider a generalization of this prob-
lem where there is an arbitrary cost function associated with each
job relocation. Since the problem is clearly NP-hard, we focus on
approximation algorithms. We construct a sophisticated algorithm
which achieves a 1.5-approximation, with near linear running time.
We also show that the problem has a PTAS, resolving the com-
plexity issue. Finally, we investigate the approximability of several
extensions of the rebalancing model.

Categories and Subject Descriptors
F.2.2 [Analysis Of Algorithms And Problem Complexity]: Non-
numerical Algorithms and Problems—Sequencing and scheduling;
G.2.1 [Discrete Mathematics]: Combinatorics—Combinatorial al-
gorithms;
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications

∗Supported by a Stanford Graduate Fellowship.
†Supported in part by NSF Grant IIS-0118173, an Okawa Foun-
dation Research Grant, an SNRC grant, and grants from Microsoft
and Veritas.
‡Supported by a GRPW fellowship from Bell Labs, Lucent Tech-
nologies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’03,June 7–9, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-661-7/03/0006 ...$5.00.

General Terms
Algorithms,Theory,Management

Keywords
Approximation Algorithms, Load Balancing, Scheduling

1. INTRODUCTION
Consider a set of web servers, each with a set of (virtual) web-

sites. As information is collected about the usage of each website
on each web server, it might become apparent that the load is not
uniformly distributed across the web servers. An obvious solution
would be to reassign websites to web servers so as to minimize the
maximum load on a server.

This is a typical instance of the multiprocessor scheduling or
the load balancing problem. However, moving websites from one
server to another could incur substantial cost so it would be de-
sirable to balance the load while minimizing the movement cost.
There are also a variety of other problems involving task migra-
tion to balance load. The systems community has shown consider-
able interest in the problem of process migration in the context of
scheduling jobs on multiple processors. Some of the benefits de-
rived from process migration are utilization of processing time on
an idling CPU, migrating a small job to the site of a very large data
file, and improved reliability. (Nuttall [12] gives a good survey of
work in process migration.) Some have argued [9] that the perfor-
mance benefits of process migration are limited to unrealistic CPU-
bound workloads, while others [6] have done trace-driven simula-
tions to claim that process migration is useful in real-world situa-
tions. The key issue is whether the benefit derived from utilization
of an idle CPU justifies the cost of migrating a process. Rudolph et
al [13] have attempted to devise process migration schemes which
migrate only afew processes, assuming a unit-size job model. In
this paper, we formalize the notion offew processes, while doing
away with the assumption of unit-sized processes, thus making the
model more realistic. There has also been work on modeling the
proximity of processors, under which processes can be migrated
to nearbyprocessors only. Hu et al [7] provide an elegant diffu-
sive technique for load balancing in this model. Ghosh et al [4]
prove that a local load balancing algorithm (under a similar notion
of proximity of processors) achieves a fairly good global balance,
while usingfewmoves (they actually use the notion of time rather
than moves). In their model too, all jobs are assumed to be of equal
size.

Motivated by the above, we formulate the problem ofload re-
balancing– given a possibly suboptimal assignment of jobs to pro-
cessors, reassign jobs to different processors so as to minimize the

makespan, by moving as few jobs as possible. More specifically,
we look at the problem of minimizing the makespan, while migrat-
ing no more thank jobs, or incurring cost no more thanB where
each job’s migration has an arbitrary cost. The load rebalancing
problem can be viewed as a special case of the generalized assign-
ment problem, where the goal is to minimize makespan within a
given cost budget for jobs with machine dependent costs and pro-
cessing times. For arbitrary number of machines, the generalized
assignment problem is MAX-SNP-hard; further, it is known that
this problem cannot be approximated better than factor of 1.5 [10].
The best positive result known is the 2-approximation algorithm
due to Shmoys and Tardos [14], via linear programming. When the
number of machines is fixed, the generalized assignment problem
admits a PTAS, as described in the work of Efraimidis and Spi-
rakis [2], Jansen and Porkolab [8], and Fishkin et al [3].

In this paper, we devise algorithms that are specific to the load re-
balancing problem and obtain better results. We show that a simple
variant of Graham’s greedy heuristic [5] yields a 2-approximation.
We then construct a more sophisticated algorithm which achieves a
better approximation factor of 1.5 and still has the sameO(nlogn)
running time bound as the greedy algorithm. In fact, we also man-
age to devise a PTAS for our problem; though the 1.5-approximation
algorithm is much faster and hence, more likely to be useful in
practice (Linder and Shah [11] have implemented our algorithms
for load balancing of webservers via website migration and have
achieved promising experimental results.) We then show that the
problem of minimizing the relocation cost to achieve a given load
is hard to approximate. Finally, we investigate the approximability
of several extensions of the rebalancing problem, and show that all
such extensions are at least MAX-SNP-hard.

The rest of this paper is organized as follows. We first formally
define the problem, establish its NP-hardness and describe a 2-
approximate greedy algorithm in Section 2. Then in Section 3 we
present the 1.5-approximation algorithm. In Section 4, we present
a PTAS for this problem. Finally, Section 5, we investigate the
approximability of several extensions of the rebalancing model.

2. PRELIMINARIES
We begin with a formal definition of the problem. Suppose there

is a set ofn jobs of varying sizes, says1 ≥ s2 ≥ ·· · ≥ sn. Initially,
these jobs are assigned to a set ofmprocessorsP1, . . . ,Pm. Theload
on a processor is the sum of the sizes of the jobs assigned to it.

DEFINITION 1. [The Load Rebalancing Problem]Given an
assignment of the n jobs to m processors, and a positive integer k,
relocate no more than k jobs so as to minimize the maximum load
on a processor. More generally, we are given a cost function ci
which is the cost of relocating job i, and the constraint is that the
total relocation cost be bounded by a specified budget B.

