
PRIVACY PROTECTION AND ADVERTISING IN A NETWORKED

WORLD

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Gagan Aggarwal

September 2005



c© Copyright by Gagan Aggarwal 2005

All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Rajeev Motwani Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Dan Boneh

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Ashish Goel

Approved for the University Committee on Graduate Studies.

iii



iv



Abstract

The last couple of decades have witnessed a phenomenal growth in the networking in-

frastructure connecting computers all over the world. The Internet has now become an

ubiquitous channel for information sharing and dissemination. This has created a whole

new set of research challenges, while giving a new spin to some existing ones. In this

thesis, we address problems from two areas: (a) protection of data privacy, and (b) sale of

advertisement space on Internet web sites.

The first part of the thesis deals with privacy issues involved in the exchange of informa-

tion between non-trusting entities. The scenarios of interest include the Census Bureau pub-

lishing population statistics, hospitals sharing patient data with medical researchers, federal

agencies sharing intelligence information with each other, a group of people wishing to find

their common interests, and several universities trying to compute combined statistics about

faculty salaries, among others. In most cases, exchange of a relevant synopsis or aggregate

would be sufficient; however, in the absence of knowledge about what synopsis would be

most relevant, the data tends to be disseminated in the raw. This threatens personal privacy

and creates an opportunity for dishonest entities to misuse the information to further their

own selfish agenda. We focus our attention on two abstract problems derived from this

setting. We first consider the problem of anonymizing databases before dissemination, so

as to safeguard the privacy of the individuals described by the databases. A solution to this

problem can be used by the Census Bureau as well as hospitals to provide data containing

personal information to interested parties without sacrificing privacy. We adopt the privacy

framework ofk-anonymity proposed by Samarati and Sweeney, and present approximation

algorithms for anonymizing databases. The second problem we study is that of computing

a function over data split between two or more non-trusting entities. The goal is to enable
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the entities to compute the value of the function without either entity having to reveal any

unnecessary information to the other entity. In particular, we study the problem of comput-

ing statistics over data shared between multiple entities. We present efficient protocols for

computing a fundamental statistical function, namely thek-th ranked element of a dataset

split between multiple entities. These protocols form a practical solution to the problem of

compiling faculty salary statistics covering several universities.

The pervasiveness of the Internet has fueled a rapid growth in advertising on Internet

web sites. In the second part of the thesis, we consider the problem of selling advertisement

space on the Internet. Given the dynamic nature of the online advertising market – advertis-

ers join and leave, the popularity of the web site changes over time, the value of an Internet

user clicking on an advertisement link varies over time – auctions are the logical choice for

selling advertisement space on web sites, and indeed, major search engines like Google and

Yahoo! are using auctions to sell advertisement slots on their search result pages. However,

a lack of understanding of good bidding strategies has kept marketers from fully embrac-

ing online advertising channels. One solution is to use selling mechanisms where the best

strategy for advertisers is simple and well-understood. The class of truthful mechanisms

has the property that the best strategy for any advertiser is to bid an amount equal to her

true valuation of the object she is bidding for. Since the use of truthful auction mechanisms

considerably simplifies the task of bidding, we propose using truthful auctions for selling

web advertisements. We study two different problem formulations in this setting. We first

consider the problem of selling a single slot on a web page that gets a known number of

hits per day, assuming that the number of visitors desired by each advertiser is known in

advance. We present a truthful auction that is competitive with respect to an optimalomni-

scientpricing scheme that obeys a natural monotonicity property. The second problem we

study is that of selling multiple advertisement slots on a web page. This problem is more

closely aligned with the problem faced by search engines. We present an auction that is

truthful when the advertisers are not budget-constrained. Moreover, under some reasonable

assumptions, we show that its revenue is equivalent to the non-truthful auctions currently

being used by search engines.
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Chapter 1

Introduction

The last couple of decades have witnessed a phenomenal growth in the networking in-

frastructure connecting computers all over the world. The Internet has now become an

ubiquitous channel for information sharing and dissemination. This has created a whole

new set of research challenges, while giving a new spin to some existing ones. In this

thesis, we address problems from two areas: (a) protection of data privacy, and (b) sale of

advertisement space on Internet web sites.

