The Load Rebalancing Problem

*) LT ¥
Gagan Aggarwal Rajeev Motwani An Zhu
gagan@cs.stanford.edu rajeev@cs.stanford.edu anzhu@cs.stanford.edu

Department of Computer Science
Stanford University
Stanford, CA 94305

ABSTRACT General Terms

In the classical load balancing or multiprocessor scheduling prob- Algorithms,Theory,Management
lem, we are given a sequence of jobs of varying sizes and are asked

to assign each job to one of theempty processors. A typical ob- Kevwords

jective is to minimize makespan, the load on the heaviest loaded y

processor. Since in most real world scenarios the load is a dynamicApproximation Algorithms, Load Balancing, Scheduling

measure, the initial assignment may be not remain optimal with

time. Motivated by such considerations in a variety of systems, we

formulate the problem dbad rebalancing— given a possibly sub- 1 INTRODUCTION

optimal assignment of jobs to processors, relocate a set of the jobs Consider a set of web servers, each with a set of (virtual) web-
so as to decrease the makespan. Specifically, the goal is to achievéites. As information is collected about the usage of each website
the best possible makespan under the constraint that no more tha®n each web server, it might become apparent that the load is not
kjobs are relocated. We also consider a generaﬁzation of this prob_UnifOI’m|y distributed across the web servers. An obvious solution
lem where there is an arbitrary cost function associated with eachwould be to reassign websites to web servers so as to minimize the
job relocation. Since the problem is clearly NP-hard, we focus on maximum load on a server.

approximation algorithms. We construct a sophisticated algorithm ~ This is a typical instance of the multiprocessor scheduling or
which achieves a 1.5-approximation, with near linear running time. the load balancing problem. However, moving websites from one
We also show that the problem has a PTAS, resolving the com- Server to another could incur substantial cost so it would be de-
plexity issue. Finally, we investigate the approximability of several sirable to balance the load while minimizing the movement cost.
extensions of the rebalancing model. There are also a variety of other problems involving task migra-
tion to balance load. The systems community has shown consider-
able interest in the problem of process migration in the context of
scheduling jobs on multiple processors. Some of the benefits de-

Categones and SUbJeCt Descrlptors rived from process migration are utilization of processing time on

F.2.2 [Analysis Of Algorithms And Problem Complexity]: Non- an idling CPU, migrating a small job to the site of a very large data
numerical Algorithms and ProblemsSequencing and scheduling file, and improved reliability. (Nuttall [12] gives a good survey of

G.2.1 Discrete Mathematic§: Combinatorics—€ombinatorial al- work in process migration.) Some have argued [9] that the perfor-
gorithms mance benefits of process migration are limited to unrealistic CPU-
C.2.4 [Computer-Communication Networks]: Distributed Sys- bound workloads, while others [6] have done trace-driven simula-
tems—Distributed applications tions to claim that process migration is useful in real-world situa-

tions. The key issue is whether the benefit derived from utilization

" _ of an idle CPU justifies the cost of migrating a process. Rudolph et
Supported by a Stanford Graduate Fellowship. al [13] have attempted to devise process migration schemes which
Supported in part by NSF Grant 11S-0118173, an Okawa Foun- migrate only afew processes, assuming a unit-size job model. In

dation Research Grant, an SNRC grant, and grants from Microsoft this paper, we formalize the notion t#w processeswhile doing

%nd Veritas. _ away with the assumption of unit-sized processes, thus making the
Supported by a GRPW fellowship from Bell Labs, Lucent Tech- model more realistic. There has also been work on modeling the
nologies. proximity of processors, under which processes can be migrated

to nearbyprocessors only. Hu et al [7] provide an elegant diffu-

sive technique for load balancing in this model. Ghosh et al [4]

prove that a local load balancing algorithm (under a similar notion
Permission to make digital or hard copies of all or part of this work for Of proximity of processors) achieves a fairly good global balance,
personal or classroom use is granted without fee provided that copies arewhile usingfewmoves (they actually use the notion of time rather
not made or distributed for profit or commercial advantage and that copies than moves). In their model too, all jobs are assumed to be of equal
bear this notice and the full citation on the first page. To copy otherwise, to sjze.

republish, to post on servers or to redistribute to lists, requires prior specific \14tivated by the above, we formulate the problemiazd re-
permission and/or a fee. ’

SPAA03,June 7-9, 2003, San Diego, California, USA. balancing— given a possibly suboptimal assignment of jobs to pro-
Copyright 2003 ACM 1-58113-661-7/03/000655.00. cessors, reassign jobs to different processors so as to minimize the

makespan, by moving as few jobs as possible. More specifically, 1. Repeak times: From the maximum-load processor, remove

we look at the problem of minimizing the makespan, while migrat- the largest job.
ing no more thark jobs, or incurring cost no more tha@where 2. Consider th& jobs removed in an arbitrary order. Place each
each job’s migration has an arbitrary cost. The load rebalancing of these job in the current minimum-load processor.