The problem is NP-complete via a reduction from multiproces-
sor scheduling (just setk = n). There is a simple reduction from
the load rebalancing problem to the generalized assignment prob-
lem: Simply setci j = 0 (ci j denotes the cost of assigning jobi
to machinej) if job i currently resides on machinej, andci j = 1
otherwise. By the results of Shmoys and Tardos [14], we obtain a
2-approximation algorithm for load rebalancing.

We first observe that for this specific problem, a much simpler al-
gorithm achieves the same 2-approximation. Consider the follow-
ing GREEDY algorithm, which is a simple variant of Graham’s
greedy algorithm for makespan.

Algorithm GREEDY:

1. Repeatk times: From the maximum-load processor, remove
the largest job.

2. Consider thek jobs removed in an arbitrary order. Place each
of these job in the current minimum-load processor.

Let OPT denote the value of the optimal solution to the load
rebalancing problem. Further, letG1 andG2 denote the maximum
processor load after the first and second step, respectively.

LEMMA 1. G1 ≤ OPT.

PROOF. We claim that Step 1 is the optimal way of removingk
jobs so as to minimize the maximum processor load. To see this,
suppose there exists another set of removalsR of jobs, after which
the maximum load is smaller, sayMR. Without loss of generality,
we can assume thatR removes from each processor the largest pos-
sible jobs, i.e.,R never leaves a larger job in the processor while
removing a smaller job. In comparing, GREEDY with R, look at
any particular processorb such that the greedy algorithm removes
more jobs thanR. Look at the first time GREEDY is about to remove
a job from processorb which R does not. At that point, GREEDY

has already removed all jobs removed byR from processorb, so if
Sb is the load on processorb at that point, thenSb ≤ OPT. Also
since GREEDY is about to remove another job from processorb,
it implies thatb is the maximum-loaded processor at that time;
hence,G1 ≤ Sb. SinceSb ≤ MR andMR ≤ OPT, it follows that
G1 ≤ OPT.

LEMMA 2. G2 ≤ (2− 1
m)OPT.

PROOF. Consider the maximum-loaded processor after Step 2,
say j, and note that this load isG2. If j did not receive any new
jobs during Step 2, thenG2 = G1 ≤ OPT. Otherwise, lets denote
the size of the last job added to processorj. Note that the final load
of processorj is G2, and that prior to the addition of the job of size
s, processorj was the processor of minimum load (otherwise the
job would not have been assigned to it). We obtain that the total
load on the processors is at leastm(G2− s) + s which is a lower
bound onm×OPT. Quite clearly,s itself is a lower bound on
OPT, and so we obtain the two inequalities:m× (G2− p)+ p≤
m×OPT and p≤ OPT. Combining the inequalities implies that
G2 ≤ (2− 1

m)OPT.

THEOREM 1. GREEDY runs in O(nlogn) time and has atight
approximation ratio of2− 1

m.

PROOF. Lemma 2 provides an upper bound for the algorithm.
To see that the approximation bound is tight, assume thatk≥m−1
and consider the following example. The input instance consists of
one job of sizem, andm2−m jobs of size 1. In the initial configura-
tion, each processor hasm−1 jobs of size 1, and the first processor
also contains the job of sizem. If GREEDY considers the job of size
m last in Step 2, it will reproduce the original configuration and be
of value 2m−1. On the other hand, the relocation of onlym−1
jobs of size 1 from the first processor will give an assignment of
valuem.

To calculate the running time, note that in Step 1, sorting takes
O(nlogn) time. In Step 2, we needO(k logm) to reinsert the re-
moved jobs. Since the interesting instances havek,m≤ n, we ob-
tain a running time ofO(nlogn).

3. THE 1.5-APPROXIMATION
We now present a more sophisticated algorithm which improves

on the approximation ratio within the sameO(nlogn) running time
bound. We first consider the unit-cost version of the problem. We
useOPT to denote the optimal value of the makespan.

DEFINITION 1. Jobs of sizestrictly greater than1
2OPT are re-

ferred to aslarge, and the rest are referred to assmall. Let LT
denote thetotal numberof large jobs. Let mL be the number of
processors with at least one large job; then, LE = LT −mL denotes
the number ofextra large jobs on this set of processors. We say a
processor islarge freeif currently it doesn’t contain any large jobs.

Clearly, the value ofOPT needs to be known to enable us to clas-
sify jobs as being large or small. The following algorithm assumes
that the exact value ofOPT is provided. Later, in Section 3.1, we
will do away with this assumption.

Algorithm PARTITION:

1. From each of themL processors which has a large job, re-
move all large jobs, except for the smallest-size large job
therein.

2. Calculate for each processori, the following values with re-
spect to their current configuration:

• ai : the minimum number of small jobs to be removed
so that the total size of the remaining small jobs is at
most 1

2OPT.
• bi : the minimum number of jobs (including any large

job) to be removed so that the total size of the remaining
jobs (including any large job) is at mostOPT.

• ci = ai −bi

3. Select theLT processors with the smallest values ofci , break-
ing ties by giving preference to the processors containing
large jobs. Remove theai small jobs from the selected pro-
cessors, thereby ensuring that the total size of the remaining
small jobs on these processors is at most1

2OPT.

4. From the remainingm− LT processors, remove thebi jobs
from them. Large jobs, if any, on these processors will be
removed and need to be reassigned. Assign each of the re-
moved large jobs (arbitrarily) to distinct large-free processors
created in Step 3.