1.1 Privacy in a Networked World

The first part of the thesis deals with privacy issues involved in the exchange of information

between non-trusting entities. The scenarios of interest include the Census Bureau publish-

ing population statistics, hospitals sharing patient data with medical researchers, federal

agencies sharing intelligence information with each other, a group of people wishing to

find their common interests, and several universities trying to compute statistics about fac-

ulty salaries, among others. In most cases, exchange of a relevant synopsis or aggregate

would be sufficient; however, in the absence of knowledge about what synopsis would be

most relevant, the data tends to be disseminated in the raw. This threatens personal privacy

and creates an opportunity for dishonest entities to misuse the information to further their

own selfish agenda. We focus our attention on two facets of this problem.
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2 CHAPTER 1. INTRODUCTION

1.1.1 Anonymization

More and more data is being exchanged and even posted on the Internet without suffi-

cient anonymization. Moreover, one can use increasingly sophisticated tools to integrate

data from different sources and reconstruct highly detailed information about an individual.

One way to deal with the threat to rising threat to personal privacy is to refuse to divulge

any private information. However, in many scenarios, information exchange can prove

socially beneficial. For example, if medical researchers have access to databases contain-

ing the medical histories of various individuals, they can discover the association between

certain lifestyle factors and higher risk of certain diseases; geographical occurrence data

on communicable diseases can enable detection of the outbreak of epidemics at an early

stage, thereby preventing its spread to larger populations. With the goal of enabling such

applications, it is quite desirable that hospitals make their records available to medical sci-

entists. At the same time, such personal data has a great potential for misuse; for example,

a health insurance company could exploit such data to selectively raise the health insurance

premiums of certain individuals. Unfortunately, we cannot trust all medical researchers to

uphold the privacy of the data. Even if they are all honest and well-meaning, they might

not be technically savvy enough to prevent unauthorized access.

One possible solution is that instead of releasing the entire database, the database

owner answers aggregate queries posed by medical researchers after ensuring that answers

to the queries do not reveal sensitive information. This approach is called query audit-

ing [KPR03, KMN05, DN04a]. This requires the researchers to formulate their queries

without access to any data. In this case, one can also use techniques fromsecure multi-

party computation[Yao86, GMW87, LP02, AMP04, FNP04]. However, many of the data-

mining tasks are inherently ad hoc and the data mining researchers need to examine the data

in order to discover data aggregation queries of interest. In such cases, query auditing and

secure function evaluation techniques do not provide an adequate solution, and we need to

release an anonymized view of the database that enables the computation of non-sensitive

query aggregates, perhaps with some error or uncertainty.

We consider the problem of anonymizing databases before dissemination, in order to

safeguard the privacy of the individuals described by the databases. One approach to
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anonymization is to useperturbationtechniques in order to hide the exact values of the

data [AS00, AA01, DN03, DN04b, EGS03, AST05, CDM+05]. However, this may not

be suitable if one wants to draw inferences with 100% confidence. Another approach is to

suppresssome of the data values, while releasing the remaining data values exactly. We

note that suppressing just the identifying attributes, like name and address, is not suffi-

cient to protect privacy. In order to ensure privacy, we adopt the privacy framework of

k-Anonymity which was proposed by Samarati and Sweeney [Swe02, SS98]. Suppose

we have a table with each tuple havingm quasi-identifying attributes. Thek-Anonymity

framework provides for suppressing or generalizing (see Chapter 2) some of the entries

in the table so as to ensure thatfor each tuple in the modified table, there are at least

k − 1 other tuples in the modified table identical to it.The idea is that even if an adver-

sary gets hold of all the quasi-identifying attributes of all the individuals in the table, it

cannot track down an individual’s record further than a set ofk records in the worst case.

We study the problem of making a databasek-Anonymous, while minimizing the extent

of suppression/generalization and provide approximation algorithms for it. The algorithms

and hardness results (joint work with Tomas Feder, Krishnaram Kenthapadi, Rajeev Mot-

wani, Rina Panigrahy, Dilys Thomas and An Zhu) were originally published in [AFK+05]

and are described in Chapter 2.