problem can be viewed as a special case of the generalized assign-

ment problem, where the goal is to minimize makespan within a | et OPT denote the value of the optimal solution to the load
given cost budget for jobs with machine dependent costs and pro-rebalancing problem. Further, 164 andG, denote the maximum
cessing times. For arbitrary number of machines, the generalizedprocessor load after the first and second step, respectively.
assignment problem is MAX-SNP-hard; further, it is known that
this problem cannot be approximated better than factor of 1.5[10]. LEMMA 1. G; < OPT.
The best positive result known is the 2-approximation algorithm PROOF. We claim that Step 1 is the optimal way of removiag
due to Shmoys and Tardos [14], via linear programming. When the jobs so as to minimize the maximum processor load. To see this,
number of machines is fixed, the generalized assignment problemsuppose there exists another set of remoRas$ jobs, after which
admits a PTAS, as described in the work of Efraimidis and Spi- the maximum load is smaller, s&yr. Without loss of generality,
rakis [2], Jansen and Porkolab [8], and Fishkin et al [3]. we can assume thBrremoves from each processor the largest pos-
In this paper, we devise algorithms that are specific to the load re- sible jobs, i.e.R never leaves a larger job in the processor while
balancing problem and obtain better results. We show that a simpleremoving a smaller job. In comparing,RBEDY with R, look at
variant of Graham's greedy heuristic [5] yields a 2-approximation. any particular processdrsuch that the greedy algorithm removes
We then construct a more sophisticated algorithm which achieves amore jobs thaiR. Look at the first time @EEDY is about to remove
better approximation factor of 1.5 and still has the s@(elogn) a job from processadp which R does not. At that point, 8EEDY
running time bound as the greedy algorithm. In fact, we also man- has already removed all jobs removedmfrom processob, so if
age to devise a PTAS for our problem; though the 1.5-approximations, is the load on processdrat that point, ther§, < OPT. Also
algorithm is much faster and hence, more likely to be useful in since GREeDY is about to remove another job from procesbpr
practice (Linder and Shah [11] have implemented our algorithms it implies thatb is the maximum-loaded processor at that time;
for load balancing of webservers via website migration and have hence,G; < S,. SinceS, < Mg and Mg < OPT, it follows that
achieved promising experimental results.) We then show that the G; < OPT. [
problem of minimizing the relocation cost to achieve a given load
is hard to approximate. Finally, we investigate the approximability ~ LEMMA 2. Gz < (2— 1)OPT.
of several extensions of the rebalancing problem, and show that all Proor Consider the maximum-loaded processor after Step 2,
such extensions are at least MAX-SNP-hard. say j, and note that this load i&;. If j did not receive any new
The rest of this paper is organized as follows. We first formally jobs during Step 2, the@®, = G; < OPT. Otherwise, let denote
define the problem, establish its NP-hardness and describe a 2+the size of the last job added to procesgadXote that the final load
approximate greedy algorithm in Section 2. Then in Section 3 we of processol is G,, and that prior to the addition of the job of size
present the 1.5-approximation algorithm. In Section 4, we present s, processorj was the processor of minimum load (otherwise the
a PTAS for this problem. Finally, Section 5, we investigate the job would not have been assigned to it). We obtain that the total

approximability of several extensions of the rebalancing model. load on the processors is at leasG; — s) + s which is a lower
bound onm x OPT. Quite clearly,s itself is a lower bound on
2. PRELIMINARIES OPT, and so we obtain the two inequalitiesix (Go — p) + p <
Lo . mx OPT and p < OPT. Combining the inequalities implies that
We begin with a formal definition of the problem. Suppose there Gy < (2— %)gpfr. O g q p

is a set ofn jobs of varying sizes, sagt > s, > - > . Initially,
these jobs are assigned to a sangfrocessor®, . .., Pn. Theload THEOREM 1. GREEDY runs in Q(nlogn) time and has dight
on a processor is the sum of the sizes of the jobs assigned toit. approximation ratio o2 — n%

PROOF Lemma 2 provides an upper bound for the algorithm.
To see that the approximation bound is tight, assumekthain— 1
'and consider the following example. The input instance consists of
one job of sizem, andm? —mjobs of size 1. In the initial configura-
tion, each processor has— 1 jobs of size 1, and the first processor
also contains the job of size. If GREEDY considers the job of size
mlast in Step 2, it will reproduce the original configuration and be
of value 2In— 1. On the other hand, the relocation of omhy~ 1

The problgm IS NP-complete via a redugtlon from mgltlproces- jobs of size 1 from the first processor will give an assignment of
sor scheduling (just sé&¢= n). There is a simple reduction from valuem

the load rebalancing problem to the generalized assignment prob- To calculate the running time, note that in Step 1, sorting takes

lem: Simply setcij = 0 (G denotes the cost of assigning job O(nlogn) time. In Step 2, we nee®(klogm) to reinsert the re-

to machinej) if job i currently resides on machine andcjj = 1 moved jobs. Since the interesting instances Hawe< n, we ob-
otherwise. By the results of Shmoys and Tardos [14], we obtain a tain a running time o®(nlogn). [J T

2-approximation algorithm for load rebalancing.
We first observe that for this specific problem, a much simpler al- _
gorithm achieves the same 2-approximation. Consider the follow- 3. THE 1.5-APPROXIMATION

ing GREEDY algorithm, which is a simple variant of Graham's ~ We now present a more sophisticated algorithm which improves
greedy algorithm for makespan. on the approximation ratio within the sar®¢nlogn) running time

bound. We first consider the unit-cost version of the problem. We
useOPT to denote the optimal value of the makespan.

DEFINITION 1. [The Load Rebalancing Problem]Given an
assignment of the n jobs to m processors, and a positive integer k
relocate no more than k jobs so as to minimize the maximum load
on a processor. More generally, we are given a cost function ¢
which is the cost of relocating job i, and the constraint is that the
total relocation cost be bounded by a specified budget B.

Algorithm GREEDY:

DEFINITION 1. Jobs of sizestrictly greater than%OPT are re-
ferred to aslarge and the rest are referred to asmall Let Lt
denote theotal numberof large jobs. Let m be the number of
processors with at least one large job; theg, £ Lt —m_ denotes
the number oéxtralarge jobs on this set of processors. We say a
processor idarge freef currently it doesn’t contain any large jobs.

Clearly, the value o®PT needs to be known to enable us to clas-
sify jobs as being large or small. The following algorithm assumes
that the exact value dDPT is provided. Later, in Section 3.1, we
will do away with this assumption.