5. Arbitrarily assign the large jobs removed in Step 1 to the
remaining large-free processors.

6. For the small jobs removed in Steps 3 and 4, assign them
one-by-one to the current minimum-load processor.

Henceforth, OPTIMAL will denote an algorithm which solves the
problem optimally. We approach the analysis through the notion of
a “configuration.” A configuration is a (possibly partial) assign-
ment of jobs to processors, where we ignore the exact sizes of large
jobs. Specifically, theinitial configuration denotes precisely the
initial assignment of jobs to processors and is the same for both
OPTIMAL and PARTITION. A final configuration is the assignment
produced by an algorithm and could be different for the two algo-
rithms.

FACT 1. In OPTIMAL ’s final configuration, each processor has
at most one large job.

Observe that for any algorithm, we may freely reorder the se-
quence of job removals and reassignments (while ensuring that a
job’s removal precedes its reassignment) without affecting the final
result. By fact 1, OPTIMAL must relocate at leastLE large jobs.
We assume, without loss of generality, that OPTIMAL first removes
LE large jobs from processors containing multiple large jobs. (This

is as in PARTITION ’s Step 1, although the two algorithms may re-
move different large jobs.) At this point OPTIMAL is in the same
configuration as PARTITION after Step 2. We formalize this class
of configuration as follows.

DEFINITION 2. An extra-freeconfiguration is any configura-
tion obtained from the initial configuration by removing all but one
large job from processors containing multiple large jobs. As al-
ways, the exact sizes of the large jobs remaining in the processors
is ignored.

We claim, without loss of generality, that both OPTIMAL and
PARTITION must go from anextra-freeconfiguration to one of a
special class of configurations calledhalf-optimal.

DEFINITION 3. A partial assignment of jobs to processors, ex-
cluding the LE large jobs removed in Step 1, is calledhalf-optimal
if it satisfies all following conditions:

• There are exactly LE large jobs which arenot assigned to
any processor.

• An arbitrary subset of the small jobs arenot assigned to any
processor.

• There are exactly LT −LE processors which have exactly one
large job; in these processors, the small jobs must have total
size not exceeding12OPT.

• The remaining processors do not have any large jobs. Of
these, at least LE processors have total load at most1

2OPT,
and the remaining m−LT processors have total load at most
OPT.

It can be verified that PARTITION enters an extra-free configu-
ration at the end of Step 1, and then a half-optimal configuration
at the end of Step 4. While going from the initial to a final con-
figuration, an algorithm must reassign all jobs that are removed at
any point. However, since an intermediate configuration is only a
partial assignment of jobs, we will encounter cases where an algo-
rithm removes but does not reassign jobs in making a configuration
change. Since the jobs which are reassigned are exactly the same as
the jobs which are removed, we can keep track of the cost incurred
by an algorithm by simply keeping track of cost of the removals
only. Thus, while counting the number of moves made by an algo-
rithm in going from one configuration to another, we consider only
the removals of jobs, making reassignment of removed jobs a free
operation.

The basic idea behind the rest of the analysis is to establish that
both PARTITION and OPTIMAL go from an extra-free to a half-
optimal configuration. We then establish that PARTITION uses the
minimum possible number of moves to perform this configuration
change, and therefore does not use more moves than OPTIMAL .
After reaching a half-optimal configuration, PARTITION only re-
assigns jobs that already have been removed and we focus on the
approximation ratio achieved in going from the half-optimal con-
figuration to the final configuration.

LEMMA 3. The number of removals needed to go from an extra-
free configuration to a half-optimal configuration is at least as many
as the number of removals performed byPARTITION in Steps 2
through 4 in going from its own extra-free configuration to its own
half-optimal configuration.

PROOF. Consider any sequence of movesS which starts with an
extra-free configuration and reaches a half-optimal configuration.
We will reorder the moves ofS in three phases:

Phase 1: In the target half-optimal configuration, there must beLT
processors such that the total size of the small jobs on each
of them is no more than12OPT; further, exactlyLT −LE of
these processors will also contain a large job (the outstand-
ing LE large jobs will be placed into the large-free processors
at a later stage). We assume, without loss of generality, that
S first completes the removal of small jobs from theseLT
processors. We know that the total number of removals from
each of these processors is at least theai value for that pro-
cessor.

Phase 2: In the second phase,S removes jobs (small and large)
from the remainingm− LT processors so as to ensure that
each of them has load no more thanOPT and that none of
them contain a large job. For each of them−LT processors,
S must remove at leastbi jobs.

Phase 3: This phase will contain all the remaining moves ofS ,
including any moves it makes to shuffle the large jobs around
amongst theLT processors.

Thus, for S to achieve a half-optimal configuration, the total
number of removals is at least the sum of someai values forLT
processors, combined with the sum ofbi values for the remaining
m−LT processors. This total is the same as the sum ofci values
for LT processors, combined with thebi values for allm proces-
sors. But PARTITION ’s cost is exactly the same, and it chooses
the LT processors with the minimumci values, which implies the
desired result.

LEMMA 4. The total number of moves performed byPARTI-
TION is no more than the total number of moves performed byOP-
TIMAL .

PROOF. We will reorder the sequence of moves for both algo-
rithms into three phases:

1. removal ofLE extra large jobs to achieve an extra-free con-
figuration;

2. removal of small jobs and relocation of remaining large jobs
to achieve a half-optimal configuration;

3. reassignment of theLE extra large jobs from Phase 1 and the
small jobs from Phase 2.

In Phase 1, both algorithms remove the same number of jobs. By
Lemma 3, the number of moves used by PARTITION in Phase 2
cannot exceed the number of moves for OPTIMAL . Phase 3 costs
nothing since it does not involve any job removals.

THEOREM 2. Algorithm PARTITION achieves an approxima-
tion ratio of 3

2 , and this bound is tight.