1.1.2 Secure Computation

The ease of transferring data over computer networks has led to an increase in data ex-

change and sharing. Many a times, two entities who do not know or trust each other trade

information for mutual benefit. For example, two corporations might wish to exchange

information about their respective customer bases, in order to evaluate the viability of a

merger; two or more federal agencies might wish to exchange intelligence information

with each other; a group of people might wish to find out their common interests; a set of

universities might try to compile statistics on faculty salaries (the Taulbee survey), ans so

on. In many of these cases, the entities are interested in sharing some kind of aggregate

information about private data that each of them holds. Examples of aggregation functions
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include statistics over data sets, clustering over data points, intersection (size) of sets, Ham-

ming distance between vectors etc. While the parties feel comfortable sharing aggregate

information, typically they do not wish to reveal the raw data to each other. In such a case,

it is desirable to perform the computation of the aggregate information without having to

revealanyinformation that is not implied by the aggregate itself. One might argue that this

is an unnecessarily stringent requirement and harmless information leaks should be permit-

ted; however, in the absence of a good characterization ofharmlessleaks, we will insist on

not leaking any additional information. This privacy requirement has been formalized in

the cryptography literature asSecure Function Evaluation (SFE)against asemi-honestor

amaliciousadversary. Letx be the private data held by one entity andy be the private data

held by the other entity. It has been shown [Yao86, GMW87] that it possible to evaluate any

functionf(x, y) that can be represented as a Boolean circuitC(x, y) using a protocol that

has a communication and computation overhead ofO(|C(x, y)|). While such an overhead

is acceptable for simple functions and small data sizes, these protocols are prohibitively ex-

pensive for computing functions over large databases or computing complicated functions

represented by large circuits. In this case, it is desirable to have special-purpose protocols

to compute specific functions more efficiently. In fact, efficient protocols have recently

been developed for computing a decision tree for classification securely using an approx-

imate version of the ID3 algorithm [LP02], secure computation of approximate Hamming

distance between two vectors held by different parties [FIM+01], and secure computation

of the intersection of sets held by different parties [FNP04], among others.

We study the problem of computing a basic statistical quantity, namely thekth ranked

element of a set shared between two or more parties in a privacy-preserving manner. Of

particular interest is the median of a set shared by two or more parties. First consider

the following application scenario. Two health insurance companies wish to compute the

median life expectancy of the smokers insured by them. In this setting, both the number of

insured smokers as well as their life expectancies are private information, but the median

life expectancy is of combined mutual interest. Another example is the annual Taulbee

survey which collects salary and demographic data for faculty in computer science and

computer engineering departments in North America. Typically, academic departments

report only a small number of statistics like the minimum, maximum, average and median
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salary of professors. The Taulbee survey is thus able to publish only limited aggregate

information. An efficient and secure multi-party solution for computation of thekth-ranked

element would enable universities to quickly compute combined salary statistics without

revealing individual salary values to others. It would even facilitate secure computation of

salary histograms [GMP97, PGI99, JKM+98].

We take the same approach as that of previous solutions for secure computation over

large inputs (e.g. [LP02, FIM+01, CIK+01]), and reduce this task to many invocations of

secure computation of simpler functions over small inputs; but unlike these constructions,

we also design protocols which are secure against malicious adversaries. We present the

protocols and proofs of their security (joint work with Nina Mishra and Benny Pinkas and

originally published in [AMP04]) in Chapter 3.

1.2 Auctions for Web Advertisements

The development of excellent networking infrastructure has made the Internet a pervasive

influence in people’s lives. Marketers have responded by pushing more of their budgets

online, especially into search advertising, display ads, and rich-media TV-style ads. Search

engines like Google and Yahoo!, most of whose profits come from advertising on the Inter-

net, are showing a rapid increase in profits [Goo05, Yah05]. According to a forecast from

Forrester Inc. [For05], in 2010, marketers will spend $26 billion on online advertising,

which will represent 8% of all advertising spending, rivaling spending on cable/satellite

TV and radio.