Algorithm PARTITION:

1. From each of then_ processors which has a large job, re-
move all large jobs, except for the smallest-size large job
therein.

2. Calculate for each processgothe following values with re-
spect to their current configuration:

e g;: the minimum number of small jobs to be removed
so that the total size of the remaining small jobs is at
most3OPT.

e bi: the minimum number of jobs (including any large
job) to be removed so that the total size of the remaining
jobs (including any large job) is at moSPT.

e C=a —b

3. Selectthét processors with the smallest valuesiobreak-

ing ties by giving preference to the processors containing
large jobs. Remove tha smalljobs from the selected pro-

cessors, thereby ensuring that the total size of the remaining

small jobs on these processors is at w%@PT.

4. From the remainingn— Lt processors, remove th® jobs
from them. Large jobs, if any, on these processors will be

removed and need to be reassigned. Assign each of the re-

moved large jobs (arbitrarily) to distinct large-free processors
created in Step 3.

5. Arbitrarily assign the large jobs removed in Step 1 to the
remaining large-free processors.

is as in RRTITION’s Step 1, although the two algorithms may re-
move different large jobs.) At this point®¥IMAL is in the same
configuration as ARTITION after Step 2. We formalize this class
of configuration as follows.

DEFINITION 2. An extra-freeconfiguration is any configura-
tion obtained from the initial configuration by removing all but one
large job from processors containing multiple large jobs. As al-
ways, the exact sizes of the large jobs remaining in the processors
is ignored.

We claim, without loss of generality, that bothr@mAL and
PARTITION must go from arextra-freeconfiguration to one of a
special class of configurations callkedlf-optimal

DEFINITION 3. A partial assignment of jobs to processors, ex-
cluding the Ig large jobs removed in Step 1, is callbdlf-optimal
if it satisfies all following conditions:

e There are exactly t large jobs which arenot assigned to
any processor.

e An arbitrary subset of the small jobs anetassigned to any
processor.

e There are exactlyt— Lg processors which have exactly one
large job; in these processors, the small jobs must have total
size not exceedingOPT.

e The remaining processors do not have any large jobs. Of
these, at leastt processors have total load at mo%@PT,
and the remaining m Lt processors have total load at most
OPT.

It can be verified that ARTITION enters an extra-free configu-
ration at the end of Step 1, and then a half-optimal configuration
at the end of Step 4. While going from the initial to a final con-
figuration, an algorithm must reassign all jobs that are removed at
any point. However, since an intermediate configuration is only a
partial assignment of jobs, we will encounter cases where an algo-
rithm removes but does not reassign jobs in making a configuration
change. Since the jobs which are reassigned are exactly the same as
the jobs which are removed, we can keep track of the cost incurred
by an algorithm by simply keeping track of cost of the removals

6. For the small jobs removed in Steps 3 and 4, assign them only. Thus, while counting the number of moves made by an algo-

one-by-one to the current minimum-load processor.

Henceforth, @TIMAL will denote an algorithm which solves the

problem optimally. We approach the analysis through the notion of

a “configuration.” A configuration is a (possibly partial) assign-

ment of jobs to processors, where we ignore the exact sizes of large

jobs. Specifically, thenitial configuration denotes precisely the

initial assignment of jobs to processors and is the same for both

OPTIMAL and RRTITION. A final configuration is the assignment
produced by an algorithm and could be different for the two algo-
rithms.

Fact 1. In OpTIMAL'’s final configuration, each processor has
at most one large job.

Observe that for any algorithm, we may freely reorder the se-

guence of job removals and reassignments (while ensuring that a
job’s removal precedes its reassignment) without affecting the final

result. By fact 1, ®TIMAL must relocate at leasiz large jobs.
We assume, without loss of generality, that@MAL first removes
Lg large jobs from processors containing multiple large jobs. (This

rithm in going from one configuration to another, we consider only
the removals of jobs, making reassignment of removed jobs a free
operation.

The basic idea behind the rest of the analysis is to establish that
both RARTITION and CPTIMAL go from an extra-free to a half-
optimal configuration. We then establish thaiRPITION uses the
minimum possible number of moves to perform this configuration
change, and therefore does not use more moves tirnMAL.

After reaching a half-optimal configurationARTITION only re-
assigns jobs that already have been removed and we focus on the
approximation ratio achieved in going from the half-optimal con-
figuration to the final configuration.

LeEmMA 3. The number of removals needed to go from an extra-
free configuration to a half-optimal configuration is at least as many
as the number of removals performed PARTITION in Steps 2
through 4 in going from its own extra-free configuration to its own
half-optimal configuration.

PROOF Consider any sequence of mowewhich starts with an
extra-free configuration and reaches a half-optimal configuration.
We will reorder the moves of in three phases:

Phase 1:In the target half-optimal configuration, there musthe and we are done. Otherwise, ktlenote the size of the last job
processors such that the total size of the small jobs on eachadded to processqgr Let the final load of processgrbel. Note
of them is no more thaéOPT; further, exactlyLt — Lg of that prior to the addition of the job of size processolj was the
these processors will also contain a large job (the outstand- processor of minimum load (otherwise the job would not have been
ing Lg large jobs will be placed into the large-free processors assigned to it). We obtain that the total load on the processors is
at a later stage). We assume, without loss of generality, that at leastm(l — s) 4+ s which is a lower bound om x OPT, giving

S first completes the removal of small jobs from thése the inequalitym(l — s) + s < mx OPT. Quite clearly,s < %OPT
processors. We know that the total number of removals from since in Step 6 we are only dealing with small jobs. Combining
each of these processors is at leastghealue for that pro- the two inequalities implies that< (% — %)OPT and again we are
cessor. done. Overall, we can only guarantee a boung ¢dnd not3 — 2