PROOF. First, we claim that after Step 5, the maximum proces-
sor load for PARTITION is no more than32OPT. To see this, observe
that at the end of Step 4, PARTITION is in an half-optimal config-
uration. In this configuration, there arem− LT processors with
load at mostOPT. Of the rest, there areLT −LE processors with
a single large job and total size of small jobs not exceeding1

2OPT,
and therefore their total load is at most3

2OPT. The remainingLE

processors have no large jobs and total load at most1
2OPT. The

latter processors are assigned a single large job each in Step 5, and
therefore end up with load not exceeding3

2OPT.
Consider now Step 6, where we greedily reassign the left-over

small jobs. Consider the maximum-loaded processor at the end,
say j. If j did not receive any new jobs during Step 6, then by the
preceding comments the load on this processor is at most3

2OPT

and we are done. Otherwise, lets denote the size of the last job
added to processorj. Let the final load of processorj be l . Note
that prior to the addition of the job of sizes, processorj was the
processor of minimum load (otherwise the job would not have been
assigned to it). We obtain that the total load on the processors is
at leastm(l − s) + s which is a lower bound onm×OPT, giving
the inequalitym(l − s)+ s≤ m×OPT. Quite clearly,s≤ 1

2OPT
since in Step 6 we are only dealing with small jobs. Combining
the two inequalities implies thatl ≤ (3

2 −
2
m)OPT and again we are

done. Overall, we can only guarantee a bound of3
2 (and not32 −

2
m)

because it is possible that processorj already had load32OPT at the
end of Step 6 and did not receive any new job in Step 7.

To verify the tightness of this bound, consider the following in-
stance: we have 2 processors, the first containing two jobs of size
1
2 and 1, and the second containing only a job of size1

2 . We are
allowedk = 1 moves, soOPT = 1. Given this value ofOPT, we
will obtain LT = 1, LE = 0, a1 = 0, a2 = 0, b1 = 1, andb2 = 0. It
is easy to see that PARTITION will not make any moves whatsoever
and will have performance ratio exactly3

2 .

3.1 Determining the Optimal Value
We now show it is possible to implement PARTITION without

knowing the value ofOPT. Observe that PARTITION does not di-
rectly take care of the constraint of making at mostk moves; instead
it assumes that OPTIMAL makes no more thank moves and guar-
antees that it makes no more moves than OPTIMAL . We will now
show that there is a set of discrete threshold values, such that only
when the valueOPT changes across any of them does it affect the
execution of PARTITION. And then, we will use the fact thatOPT
can make onlyk moves to infer where the true value of theOPT
lies among those threshold values.

First, PARTITION needs to know the value ofLT , the number of
large jobs. The key observation is that as the value ofOPT varies,
only when 1

2OPT crosses some job’s processing timep j , does the
value ofLT change. This gives usO(n) threshold values.

We can extend this idea to incorporate the changes inai andbi .
More precisely, letni denote the number of jobs on processori
indexed in increasing order of size; also, letns

i denote the number
of small jobs on processori. Let pi

j denote the processing time of

the jth job assigned to processori. Then, for 1≤ l ≤ ni , the sums
Bl = ∑l

j=1 pi
j are all the threshold values forOPT at which thebi

value can change. Specifically,bi = ni − l for OPT ∈ [Bl ,Bl+1),
with B0 = 0 andBni+1 = ∞. Similarly, for 1≤ l ≤ ns

i , the sums
Al = 2∑l

j=1 pi
j are all the threshold values forOPT where theai

values can change; in fact,ai = ns
i − l for OPT ∈ [Al ,Al+1), with

A0 = 0 andAns
i +1 = ∞. The set of allai andbi threshold values

over all processorsi, together with 2p j over all jobs j, constitute
a set of discrete threshold values forOPT such that knowingOPT
relative to these thresholds is sufficient to implement PARTITION.

LEMMA 5. Enumerate in increasing order all threshold values
for each processor i, with respect to LT , ai , and bi . Then, LT , ai , bi
remain unchanged for OPT varying between any two consecutive
threshold values.

We can increase the value of OPT gradually, by trying the thresh-
old values in increasing order. The modified PARTITION algorithm
is then as follows:

Algorithm M-PARTITION:

1. Use the average load as the starting guess forOPT.

2. Calculate the correspondingLT , LE, ai , bi , andci values us-
ing PARTITION. Let k̂ be the total number of moves needed
by this algorithm.

3. while k̂ > k do

• Increase the guessed value ofOPT to be the next higher
threshold value.

• Recalculate theLT , LE, ai , bi , ci , and k̂ values using
PARTITION.

4. Return the result produced by the last execution of PARTI-
TION.

LEMMA 6. The maximum threshold value not exceeding OPT
gives the same value for LT , ais and bi as the exact value of OPT,
and thusM-PARTITION proceeds exactly asPARTITION till Step 6.
The reassignment of small jobs may differ but this does not affect
the number of jobs moved. Hence, whenM-PARTITION terminates,
the final threshold value is at most OPT.

THEOREM 3. Algorithm M-PARTITION gives an approxima-
tion ratio of1.5 in time O(nlogn).

PROOF. Since the final threshold used is no more thanOPT, us-
ing an analysis similar to the proof of Theorem 2, we can show that
the approximation ratio achieved by M-PARTITION is 1.5. Now
we shall calculate the running time. For the first run of PARTITION

in Step 3 of M-PARTITION, we have to sort the jobs by their sizes
and also sort theci values, which requires timeO(nlogn). For each
of the subsequent runs corresponding to theO(n) possible distinct
threshold values, we need only constant time to do the incremental
changes to the valueLT , ai , andbi . Also, we note that for each
run, at most oneci value is changes by 1. Since the values ofci are
integral, we need constant time to update the sorted list ofci and
calculatêk.