The web advertisement market is highly dynamic in nature, with advertisers arriving

and leaving all the time. Moreover, the number of hits received by a website changes

over time, as does the value of an Internet user clicking on an advertisement. This makes

auctions the logical choice for selling advertisement space on web sites. Indeed, major

search engines like Google and Yahoo! are using auctions to sell advertisement slots on

their search result pages. However, none of the existing auctions provides a clear-cut best

strategy for bidding. Thus, an advertiser must understand the underlying game-theoretic

issues in order to be able to bid well. In fact, according to the marketers surveyed by

Forrester [For05], “a lack of online advertising standards and hands-on experience have
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kept marketers from fully embracing online channels”. One possible way to attract more

advertisers to the online advertising marketing is to use selling mechanisms where the best

strategy for advertisers is simple and well-understood. The class of truthful mechanisms

has the property that the best strategy for a bidder is to bid an amount equal to their true

valuation (i.e., an estimate of worth) of the object they are bidding for. In scenarios where

this true valuation is known (or can be evaluated), the use of truthful auction mechanisms

simplifies the task of bidding immensely. With this consideration in mind, we wish to

develop truthful auctions for selling web advertisements. We further discuss the desirability

of using truthful auctions in Chapter 4.

Consider a web page with some slots where advertisements can be displayed. Whenever

an Internet user accesses the web page, the web page owner can choose to display one or

more advertisements. The process of displaying an advertisement is called animpression.

Depending on the content of the web page, a variety of advertisers might be interested in

displaying advertisements on the web page. Each of these advertisers will invoke a different

level of interest from the Internet users visiting the web page. Thus, each advertiser will

have a different click-through rate (CTR) associated with her advertisement (the click-

through rate of an advertisement is the fraction of its impressions that result in a click

by an Internet user). We assume that the web page owner has (or can collect) statistical

information about the CTRs of various advertisers. Furthermore, each advertiser values an

impression or a click on her advertisement differently and this valuation is known only to

her. The web page owner wants to design a selling mechanism for the advertisement slot(s)

on her web page with the goal of maximizing profit.

The problem of designing a good auction for this setting is multi-faceted — advertis-

ers may have combinatorial preferences (when multiple keyword combinations are relevant

to an advertisement campaign), advertisers may have restricted funds (limited budget) to

spend on advertising, the search engines might (and usually do) display multiple adver-

tisements for every search keyword, and availability and needs may vary over time. Each

of these aspects of the problem in themselves represents a significant auction design chal-

lenge. In this thesis, we focus on two particular, yet fundamental, problem formulations in

this setting.
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1.2.1 Selling a Single Advertisement Slot

We first study the problem of selling a single advertisement spot on a web page over the

course of a day. We assume that the web page owner knows the (average) number of times

the web page is accessed in a day. We let each advertiser have a limit on the number of

clicks on her advertisement that she can handle in a single day. We assume that these limits

are known to the web page owner, perhaps due to repeated interaction with the advertisers.

The web page owner can use these limits together with the click-through rates of various

advertisements, and compute the maximum number of impressions desired by each ad-

vertiser. This will be referred to as thedemandof the advertiser. It is assumed that the

valuation of a click to an advertiser is not known to the auctioneer. We wish to develop a

truthful auction for this problem with the goal of maximizing revenue.

The above problem can be modeled as aprivate-valueversion of the (fractional)knap-

sack problem(the limitation imposed by the number of times a web page is accessed in a

day acts as the capacity of the knapsack; details are given in Chapter 5). We will refer to

this version as theknapsack auction problem. It models several other interesting applica-

tions as well. For example, knapsack auctions can be used to model auctions for satellite

bandwidth. Suppose a satellite broadcasting service provider has a total bandwidth ofC

and content providers have different bandwidth needs, i.e.,ci for provideri, and different

valuations for the fulfillment of their needs. This problem translates directly into the knap-

sack auction problem assuming that it is not possible for providers to falsely declare their

bandwidth needs.

Through the study of the knapsack auction problem, we wish to develop a better under-

standing of how to do prior-free optimization (i.e. optimization without having any prior

knowledge about the distribution of the valuations of various agents) when there are non-

trivial constraints on the allocation. In our case, items selected for the knapsack must all

fit in the space available. In addition to presenting a knapsack auction that performs well

(discussed next), we outline a general approach for dealing with non-trivial optimization

problems. The first step of this approach is to solve theunlimited-supplyversion of the

problem. The second step is to select a suitable subset of the bidders and simulate the
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unlimited supply auction on this subset. This general approach works formonotoneopti-

mization problems, where if an allocation is feasible, then any subset of the allocation is

also feasible.