Phase 2:In the second phase, removes jobs (small and large) because itis possible that procesgatready had Ioa@OPT atthe
from the remainingn— Lt processors so as to ensure that end of Step 6 and did not receive any new job in Step 7.

each of them has load no more th@RPT and that none of To verify the tightness of this bound, consider the following in-
them contain a large job. For each of tine- Lt processors, stance: we have 2 processors, the first containing two jobs of size
S must remove at lea$i jobs. % and 1, and the second containing only a job of s}ze\Ne are
Phase 3: This phase will contain all the remaining moves $f allowedk = 1 moves, s®OPT = 1. Given this value 0OPT, we
including any moves it makes to shuffle the large jobs around Will obtainLt =1,Lg = 0,8 = 0,82 =0,b; = 1, andbp = 0. It
amongst thé.t processors. is easy to see thatRTITION will not make any moves whatsoever

and will have performance ratio exacl%y O
Thus, for$ to achieve a half-optimal configuration, the total
number of removals is at least the sum of scenealues forLt 3.1 Determining the Optimal Value
processors, combined with the sumbpfvalues for the remaining We now show it is possible to implemena®riTION without

m— Lt processors. This total is the same as the sum vlues knowing the value oDPT. Observe that ARTITION does not di-

for Ly processors, combined with e values for allm proces- rectly take care of the constraint of making at mostoves; instead
sors. But RRTITION‘S cost is gxactly the same, ar}d |t.chooses it assumes that BriMAL makes no more thakn moves and guar-

the I__T processors with the minimui values, which implies the antees that it makes no more moves tharMAL. We will now
desired result. [] show that there is a set of discrete threshold values, such that only
when the valu®©PT changes across any of them does it affect the
execution of RRTITION. And then, we will use the fact th@PT

can make onlyjk moves to infer where the true value of t&T

lies among those threshold values.

ProoOF We will reorder the sequence of moves for both algo- First, ARTITION needs to know the value &fr, the number of
rithms into three phases: large jobs. The key observation is that as the valu@BT varies,
only when%OPT crosses some job’s processing timg does the
value ofLt change. This gives u3(n) threshold values.

LEMMA 4. The total number of moves performed ByRTI-
TION is no more than the total number of moves performe®by
TIMAL .

1. removal ofLg extra large jobs to achieve an extra-free con-

figuration; We can extend this idea to incorporate the changes amdb;.
2. removal of small jobs and relocation of remaining large jobs More precisely, let; denote the number of jobs on processor
to achieve a half-optimal configuration; indexed in increasing order of siAze; also, étdenote the number
3. reassignment of thee extra large jobs from Phase 1 and the Of small jobs on processar Let p; denote the processing time of
small jobs from Phase 2. the ji" job assigned to processbrThen, for 1< | < n;, the sums

B = 3_1 P} are all the threshold values f@PT at which theb;
value can change. Specifically, = n; —1 for OPT € [By, B 1),
with By = 0 andBy, 11 = . Similarly, for 1< | < n?, the sums
A = 22']-:1 pi]- are all the threshold values f@PT where theg;
values can change; in fag;, = n¥ —| for OPT € [A, A1), with
THEOREM 2. Algorithm PARTITION achieves an approxima- Ap=0 andAnisH = . The set of alla; andb; threshold values
tion ratio of%, and this bound is tight. over all processorg together with p; over all jobsj, constitute
a set of discrete threshold values @PT such that knowin@PT
relative to these thresholds is sufficient to implemexgRTION.

In Phase 1, both algorithms remove the same number of jobs. By
Lemma 3, the number of moves used byrPITION in Phase 2
cannot exceed the number of moves farTOMAL. Phase 3 costs
nothing since it does not involve any job removal§.]

PrROOF First, we claim that after Step 5, the maximum proces-
sor load for RRTITION is no more tha OPT. To see this, observe
that at the end of Step 4ARTITION is in an half-optimal config-
uration. In this configuration, there am— Lt processors with
load at mosOPT. Of the rest, there arer — Lg processors with
a single large job and total size of small jobs not exceeéi@@’T,

and therefore their total load is at m(@)PT. The remainind-g

LEMMA 5. Enumerate in increasing order all threshold values
for each processor i, with respect tg L&, and k. Then, Ly, &, b
remain unchanged for OPT varying between any two consecutive
threshold values.

processors have no large jobs and total load at réﬁ)RT. The We can increase the value of OPT gradually, by trying the thresh-
latter processors are assigned a single large job each in Step 5, andld values in increasing order. The modifiedR?1TION algorithm
therefore end up with load not exceedig@PT. is then as follows:

Consider now Step 6, where we greedily reassign the left-over
small jobs. Consider the maximum-loaded processor at the end, a|gorithm M-PARTITION:
sayj. If j did not receive any new jobs during Step 6, then by the
preceding comments the load on this processor is at I%ﬁﬁ'l— 1. Use the average load as the starting gues®RIT.