3.2 Extension to Arbitrary Cost Functions
We show how to modify the algorithm PARTITION to work for

the more general arbitrary cost case. This algorithm assumes that
we know that exact value of the makespan in the optimal solution;
we can guess this value via binary search while incurring a small
error. In particular, we could spendO(log(logm

log(1+α))) time for a

guess to be betweenOPT and(1+α)OPT.1

For a particular guessed valueA, we need to estimate the the
minimum costCA required to achieve a makespan ofA. We modify
PARTITION to find a solution with makespan at most 1.5A incurring
a cost,CP

A, which is at mostCA. If CP
A ≥ B, then it is an indication

that the guessA is too low, and vice versa. So we revise our guess
accordingly and run modified PARTITION with the new guess.

The difficulty for the arbitrary cost function lies in determining
which large jobs to remove in step 1 and also calculating theai , bi ,
andci values in step 2. For unit cost, the greedy algorithms work
and we can separate the two steps, which is no longer the case here.
We merge steps 1 and 2, replacing them with the following:

• ai : the minimum cost to remove all but one large job (if any)
and a set of small jobs so that the total size of the remaining
small jobs is at most12A. This is equivalent to the following

1Clearly, the maximum load in the original instance is an upper
bound onOPT. The average load is a lower bound onOPT, and
is at most 1

m of the maximum load. This impliesmaximumload
m ≤

OPT≤ maximumload.

knapsack problem: find the set of small jobs to be remain in
the processor such that the total size is no more than1

2A, and
the total relocation cost of these jobs is as high as possible.
As for the large jobs, simply remove all but the most costly
one.

• bi : the minimum cost to remove jobs so that the total size
of the remaining jobs (including any large job) is at mostA.
Similarly, one can use a straightforward knapsack routine for
this calculation.

• ci = ai −bi

If the maximum relocation cost or the jobs sizes are polynomi-
ally bounded, then we can solve the knapsack problems exactly.
Otherwise, one can use a PTAS in the place of the knapsack routine
to find the set of jobs with total size at most(1+ε) 1

2A (or (1+ε)A)
and maximum relocation cost, the rest of the jobs will have a total
relocation cost ofai (or bi). Thus, instead of calculating the real
ai andbi value, we substitute the lower boundsai andbi for them.
The technique here is similar to the PTAS we discuss in the next
section; however, for the sake of completeness, we give the details
here. We will show how to calculatebi ; theai ’s can be calculated
in a similar manner.

We redefine the notion of large and small jobs as follows - note
that this definition applies only to the discussion on calculatingai ,
bi , andci , andnot the algorithm PARTITION itself. Letδ be a con-
stant, which we shall determine later.

DEFINITION 4. Large jobs are defined to be jobs of sizestrictly
greater thanδ×A. The remaining jobs are said to be small.

We discretize the large jobs byrounding uptheir size to the near-
est value in the sequencel i = δ(1+δ)iA. We describe the configu-
ration of a processor by an(s+1)-tuple(x1,x2, . . . ,xs,VS), wherexi
denotes the number of large jobs of (discretized) sizel i = δ(1+δ)iA
andVS is the total size of the small jobs. We will discretizeVS too,
by rounding upto the nearest integral multiple ofδ×A. Thus,VS
can take onO(1

δ) distinct values. The minimum cost to achieve a
makespan of(1+ δ)A in the discretized instance is no more than
the cost to achieveA in the original instance. Further, there are
only constantly many distinct configurations with total job size
less than(1+ δ)A. For each processor, we enumerate through all
such possible configurations, and calculate the minimum cost to
change to that configuration. For a given configuration,(s+ 1)-
tuple,(x1,x2, . . . ,xs,VS), we calculate the minimum cost as follows:

• For large jobs, we simply remove the most expensive jobs in
each fixed size class so there are exactlyxi remaining.

• For small jobs, we allow further approximation to the total
load. We greedily remove small jobs with the largest cost to
size ratio until the total size of the small jobs is betweenVS
andVS+δA. This is possible because the size of a small job
is no more thanδA.

Out of all these possible configurations, we pick the one with
the minimum cost of transformation. Thus, we find a configura-
tion with total load(1+2δ)A, such that the cost of transformation
from the processor’s current configuration to that configuration is
no more than the cheapest way to transform to any configuration
with total load at mostA. Thus, if we letδ = ε/2, the minimum
cost found by this procedure is a lower bound onbi . Also if we
remove the jobs corresponding to this cost, we are left with a pro-
cessor load of at most(1+ ε)A. We can calculateai in a similar
manner.

Having calculatedai ,bi , andci , the rest of the algorithm proceeds
the same as Steps 3–6 in PARTITION. Via arguments similar to
Lemma 3, we have the following.

LEMMA 7. The total cost of removal needed to go from the ini-
tial configuration to a half-optimal configuration is at least as many
as the cost incurred byPARTITION.

PROOF. Consider any sequence of movesS which starts with
the initial configuration and reaches a half-optimal configuration.
We will reorder the moves ofS in three phases:

Phase 1: In the ending half-optimal configuration, there must be
LT processors such that the total size of the small jobs on
each of them is no more than12A; further, each of these pro-
cessors contains at most one large job. We assume, without
loss of generality, thatS first completes the removal of small
and large jobs from theseLT processors. We know that the
total number of removals from each of these processors is at
least theai value for that processor.

Phase 2: In the second phase, the moves ofS are those which re-
move jobs (small and large) from the remainingm−LT pro-
cessors so as to ensure that each of them has load no more
thanA and that none of them contain a large job. For each of
them−LT processors,S must remove at leastbi jobs.

Phase 3: This phase will contain all the remaining moves ofS ,
including any moves it makes to shuffle the large jobs around
amongst theLT processors. We simply ignore these extra
moves and do not include their cost.