Following Goldberg et al. [GHW01], we analyze knapsack auctions in the framework

of competitive analysisby comparing the performance of the auction to anoptimal omni-

scient pricing. We consider pricing rules that obey the following natural constraint: bidders

desiring more capacity should not be offered lower prices than those desiring less. We refer

to this asmonotone pricing, since the valid pricing functions for this class are monotone

non-decreasing. Accordingly, we defineOPT to be the profit obtained by the best mono-

tone pricing function for bidders’ actual valuations when we assume that a bidder pays the

offered price if and only if it is no more than their valuation. Because it is not possible to

obtain a constant fraction ofOPT in the worst case, we design auctions that obtain at least

a constant fraction ofOPT less a small additive loss term, i.e.,α OPT−λh (whereh is an

upper bound on the highest bidder’s valuation). Ideally, we would like bothα andλ to be

constants. We present an auction that achieves a constantα andλ ∈ O(log log log n). Fur-

ther details of the competitive analysis framework can be found in Chapter 4. The auction

is presented and analyzed in Chapter 5. These results are joint work with Jason Hartline

and will appear in [AH06].

1.2.2 Selling Multiple Advertisement Slots

The second problem we study is that of selling multiple advertisement slots on a web page.

This problem is more closely aligned with the problem faced by search engines. For each

search keyword or web page, let the available advertisement slots be numbered in decreas-

ing order of visibility. In the auctions currently being used by search engines, the advertis-

ers interested in a particular keyword are first ranked according to some criterion (called the

ranking function) and matched to the available slots in accordance with the ranking order

obtained. The ranking function is, typically, an inherent part of the advertisement policy

(or “philosophy”) of the search engine. After pairing slots with advertisers, each advertiser

who is assigned a slot is charged a price that is equal to the minimum bid required to retain

her rank. This amount is, of course, no more than the bid of the advertiser. We show that
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this pricing scheme is not truthful and gives an incentive for the advertisers to underbid, i.e.

bid lower than their true valuation.

We develop a truthful auction for this problem under the assumption that the advertisers

are not budget-constrained, i.e., they are willing to buy additional clicks as long as the

marginal profit of getting an additional click is non-negative. This assumption is reasonable

in a lot of scenarios, especially when the advertiser makes an immediate (expected) profit

each time its advertisement is clicked on. Furthermore, since the ranking criterion (also

referred to as theranking function) is often an integral part of the advertisement policy

of the search engine, we assume that the ranking function is specified as an input to the

auction design problem. We consider the problem of designing auctions for a class of

ranking functions which includes the current ranking functions being used by major search

engines like Google and Yahoo!. For any ranking function in this class, we give an auction

that ranks according to that function and show that it is the unique truthful auction that

ranks according to the specified function. The uniqueness implies profit-maximality as a

corollary. We also show that, under a reasonable assumption, our auction has a revenue

equivalent to the auctions currently in use. These results are joint work with Ashish Goel

and Rajeev Motwani, and are described in Chapter 6.





Part I

Privacy Protection

11





Chapter 2

K-Anonymity

There has been a tremendous growth in the amount of personal data that can be collected

and analyzed. Data mining tools are increasingly being used to infer trends and patterns. In

many scenarios, access to large amounts ofpersonal datais essential in order for accurate

inferences to be drawn. For example, at the beginning of an epidemic, a single hospital

might see only a few isolated cases, whereas the combined patient pool of a group of

hospitals might be sufficient to infer the outbreak of an epidemic. However, the use of data

containing personal information has to be restricted in order to protect individual privacy.

As discussed in the introduction, one solution is to release anonymized data that enables one

to draw inferences about global trends without violating the privacy of individual records.

One approach to anonymization usesperturbationtechniques in order to hide the exact

values of the data [AS00, AA01, DN03, EGS03, DN04b, AST05, CDM+05]. However,

this may not be suitable if one wants to draw inferences with 100% confidence. Another

approach is tosuppresssome of the data values, while releasing the remaining data values

exactly. We note that suppressing just the identifying attributes is not sufficient to protect

privacy. For example, consider the following table which is part of a medical database,

with the identifying attributes such as name and social security number removed.