2. Calculate the correspondihg, Lg, &, bj, andc; values us- knapsack problem: find the set of small jobs to be remain in

ing PARTITION. Letk be the total number of moves needed the processor such that the total size is no more §#srand
by this algorithm. the total relocation cost of these jobs is as high as possible.
PN As for the large jobs, simply remove all but the most costl
3. while k > kdo one gel ply y
e Increase the guessed valuegaR®T to be the next higher e b the minimum cost to remove jobs so that the total size
threshold value. of the remaining jobs (including any large job) is at mast
e Recalculate théT, Lg, &, by, G, andk values using Similarly, one can use a straightforward knapsack routine for
PARTITION. this calculation.
e Ci=3a—b

4. Return the result produced by the last execution AHTP-

TION. If the maximum relocation cost or the jobs sizes are polynomi-

ally bounded, then we can solve the knapsack problems exactly.
LEMMA 6. The maximum threshold value not exceeding OPT Otherwise, one can use a PTAS.in the place of}he knapsack routine

gives the same value forrl.as and b as the exact value of OPT, O find the set of jobs with total size at m@at+e) 3A (or (1+€)A)

and thusM-PARTITION proceeds exactly 2@ARTITION till Step 6. and maximum relocation cost, the_ rest of the jobs W|_II have a total

The reassignment of small jobs may differ but this does not affect elocation cost o (or bi). Thus, instead of calculating the real

the number of jobs moved. Hence, WiMPARTITION terminates, 3 andbj value, we substitute the lower bourgfsandb; for them.
the final threshold value is at most OPT . The technique here is similar to the PTAS we discuss in the next

section; however, for the sake of completeness, we give the details

THEOREM 3. Algorithm M-PARTITION gives an approxima- .here..V\(e will show how to calculatg; thea’s can be calculated

tion ratio of 1.5 in time Q(nlogn). in a similar manner. _
We redefine the notion of large and small jobs as follows - note

PROOF. Since the final threshold used is no more tR4?T, us- that this definition applies only to the discussion on calculaging
ing an analysis similar to the proof of Theorem 2, we can show that ;| andc;, andnotthe algorithm BRTITION itself. Letd be a con-
the appl’oxima’[ion ratio achieved by MaRTITION is 1.5. Now Stant, which we shall determine later.
we shall calculate the running time. For the first run aRPITION
in Step 3 of M-RARTITION, we have to sort the jobs by their sizes DEFINITION 4. Large jobs are defined to be jobs of s&gctly

and also sort the values, which requires tin@(nlogn). For each greater thand x A. The remaining jobs are said to be small.

of the subsequent runs corresponding to@iie) possible distinct

threshold values, we need only constant time to do the incremental We discretize the large jobs byunding uptheir size to the near-
changes to the valuer, a, andb;. Also, we note that for each estvalue in the sequente= 5(1+8)'A. We describe the configu-

run, at most one; value is changes by 1. Since the values;aire ration of a processor by &8+ 1)-tuple(xg, X2, . .., Xs, Vs), wherex
integral, we need constant time to update the sorted list ahd denotes the number of large jobs of (discretized) sized(1+6)'A
calculatek. [andVs is the total size of the small jobs. We will discretigtoo,

by rounding upto the nearest integral multiple éfx A. Thus,Vs
3.2 Extensionto Arbitrary Cost Functions can take orO(%) distinct values. The minimum cost to achieve a

We show how to modify the algorithmaRTITION to work for makespan of1+ d)A in the discretized instance is no more than
lthe cost to achieva in the original instance. Further, there are

the more general arbitrary cost case. This algorithm assumes tha o . . ;) .
only constantly many distinct configurations with total job size

we know that exact value of the makespan in the optimal solution; | than 1+ A, F h te th h all
we can guess this value via binary search while incurring a small ess thar(-t)A -or each processor, we enumerate through a
such possible configurations, and calculate the minimum cost to

; logm :
error. In particular, we could sperﬁ(log(log&w))) time for a change to that configuration. For a given configuratiy- 1)-
guess to be betweddPT and(1+a)OPT.! tuple,(xq, X2, . . ., Xs, Vs), we calculate the minimum cost as follows:
For a particular guessed valde we need to estimate the the
minimum costCa required to achieve a makespanfofwe modify e For large jobs, we simply remove the most expensive jobs in
PARTITION to find a solution with makespan at mos5A incurring each fixed size class so there are exagthgmaining.

a costCk, which is at mosCa. If C§ > B, then it is an indication
that the guesa is too low, and vice versa. So we revise our guess
accordingly and run modifieddRTITION with the new guess.

The difficulty for the arbitrary cost function lies in determining
which large jobs to remove in step 1 and also calculatingthla,
andc; values in step 2. For unit cost, the greedy algorithms work
and we can separate the two steps, which is no longer the case here.
We merge steps 1 and 2, replacing them with the following:

e For small jobs, we allow further approximation to the total
load. We greedily remove small jobs with the largest cost to
size ratio until the total size of the small jobs is betw&n
andVs+ 0A. This is possible because the size of a small job
is no more thadA.

Out of all these possible configurations, we pick the one with
the minimum cost of transformation. Thus, we find a configura-
tion with total load(1+ 28)A, such that the cost of transformation
from the processor’s current configuration to that configuration is
no more than the cheapest way to transform to any configuration
with total load at mosA. Thus, if we letd = €/2, the minimum
1Clearly, the maximum load in the original instance is an upper cost found by this procedure is a lower boundlpn Also if we

e g;: the minimum cost to remove all but one large job (if any)
and a set of small jobs so that the total size of the remaining
small jobs is at mos%A. This is equivalent to the following

bound onOPT. The average load is a lower bound OFT, and remove the jobs corresponding to this cost, we are left with a pro-
is at most of the maximum load. This implie§@imumioad cessor load of at mogtl +&)A. We can calculate; in a similar

OPT < maximumload manner.

Having calculate@y,bj, andc;, the rest of the algorithm proceeds As before, we begin by assuming that the exact valu®@BT
the same as Steps 3-6 inEITION. Via arguments similar to is known. Letd € (0,1] be a parameter to be specified later. We
Lemma 3, we have the following. redefine the notion of large and small jobs as follows.