Thus, for S to achieve a half-optimal configuration, the total
number of removals is at least the sum of someai values forLT
processors, combined with the sum ofbi values for the remaining
m−LT processors. This total is the same as the sum ofci values
for LT processors, combined with thebi values for allm proces-
sors. But PARTITION ’s cost is exactly the same, and it chooses the
LT processors with minimumci value, which implies the desired
result. As for the case where we substituteai ≤ ai andbi ≤ bi , we
argue the optimal solution involvingai andbi is no more than that
of ai andbi .

Overall, one achieves an approximation ratio of (1.5+ ε + α),
whereε > 0 andα > 0 are constants.

4. APPROXIMATION SCHEME FOR AR-
BITRARY COST FUNCTIONS

We now present a PTAS for the load rebalancing problem. In
fact, the PTAS applies to the more general version of the load re-
balancing problem where the cost of relocation of a jobi is ci and
the constraint is to keep the total relocation cost below a specified
budgetB.

We first give an overview of the PTAS. As in the case of any
PTAS for packing or scheduling problems, we will need to employ
the standard techniques of discretization and dynamic program-
ming; however, we need to be careful in handling the small jobs
which are usually not an issue. In some other problems such as the
multiple knapsack problem [1], small (high-profit) items need to be
handled separately, but the choice of a bin for a small item does not
have a dramatic effect on the final profit. In our case, since small
jobs may have a huge relocation cost, they cannot be arbitrarily re-
located to any machine. At a high level, our idea is to bundle the
small jobs together and only consider their total size on any single
machine, while managing the roundoff errors.

As before, we begin by assuming that the exact value ofOPT
is known. Letδ ∈ (0,1] be a parameter to be specified later. We
redefine the notion of large and small jobs as follows.

DEFINITION 5. Large jobs are defined to be jobs of sizestrictly
greater thanδ×OPT. The remaining jobs are said to be small.

We useVT to denote the total size of the jobs on a processor, andVS
to denote the total size ofsmall jobs on a processor. We discretize
the large jobs byrounding uptheir size to the nearest value in the
sequencel i = δ(1+ δ)iOPT. This restricts the large jobs’ sizes to
consist of onlys= d 1

δ log 1
δ e distinct values. LetOPT denote the

optimal load value for thediscretizedinstance.

LEMMA 8. OPT≤ OPT≤ (1+δ)OPT

We describe the configuration of a processor by an(s+1)-tuple
(x1,x2, . . . ,xs,VS), wherexi denotes the number of large jobs of
(discretized) sizel i = δ(1+ δ)iOPT andVS is the total size of the
small jobs. We will discretizeVS too, byrounding upto the nearest
integral multiple ofδ×OPT. Thus,VS can take onO(1

δ) distinct
values.

DEFINITION 6. The configuration of a processor(x1, . . . ,xs,VS)
is called W-feasibleif VT = VS+∑s

i=1xi l i ≤W.

There are only a constant number,O(1
δs+1), of W-feasible con-

figurations for a single processor, whenW is of the order ofOPT.

LEMMA 9. Consider a job assignment which achievesOPT for
the discretized instance. If we round up the total size of small jobs
on each processor to an integral multiple ofδOPT, then the result-
ing configuration is(OPT+δOPT)-feasible.

We will use dynamic programming to construct a solution for
the discretized instance. We assume an ordering on the proces-
sors. The goal is to construct a table, each entry of which repre-
sents a solution for an instance of the problem and is indexed by an
(s+2)-tuple (n1,n2, . . . ,ns,M,V). HereM denotes the total num-
ber of processors in the instance,ni denotes the total over allM
processors of the number of large jobs of sizel i , andV denotes an
upper bound on the total (rounded-up) load of the small jobs on the
M processors. LetVR be the total load of all small jobs rounded up
to the next higher multiple ofδ×OPT

While specifying the initial input instance, ideally we want to
makeV the total rounded up load of small jobs in Lemma 9. But we
don’t know the exactly value, instead, we use a good upper bound
onV. We know in Lemma 9, the total rounded up load of small jobs
is no more than the total load of small jobs, plus at mostδOPT per
processor. LetVR be the total load of all small jobs rounded up
to the next higher multiple ofδ×OPT. Thus,V = VR+ δmOPT,
wherem is the total number of processors.

LEMMA 10. For V =VR+δmOPT and ni ’s as in the discretized
instance, there exists an(OPT+ 2δOPT)-feasible configuration.
(We call this configuration Cround.)

PROOF. To verify this lemma, observe that in the rounded-up
configuration used in Lemma 9, the sum of the total rounded-up
load of each processor may add up to less thanV, but is definitely
at leastVR. So, we need to add at mostδOPT load to each processor
to matchV. After this, the load on any processor is no more than
OPT+2δOPT.

The value indexed by an(s+2)-tuple(n1,n2, . . . ,ns,M,V) is the
minimum relocation cost needed to get the firstM processors to an

OPT+2δOPT-feasible configuration in which they haveni jobs of
sizel i (for 1≤ i ≤ s), and the total size of the small jobs isV. Since
0≤ ni ≤ n, 0≤ M ≤ m, andV is a multiple ofδOPT, the table size
is bounded byO(mns+1), which is polynomial in the input size.

For an entry indexed by(n1,n2, . . . ,ns,M,V), we look at the last
of theM processors. Let the current configuration of this processor
beC = (x1,x2, . . . ,xs,v). Try all possible(OPT+2δOPT)-feasible
configurationsC′ = (x′1,x

′
2, . . . ,x

′
s,v

′). For each feasible configu-
ration, calculate the minimum relocation costCOST(C,C′) needed
to get fromC to C′ configuration as follows (we only count the to-
tal cost of jobs to be removed from that processor to achieve the
configuration).