13



14 CHAPTER 2. K-ANONYMITY

Age Race Gender Zip Code Diseases

47 White Male 21004 Common Cold

35 White Female 21004 Flu

27 Hispanic Female 92010 Flu

27 White Female 92010 Hypertension

By joining this table with public databases (such as a voter list), non-identifying at-

tributes, such as Age, Race, Gender and Zip Code in the above table, can together be used

to identify individuals. In fact, Sweeney [Swe00] observed that for 87% of the population

in the United States, the combination of Date of Birth, Gender and Zip Code corresponded

to a unique person.

In order to ensure the protection of privacy, we adopt thek-Anonymity model that

was proposed by Samarati and Sweeney [SS98, Sam01, Swe02]. Suppose we have a table

consisting ofn tuples each havingm quasi-identifying attributes (Age, Race, Gender and

Zip Code in the above table), and letk > 1 be an integer. Thek-Anonymity framework

provides for generalization of entries (generalization entails replacing an entry value with

a less specific but semantically consistent value; a more formal description can be found

in Section 2.1) in addition to suppression. The idea is to suppress/generalize some of the

entries in the table so as to ensure thatfor each tuple in the modified table, there are at least

k − 1 other tuples in the modified table that are identical to it along the quasi-identifying

attributes.The objective is to minimize the extent of suppression and generalization. Note

that entries in the column corresponding to the sensitive attribute (“Diseases” in the above

example) are not altered. The following is an example of ak-anonymized table fork = 2.

Age Race Gender Zip Code Diseases

* White * 21004 Common Cold

* White * 21004 Flu

27 * Female 92010 Flu

27 * Female 92010 Hypertension

A k-anonymized table protects individual privacy in the sense that, even if an adversary

has access to all the quasi-identifying attributes of all the individuals represented in the

table, he would not be able to track down an individual’s record further than a set of at least
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k records, in the worst case. Thus,k-anonymization of a table before its release prevents

definitiverecord linkageswith publicly available databases, and keeps each individual hid-

den in a crowd ofk − 1 other people. The privacy parameterk must be chosen according

to the application in order to ensure the required level of privacy.

2.1 Model and Results

We now formally define the problem ofk-Anonymity and state our results. The input

is a table havingn rows each withm quasi-identifying attributes. We view the table as

consisting ofn m-dimensional vectors:x1, . . . , xn ∈ Σm.

We first define a special case of the problem calledk-Anonymity with Suppression,

where suppression is the only permitted operation. Ak-Anonymous suppression functiont

maps eachxi to x̃i by replacing some components ofxi by ∗ (which corresponds to hiding

those components ofxi), so that everỹxi is identical to at leastk−1 otherx̃js. This results

in a partition of then row vectors intoclustersof size at leastk each. The cost of the

suppression,c(t) is the total number of hidden entries, or equivalently, the total number of

∗s in all thex̃is.

k-Anonymity with Suppression:Givenx1,x2, . . . ,xn ∈ Σm, and an Anonymity

parameterk, obtain ak-Anonymous suppression functiont so thatc(t) is mini-

mized.

Next, we define the problem ofk-Anonymity with Generalization, where in addition

to suppressing entry values, we are also allowed to replace them with less specific but

semantically consistent values. For example, we can make a date less specific by omit-

ting the day and revealing just the month and year. We assume that for each attribute, a

generalization hierarchy is specified as part of the input [SS98, Sam01]. For an attribute,

each level of generalization corresponds to a partition of the attribute domain. A parti-

tion corresponding to any given level of the generalization hierarchy is a refinement of the

partition corresponding to the next higher level. Singleton sets correspond to absence of

generalization, while the partition consisting of a single set containing the whole domain

corresponds to the highest level of generalization. Consider the example shown in Fig-

ure 2.1. The attribute “Quality” has a domain consisting of valuesA+, A, A−, B+, B and
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B− and has two levels of generalization. In the absence of generalization, the value of this

attribute is reported exactly. The first level of generalization corresponds to the partition

{{A+, A,A−}, {B+, B, B−}}. In order to generalize an entry with value “A” to the first

level of generalization, it is replaced with the set{A+, A,A−}. The next higher level of

generalization (also the highest level in this case) corresponds to replacing the entry with

the set containing the whole domain, which is equivalent to suppressing the entry.