LEMMA 7. The total cost of removal needed to go from the ini- ~ DEFINITION 5. Large jobs are defined to be jobs of s&tsctly
tial configuration to a half-optimal configuration is at least as many ~9reater thand x OPT. The remaining jobs are said to be small.

as the cost incurred bRARTITION. We useVr to denote the total size of the jobs on a processoryand

PROOF. Consider any sequence of movgsvhich starts with to denote the total size gimalljobs on a processor. We discretize
the initial configuration and reaches a half-optimal configuration. the large jobs byounding uptheir size to the nearest value in the
We will reorder the moves qf in three phases: sequencdai = 6(1+ 8)'OPT. This restricts the Iarge jObS, sizes to

consist of onlys = (Slog%} distinct values. LeOPT denote the
Phase 1:In the ending half-optimal configuration, there must be optimal load value for thdiscretizednstance.
Lt processors such that the total size of the small jobs on

each of them is no more tha; further, each of these pro- LEMMA 8. OPT < OPT < (1+48)OPT
cessors contains at most one large job. We assume, without]])
loss of generality, thas first completes the removal of small We describe the configuration of a processor bysan 1)-tuple

and large jobs from theder processors. We know that the (X1,X2;.--,Xs,Vs), wherex; denotes the number of large jobs of

total number of removals from each of these processors is at (discretized) sizé; = O(1+9)'OPT andVs is the total size of the
least theg; value for that processor. small jobs. We will discretiz¥s too, byrounding upto the nearest

integral multiple ofd x OPT. Thus,Vs can take orO(3) distinct

Phase 2:In the second phase, the movessoére those which re- values.

move jobs (small and large) from the remainimg- L1 pro-

cessors so as to ensure that each of them has load no more periniTION 6. The configuration of a processpxy, . . ., Xs, Vs)
thanA and that none of them contain a large job. For each of s called Wfeasibleif V1 = Vs+ 35Xl <W.

them— Lt processorss must remove at least jobs.

Phase 3: This phase will contain all the remaining moves %f _ There are only a constant numbeX, 51), of W-feasible con-
including any moves it makes to shuffle the large jobs around figurations for a single processor, whéhis of the order oOPT.
amongst theLt processors. We simply ignore these extra

moves and do not include their cost. LEMMA 9. Consider a job assignment which achie@RT for

the discretized instance. If we round up the total size of small jobs
Thus, for$ to achieve a half-optimal configuration, the total on each processor to an integral multiple@®PT, then the result-

number of removals is at least the sum of sommealues forLt ing configuration iSOPT + 60OPT)-feasible.

processors, combined with the sumbpfvalues for the remaining))))

m— Lt processors. This total is the same as the suig vélues We will use dynamic programming to construct a solution for
for Lt processors, combined with the values for allm proces- the discretized instance. We assume an ordering on the proces-

sors. But RRTITION’Ss cost is exactly the same, and it chooses the SOrS. The goal is to construct a table, each entry of which repre-
Lt processors with minimurg; value, which implies the desired sents a solution for an instance of the problem and is indexed by an

result. As for the case where we substitatec a; andb; < bj, we (s+2)-tuple (n, Nz,,ns,M,V). HereM denotes the total num-
argue the optimal solution involvirg andb; is no more than that ~ Per of processors in the instancg,denotes the total over allf
of a andb;. [processors of the number of large jobs of dizeandV denotes an
upper bound on the total (rounded-up) load of the small jobs on the
Overall, one achieves an approximation ratio o6 € + o), M processors. Letr be the total load of all small jobs rounded up
wherege > 0 anda > 0 are constants. to the next higher multiple a3 x OPT
While specifying the initial input instance, ideally we want to
_ makeV the total rounded up load of small jobs in Lemma 9. But we
4. APPROXIMATION SCHEME FOR AR don’t know the exactly value, instead, we use a good upper bound
BITRARY COST FUNCTIONS onV. We know in Lemma 9, the total rounded up load of small jobs

We now present a PTAS for the load rebalancing problem. In is no more than the total load of small jobs, plus at nd@®PT per
fact, the PTAS applies to the more general version of the load re- processor. Levg be the total load of all small jobs rounded up
balancing problem where the cost of relocation of aijisc; and to the next higher multiple 08 x OPT. Thus,V = Vg +dmOPT,
the constraint is to keep the total relocation cost below a specified Wheremis the total number of processors.
budgetB.

V\?e first give an overview of the PTAS. As in the case of any ~ LEMMA 10. ForV =Vgr+3mOPT and is as in the discretized
PTAS for packing or scheduling problems, we will need to employ instance, t_here exists ?(IOPT+ 200PT)-feasible configuration.
the standard techniques of discretization and dynamic program- (We call this configuration feund.)

ming; however, we need to be careful in handling the small jobs proor To verify this lemma, observe that in the rounded-up
which are usually not an issue. In some other problems such as theconfiguration used in Lemma 9, the sum of the total rounded-up
multiple knapsack problem [1], small (high-profit) items need to be |oad of each processor may add up to less ¥ahut is definitely
handled separately, but the choice of a bin for a small item does notat leasi/z. So, we need to add at ma@DPT load to each processor

have a dramatic effect on the final profit. In our case, since small to matchV. After this, the load on any processor is no more than
jobs may have a huge relocation cost, they cannot be arbitrarily re- OpPT +- 250PT. [

located to any machine. At a high level, our idea is to bundle the
small jobs together and only consider their total size on any single The value indexed by afs+ 2)-tuple(ny,nz,...,ns,M,V) is the
machine, while managing the roundoff errors. minimum relocation cost needed to get the fivsprocessors to an

OPT + 280PT-feasible configuration in which they hawmgjobs of THEOREM 4. Our algorithm rebalances the jobs amongst pro-
sizel; (for 1 <i <), and the total size of the small jobs\s Since cessors at cost at most B, such that the maximum processor load is
0<ni <n,0<M <m, andV is amultiple ofSOPT, the table size at most(1+¢)OPT, and with running time @)% log?
is bounded byD(mr®t1), which is polynomial in the input size.