1. initialize COST(C,C′) = 0;

2. for i = 1 to s do if xi > x′i then removexi −x′i jobs of sizel i of
minimum cost, and incrementCOST(C,C′) with the sum of
those costs;

3. if v > v′ then greedily remove small jobs in increasing order
of cost-to-size ratio untilVS ≤ v′ + δOPT, and increment
COST(C,C′) with the sum of those costs.

For configurationC′, let nC′

i = ni − x′i andVC′
= V − v′. Then,

the entry for index(n1,n2, . . . ,ns,M,V) is computed by

min
f easible C′

COST(C,C′)+(nC′

1 , . . . ,nC′
s ,M−1,VC′

).

The base case for the dynamic programming is(n1 = 0,n2 = 0, . . . ,
ns = 0,M = 0,V = 0) = 0. During the computation,ni andV stay
non-negative.

It is easy to show that the cost incurred in removing large jobs is
minimum. As for small jobs, since their sizes are all at mostδOPT,
as we perform greedy removals, there will come a point whenv′ <
VS≤ v′ + δOPT. The total cost incurred till this point is no more
than the cost that would be incurred to achieve a configuration in
which the total load of the small jobs is no more thanv′. Thus,
the total removal cost incurred by the algorithm is no more than an
optimal algorithm would use to achieve the configurationCround.

Now lets focus on reassignment of removed jobs. A large job of
type i can be assigned freely to any processor which has available
space for jobs of typei. Now consider the load on each processor
before we reassign any of the small jobs.

LEMMA 11. If no small jobs were removed from a processor,
then its load is no more than its load in the Cround configuration,
which is (OPT+ 2δOPT). For the other processors from which
small jobs were removed, the load exceeds the load in the Cround
configuration by at mostδOPT. Thus, the load on each of those
processors is no more than(OPT+3δOPT).

It can be seen that the small jobs may be assigned to any pro-
cessori whose total load of small jobs is below the calculatedVS
bound, i.e., the processors that are(OPT+2δOPT)-feasible. Since
the small jobs are of size at mostδOPT, the final load does not ex-
ceedOPT+ 3δOPT on these processors that received more small
jobs. So overall, the final load on each processor is no more than
OPT+3δOPT≤ (1+4δ)OPT.

It remains to remove the assumption that the value ofOPT is
known in advance. We can determine the value ofOPT to within
a factor of 1+ δ via binary search, using the total relocation cost
produced by the algorithm for a given guess forOPT to find the
smallest value ofOPT (within a precision ofδ) for which we get
relocation cost at mostB. The algorithm finds a solution with re-
location cost at mostB, in timeO(mns+1), such that the maximum
processor load is at most(1+5δ)OPT. Settingδ = ε/5, we obtain:

THEOREM 4. Our algorithm rebalances the jobs amongst pro-
cessors at cost at most B, such that the maximum processor load is

at most(1+ ε)OPT, and with running time m(5n
ε)

5
ε log 5

ε .

5. LIMITS TO APPROXIMATION
Consider themove minimizationproblem: Given a boundB on

maximum processor load, minimize the number of moves required
to achieve this. (If the boundB is not achievable, the algorithm
should report∞.) The following theorem is a result of a reduction
from the well-known PARTITION problem.

THEOREM 5. There is no approximation algorithm with poly-
nomial running time for the move minimization problem, unless
P = NP.

One question left open is whether the relocation cost is hard to
approximate even when the target load is strictly above the mini-
mum load achievable.

We now present results which show that certain polynomial ap-
proximation algorithms cannot exist unless P=NP. We study the
problem under the broader setting of the generalized assignment
problem. We restrict our attention to instances where the process-
ing time of a job is independent of the processor on which it is
processed.2 Note that if the cost function for a particular jobi is
independent of the processor, i.e.,ci j = ci for all processorsj, then
the problem is equivalent to multiprocessor scheduling, for which
an FPTAS exists. The load rebalancing problem is the special case
where the cost of a jobi is a constantl i = 0 on a particular proces-
sor j, and a constanthi ≥ l i on all other processors. Our analysis
shows that such a problem admits a PTAS.3 In a more general set-
ting, when each job can have only one of two distinct costs for any
processor, the problem is MAX-SNP-hard.

THEOREM 6. The makespan minimization problem with costs
ci j ∈ {p,q} (p 6= q) does not have a polynomialρ-approximation
algorithm, for anyρ < 3

2 , unless P=NP.

PROOF. The proof is along the same line as the3
2 hardness proof

in [10]. We start from the 3-dimensional matching problem.

Instance: Disjoint setsA = {a1, . . . ,an},B = {b1, . . . ,bn},C =
{c1, . . . ,cn}, and a familyF = {T1, . . . ,Tm} of triples with
|Ti ∩A| = |Ti ∩B|= |Ti ∩C|= 1 for i = 1, . . . ,m.

Question: DoesF contain a matching, i.e., a subfamilyF ′ for
which |F ′|= n and∪Ti∈F ′ Ti = A∪B∪C?

We create an instance ofm machines. Machinesi corresponds
to triple Ti , for i = 1, . . . ,m. We call the triples that containa j of
type j. Let t j be the number of triples of typej for j = 1, . . . ,n.
We have 2n element jobs of unit size, each job corresponds to an
element inB∪C. For each typej we also createt j −1 dummy jobs
of size 2 each (so there are a total ofm−n dummy jobs). Machine
i corresponding to a triple of typej, sayTi = (a j ,bk,cl), incurs
a cost ofp processing each of the element jobs corresponds tobk
andcl and the typej dummy jobs. And the rest of the jobs have
cost ofq on machinei. The maximin cost allowed is(m+n)× p.
This implies each feasible solution must assignment each job to a
machine with costp.