A+ A−A B+ B−B

{A+, A, A−, B+, B, B−}

{A+, A, A−} {B+, B, B−}

Level 2

Level 1

Figure 2.1: A possible generalization hierarchy for the attribute “Quality”.

Let the jth attribute have domainDj and lj levels of generalization. Let the parti-

tion corresponding to thehth level of generalization beDj
h for 1 ≤ h ≤ lj, with Dj

0 =

Dj. Let a valuey ∈ Dj when generalized to thehth level be denoted bygh(y), e.g.,

g1(A) = {A+, A,A−}. A generalization functionh is a function that maps a pair(i, j),

i ≤ n, j ≤ m to a level of generalizationh(i, j) ≤ lj. Semantically,h(i, j) denotes

the level to whichjth component of theith vector (or the(i, j)th entry in the table) is

generalized. Leth(xi) denote thegeneralizedvector corresponding toxi, i.e. h(xi) =

(gh(i,1)(xi[1]), gh(i,2)(xi[2]) . . . , gh(i,m)(xi[m])). A generalization function is said to bek-

Anonymous if for everyi, h(xi) is identical toh(xj) for at leastk − 1 values ofj 6= i.

Consider ak-Anonymous generalization functionh. It incurs a cost ofr/lj whenever

it generalizes a value for thejth attribute to therth level. The total cost incurred by the

generalization functionh is defined as the sum of the costs incurred over all the entries of

the table, i.e. cost(h) =
∑

i

∑
j h(i, j)/lj. Now we are ready to give a formal definition of

the problem.
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k-Anonymity with Generalization:Givenx1,x2, . . . ,xn ∈ Σm, and an Anonymity

parameterk, obtain ak-Anonymous generalization functionh such that cost(h)

is minimized.

Note that the problem ofk-Anonymity with Suppression is a special case of the problem

of k-Anonymity with Generalization, with only one level of generalization (corresponding

to hiding the entry completely) for every attribute.

Clearly the decision version of both of these problems is in NP, since we can verify in

polynomial time if the solution isk-Anonymous and the suppression cost less than a given

value. We show thatk-Anonymity with Suppression is NP-hard even when the alphabet

size |Σ| = 3. Note that this automatically implies NP-hardness ofk-Anonymity with

Generalization. This improves upon the NP-hardness result of [MW04] which required an

alphabet size ofn. On the positive side, we provide anO(k)-approximation algorithm for

k-Anonymity with Generalization for arbitraryk and arbitrary alphabet size. For a binary

alphabet, we provide improved approximation algorithms fork = 2 (an approximation

factor of1.5) andk = 3 (an approximation factor of 2).

The rest of the chapter is organized as follows. We establish the NP-hardness ofk-

Anonymity with Suppression in Section 2.2. We then present anO(k)-approximation al-

gorithm fork-Anonymity with Generalization in Section 2.3. Next, in Sections 2.4 and 2.5,

we provide a 1.5 approximation algorithm for the 2-Anonymity problem with binary alpha-

bet, and a 2-approximation algorithm for 3-Anonymity with binary alphabet.

2.2 NP-hardness ofk-Anonymity with Suppression

Theorem 2.2.1k-Anonymity with Suppression is NP-hard even for a ternary alphabet, i.e.,

(Σ = {0, 1, 2}).

Proof: In this proof,k-Anonymity refers to the problem ofk-Anonymity with Suppres-

sion. We give a reduction from the NP-hard problem of EDGE PARTITION INTO TRIAN-

GLES [Kan94] which is defined as follows:Given a graphG = (V, E) with |E| = 3m for

some integerm, can the edges ofG be partitioned intom edge-disjoint triangles?
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Given an instance of the above problem,G = (V, E) with 3m edges (since the above

problem is NP-hard even for simple graphs, we will assume that the graph G is simple),

we create a preliminary tableT with 3m rows — one row for each edge. For each of the

n vertices ofG, we create an attribute (column). The row corresponding to edge(a, b),

referred to asrab, has ones in the positions corresponding toa andb and zeros everywhere

else. Let a star with four vertices (having one vertex of degree 3) be referred to as a 4-star.