For an entry indexed bgny,ny,...,ns,M,V), we look at the last 5. LIMITS TO APPROXIMATION
of theM processors. Let the current configuration of this processor) o .
beC = (X, X, .., %s, V). Try all possibleOPT + 250PT)-feasible Cc_)n5|der themove m|n|m|z_at_|or_problem: Given a bound on _
configurationsC’ = (x;,%,,...,%,,V'). For each feasible configu- maximum processor load, minimize the number of moves required

ration, calculate the minimum relocation c@&®STC,C') needed to achieve this. (If the bounB is not achievable, the algorithm
to get fromC to C’ configuration as follows (we only count the to- should reporto.) The following theorem is a result of a reduction
tal cost of jobs to be removed from that processor to achieve the Tom the well-known RRTITION problem.

configuration). THEOREM 5. There is no approximation algorithm with poly-

1. initialize COST(C,C’) = 0; Bom’i\?lljrunning time for the move minimization problem, unless
2. fori=1tosdo if x; > X then removex; — X jobs of sizel; of '
minimum cost, and increme@OST(C,C’) with the sum of One question left open is whether the relocation cost is hard to
those costs; approximate even when the target load is strictly above the mini-
3. if v> V then greedily remove small jobs in increasing order Mum load achievable. _ _ _
of cost-to-size ratio untiVs < V' + 30PT, and increment Wg now presen.t results which show that certain polynomial ap-
COSTC,C') with the sum of those costs. proximation algorithms cannot exist unless P=NP. We study the
problem under the broader setting of the generalized assignment
For configuratiorC/, let niC’ =n—x andV® =V —V. Then, problem. We restrict our attention to instances where the process-
the entry for indexny, Ny, ...,ns,M,V) is computed by ing time of a job is independent of the processor on which it is
processed. Note that if the cost function for a particular jobs
min COST(C,C') + (nl . nS,M — 1,VC’). independent of the processor, i&;,= ¢; for all processorg, then
feasible C the problem is equivalent to multiprocessor scheduling, for which
The base case for the dynamic programming@is=0,n; =0, ..., an FPTAS exists. The load rebalancing problem is the special case
ns=0,M =0,V = 0) = 0. During the computatiom; andV stay where the cost of a jobis a constank; = 0 on a particular proces-
non-negative. sor j, and a constartt; > |; on all other processors. Our analysis
Itis easy to show that the cost incurred in removing large jobs is shows that such a problem admits a PTAB.a more general set-
minimum. As for small jobs, since their sizes are all at AP, ting, when each job can have only one of two distinct costs for any
as we perform greedy removals, there will come a point when processor, the problem is MAX-SNP-hard.

Vs <V +80PT. The total cost incurred till this point is no more L .

than the cost that would be incurred to achieve a configuration in | HEOREM 6. The makespan minimization problem with costs
which the total load of the small jobs is no more thdn Thus, cij €{p.a} (p#0) does not have a polynomigtapproximation
the total removal cost incurred by the algorithm is no more than an algorithm, for anyp < 3, unless P=NP.

optimal algorithm would use to achieve the configuratBagng.

Now lets focus on reassignment of removed jobs. A large job of
typei can be assigned freely to any processor which has available
space for jobs of type Now consider the load on each processor Instance: Disjoint setsA = {aj,...,an},B = {b1,...,bn},C =
before we reassign any of the small jobs. {c1,...,¢n}, and a familyF = {Ty,..., Tm} of trlples with
[Ti mA| |TinB|=|TinC|=1fori=1,.

PROOF The proofis along the same line as %bardness proof
in [10]. We start from the 3-dimensional matching problem.

LeEmMA 11. If no small jobs were removed from a processor,

then its load is no more than its load in theyGg configuration, Question: Do/esF contain a matching, i.e., a subfamw for
which is (OPT + 250PT). For the other processors from which which|F’| = nandUrers T = AUBUC?

small jobs were removed, the load exceeds the load in {iad We create an instance of machines. Machineiscorresponds
conflguratlo_n by at mosbOPT. Thus, the load on each of those g triple Ti, fori = 1,...,m. We call the triples that contaiaj of
processors is no more thd®PT + 350PT). type j. Lett;j be the number of triples of typgfor j = 1,...,n

It can be seen that the small jobs may be assigned to any Ioro_We have 2n element jobs of unit size, each job corresponds to an

cessor whose total load of small jobs is below the calculaygd ~ €lementinBUC. For each typg we also creaty — 1 dummy jobs
bound, i.e., the processors that @BPT + 250PT)-feasible. Since ©f Size 2 each (so there are a totahof- n dummy jobs). Machine
the small jobs are of size at ma¥DPT, the final load does notex- | corresponding to a triple of typg, say T = (a;, by,ci), incurs
ceedOPT + 350PT on these processors that received more small & COSt ofp processing each of the element jobs correspondi to
jobs. So overall, the final load on each processor is no more than2nd¢ and the typej dummy jobs. And the rest of the jobs have
OPT -+ 350PT < (1+ 45)OPT. cost ofg on maching. The maximin cost allowed iem+n) x p.

It remains to remove the assumption that the valu®BT is This implies each feasible solution must assignment each job to a
known in advance. We can determine the valu®®fT to within machine with cosp. _ _ _
a factor of 1+ & via binary search, using the total relocation cost ~ SUPPOSe there is a matching, then all jobs can be scheduled with
produced by the algorithm for a given guess @PT to find the cost exactly(m+n) x p so that the makespan is 2 for each ma-
smallest value oDPT (within a precision o) for which we get chine. Conversely, a schedule of makespan 2 within ostn) x
relocation cost at mos®. The algorithm finds a solution with re- 2| enstra et al [10] considered jobs with machine dependent pro-
location cost at modB, in time O(mr*t1), such that the maximum cessing times, but without cost constraints.
processor load is at mogt+ 56)OPT. Settingd = €/5, we obtain: 30ur proof can be extended to arbitrapandh; > ;.