Suppose there is a matching, then all jobs can be scheduled with
cost exactly(m+ n)× p so that the makespan is 2 for each ma-
chine. Conversely, a schedule of makespan 2 within cost(m+n)×
2Lenstra et al [10] considered jobs with machine dependent pro-
cessing times, but without cost constraints.
3Our proof can be extended to arbitraryl i andhi ≥ l i .

p implies a matching of sizen. Since the next possible value for
makespan is 3, this implies a32 hardness bound.

We consider two natural extensions of the load rebalancing prob-
lem, and present negative results in both cases. TheConstrained
Load Rebalancingproblem has the additional constraint that each
job can be reassigned to a specified subset of machines only.

COROLLARY 1. Unless P=NP, the Constrained Load Rebal-
ancing problem cannot be approximated below1.5 in polynomial
time.

The best upper bound known is the 2-approximation by Shmoys
and Tardos [14]. However, whether there exists a3

2 approxima-
tion algorithm for the Constrained Load Rebalancing problem is an
interesting open question.

We define another variant called theConflict Schedulingproblem
with the additional constraint that some specified pairs of jobs have
conflicts and cannot be assigned to the same processor. We show
that the Conflict Scheduling problem is very hard to approximate.

THEOREM 7. There is no polynomial algorithm that approxi-
mates the makespan of the Conflict Scheduling problem within any
ratio, unless P=NP.

PROOF. We perform a reduction from 3-dimensional matching.
We start with a description of the 3-dimensional matching problem.

Instance: Disjoint setsA = {a1, . . . ,an},B = {b1, . . . ,bn},C =
{c1, . . . ,cn}, and a familyF = {T1, . . . ,Tm} of triples with
|Ti ∩A|= |Ti ∩B|= |Ti ∩C| = 1 for i = 1, . . . ,m.

Question: DoesF contain a matching, i.e., a subfamilyF ′ for
which |F ′|= n and∪Ti∈F ′ Ti = A∪B∪C?

There arem machines, each corresponds to a triple inF . There are
m jobs, each corresponds to a triple inF (call them triple jobs). No
two triple jobs can be assigned to the same machine, so a feasible
solution would have spread thesem jobs one per machines. There
are also 3n jobs each corresponds to an element inA∪B∪C (call
them element jobs). Each element job can only be assigned to-
gether with the corresponding triple job, i.e., element jobu can be
assigned together with triple jobTi , iff u∈ Ti . And finally, there are
m−n dummy jobs. No two dummy jobs can be assigned together,
and none of the element jobs can be assigned with them either. Dis-
regard job costs and sizes, if there is a feasible assignment of jobs
to machines that satisfy the conflicts, then the following holds:

• There is one triple job per machine.

• There arem−n machines, each has one dummy job.

• All the 3n element jobs are assigned among the rest of then
machines. Each machine is assigned exactly 3 element jobs
corresponds toa j ,bk,cl , and the triple job on that machine is
Ti = (a j ,bk,cl).

So a feasible assignment of the jobs implies a matching of sizen
and vice versa. Notice that any approximation algorithm will give
an answer that is feasible if and only if a feasible assignment exists,
hence the result.

6. ACKNOWLEDGMENTS
We thank S. Keshav of Ensim Corporation for posing the load

rebalancing problem.

7. REFERENCES

[1] C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack
Problem.Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2001, pages
213-222.

[2] P. Efraimidis and P. Spirakis. Randomized Approximation
Schemes for Scheduling Unrelated Parallel Machines.
Electronic Colloquium on Computational Complexity
(ECCC), Technical Report TR00-007, 2000.

[3] A. Fishkin, K. Jansen, and M. Mastrolilli. Grouping
techniques for scheduling problems: simpler and faster.
Proceedings of the 9th Annual European Symposium on
Algorithms, 2001, pages 206–217.

[4] B. Ghosh, F.T. Leighton, B.M. Maggs, S. Muthukrishnan,
C.G. Plaxton, R. Rajaraman, A.W. Richa, R.E. Tarjan, and
D. Zuckerman. Tight analyses of two local load balancing
algorithms. InProceedings of the ACM Symposium on Theory
of Computing, 1995, pages 548–558.

[5] R.L. Graham. Bounds for certain multiprocessing anomalies.
Bell System Technical Journal, 45 (1966):1563–1581.

[6] M. Harchol-Balter and A.B. Downey. Exploiting process
lifetime distributions for dynamic load balancing.ACM
Transactions on Computer Systems, 15(1997):253–285.

[7] Y.F. Hu, R.J. Blake, and D.R. Emerson. An optimal migration
algorithm for dynamic load balancing.Concurrency: Practice
and Experience, 10(1998):467–483.

[8] K. Jansen and L. Porkolab. Improved Approximation Schemes
for Scheduling Unrelated Parallel Machines.31st Annual
ACM Symposium on Theory of Computing (STOC), 1999,
pages 408–417.

[9] E.D. Lazowska, D.L. Eager, and J. Zahorjan. The limited
performance benefits of migrating active processes for load
sharing.ACM Performance Evaluation Review,
16(1998):63–72.

[10] J.K. Lenstra, D. Shmoys, and E. Tardos. Approximation
Algorithms for Scheduling Unrelated Parallel Machines.
Mathematical Programming, 46(1990):259–271.

[11] P.B. Linder and A. Shah. Website Migration Load Balancing
of Web Servers.Manuscript.

[12] M. Nuttall. A brief summary of systems providing process or
object migration facilities.Operating Systems Review,
28(1994):64–80.

[13] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple
load balancing scheme for task allocation in parallel
machines. InProceedings of the Annual ACM Symposium on
Parallel Algorithms and Architectures, 1991.

[14] D. Shmoys and E. Tardos. An approximation algorithm for
the generalized assignment problem.Mathematical
Programming, 62(1993):461–474.