7.
(1]

We consider two natural extensions of the load rebalancing prob-
lem, and present negative results in both cases. Qdmestrained
Load Rebalancingroblem has the additional constraint that each
job can be reassigned to a specified subset of machines only.

p implies a matching of siza. Since the next possible value for
makespan is 3, this implies%lhardness bound.[]

(2]

COROLLARY 1. Unless P=NP, the Constrained Load Rebal-
ancing problem cannot be approximated belb¥ in polynomial
time.

(3]

The best upper bound known is the 2-approximation by Shmoys
and Tardos [14]. However, whether there exist% approxima-
tion algorithm for the Constrained Load Rebalancing problem is an
interesting open question.

We define another variant called t@enflict Schedulingroblem
with the additional constraint that some specified pairs of jobs have
conflicts and cannot be assigned to the same processor. We show
that the Conflict Scheduling problem is very hard to approximate. 5]

THEOREM 7. There is no polynomial algorithm that approxi-
mates the makespan of the Conflict Scheduling problem within any[6]
ratio, unless P=NP.

[4]

PROOF We perform a reduction from 3-dimensional matching.
We start with a description of the 3-dimensional matching problem. [7]

Instance: Disjoint setsA = {a;,...,an},B = {b1,...,bn},C =
{c1,...,Cn}, and a familyF = {Ty,...,Tm} of triples with
[TiNnA =|TinB|=|TinC|=1fori=1,...,

(8]

Question: DoesF contain a matching, i.e., a subfamify/ for
which|F’| = nandUgepr Ti = AUBUC? -
9

There arean machines, each corresponds to a tripl€ iriThere are
mjobs, each corresponds to a tripleAr(call them triple jobs). No
two triple jobs can be assigned to the same machine, so a feasible
solution would have spread thesgobs one per machines. There
are also 8 jobs each corresponds to an elemenAinBUC (call

them element jobs). Each element job can only be assigned to-
gether with the corresponding triple job, i.e., elementyatan be
assigned together with triple job, iff u € T;. And finally, there are
m—n dummy jobs. No two dummy jobs can be assigned together,
and none of the element jobs can be assigned with them either. Dis-
regard job costs and sizes, if there is a feasible assignment of jobs
to machines that satisfy the conflicts, then the following holds:

e There is one triple job per machine.
e There arean— n machines, each has one dummy job.

e All the 3n element jobs are assigned among the rest ofithe
machines. Each machine is assigned exactly 3 element jobs
corresponds taj, by, ¢, and the triple job on that machine is
Ti = (aj, bk, cr).

So a feasible assignment of the jobs implies a matching ofrsize
and vice versa. Notice that any approximation algorithm will give
an answer that is feasible if and only if a feasible assignment exists,
hence the result. []

6. ACKNOWLEDGMENTS

We thank S. Keshav of Ensim Corporation for posing the load
rebalancing problem.

REFERENCES

C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack
Problem.Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms (SOD2)01, pages
213-222.

P. Efraimidis and P. Spirakis. Randomized Approximation
Schemes for Scheduling Unrelated Parallel Machines.
Electronic Colloquium on Computational Complexity
(ECCC) Technical Report TR00-007, 2000.

A. Fishkin, K. Jansen, and M. Mastrolilli. Grouping
techniques for scheduling problems: simpler and faster.
Proceedings of the 9th Annual European Symposium on
Algorithms 2001, pages 206-217.

B. Ghosh, F.T. Leighton, B.M. Maggs, S. Muthukrishnan,
C.G. Plaxton, R. Rajaraman, A.W. Richa, R.E. Tarjan, and
D. Zuckerman. Tight analyses of two local load balancing
algorithms. InProceedings of the ACM Symposium on Theory
of Computing 1995, pages 548-558.

R.L. Graham. Bounds for certain multiprocessing anomalies.
Bell System Technical Journa5 (1966):1563-1581.

M. Harchol-Balter and A.B. Downey. Exploiting process
lifetime distributions for dynamic load balancingCM
Transactions on Computer Systerh§(1997):253-285.

Y.F. Hu, R.J. Blake, and D.R. Emerson. An optimal migration
algorithm for dynamic load balancin@oncurrency: Practice
and Experiencel0(1998):467-483.

K. Jansen and L. Porkolab. Improved Approximation Schemes
for Scheduling Unrelated Parallel Machin8&st Annual

ACM Symposium on Theory of Computing (STAGY9,

pages 408-417.

E.D. Lazowska, D.L. Eager, and J. Zahorjan. The limited
performance benefits of migrating active processes for load
sharing ACM Performance Evaluation Revigw
16(1998):63-72.

[10] J.K. Lenstra, D. Shmoys, and E. Tardos. Approximation

Algorithms for Scheduling Unrelated Parallel Machines.
Mathematical Programmingt6(1990):259-271.

[11] P.B. Linder and A. Shah. Website Migration Load Balancing

of Web ServersManuscript

[12] M. Nuttall. A brief summary of systems providing process or

object migration facilitiesOperating Systems Revigw
28(1994):64-80.

[13] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple

load balancing scheme for task allocation in parallel
machines. IrfProceedings of the Annual ACM Symposium on
Parallel Algorithms and Architecture4991.

[14] D. Shmoys and E. Tardos. An approximation algorithm for

the generalized assignment probléviathematical
Programming 62(1993):461-474.