Equivalence to edge partition into triangles and 4-stars. We first show that the cost

of the optimal 3-Anonymity solution for the tableT is at most9m if and only if E can be

partitioned into a collection ofm disjoint triangles and 4-stars. First suppose that such a

partition of edges is given. Consider any triangle (witha, b, c as its vertices). By suppress-

ing the positionsa, b andc in the rowsrab, rbc andrca, we get a cluster containing three

rows, with three∗s in each modified row. Now consider a 4-star with verticesa, b, c, d,

whered is the center vertex. By suppressing the positionsa, b andc in the rowsrad, rbd

andrcd, we get a cluster containing three rows with three∗s in each modified row. Thus we

obtain a solution to 3-Anonymity of cost9m.

On the other hand, suppose that there is a 3-Anonymity solution of cost at most9m.

SinceG is simple, any three rows are distinct and differ in at least 3 positions. Hence

there should be at least three∗s in each modified row, so that the cost of the solution is

at least9m. This implies that the solution cost is exactly9m and each modified row has

exactly three∗s. Since any cluster of size more than three will have at least four∗s in each

modified row, it follows that each cluster has exactly three rows. There are exactly two

possibilities: the corresponding edges form either a triangle or a 4-star, and each modified

row in a triangle has three∗s and zeros elsewhere while each modified row in a 4-star has

three∗s, single 1 and zeros elsewhere. Thus, the solution corresponds to a partition of the

edges of the graph into triangles and 4-stars.

Equivalence to edge partition into triangles. Since we want a reduction from EDGE

PARTITION INTO TRIANGLES, we create a tableT ′ by “replicating” the columns ofT so

as to force the 4-stars to pay more∗s. Lett = dlog2(3m + 1)e. In the new tableT ′, every

row hast blocks, each of which hasn columns. Consider an arbitrary ordering of the edges
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in E and express the rank of an edgee = (a, b), in this ordering, in binary notation as

e1e2 . . . et. In the row corresponding to edgee, each block has zeros in all positions except

a and b. A block can be in one of two configurations:conf0 has a1 in positiona and

a 2 in positionb while conf1 has a2 in positiona and a1 in positionb. The ith block

in the row corresponding toe has configurationconfei
. For example, consider the graph

shown in Figure 2.2. Suppose the edges(3, 4), (1, 4), (1, 2), (1, 3), (2, 3) are ranked 1 (i.e.

(001)2) through 5 (i.e.(101)2) respectively. Then, the table in Figure 2.2 represents the3-

Anonymity instance corresponding to the graph, with theith row in the table representing

the vector corresponding to the edge rankedi.

4 3

1 2

1

(1,2)

(3,4)
(1,4)

(1,3)

0 1 2
00 02 1 201 02 01

0 2 0 0 21 00 1

12 20 0 010 20 10

1221 0 0 0 0 00 2 1
00 00 0 012 21 2

(2,3)

Figure 2.2: The table shows the3-anonymity instance corresponding to the graph on the
left when the edges(3, 4), (1, 4), (1, 2), (1, 3), (2, 3) are ranked 1 through 5 respectively.

We will now show that the cost of the optimal 3-Anonymity solution onT ′ is at most

9mt if and only if E can be partitioned intom disjoint triangles.

Suppose thatE can be partitioned intom disjoint triangles. As earlier, every triangle

in such a partition corresponds to a cluster with3t ∗s in each modified row. Thus we get a

3-Anonymity solution of cost9mt.

For the converse, suppose that we are given a 3-Anonymity solution of cost at most

9mt. Again, any three rows differ in at least3t positions so that the cost of any solution is

at least9mt. Hence the solution cost is exactly9mt and each modified row has exactly3t

∗s. Thus, each cluster has exactly three rows. We claim that the corresponding edges should

form a triangle. We can see this as follows: suppose to the contrary the three rows form a

4-star. Let the common vertex bev. Consider the ternary digit∈ {1, 2} assigned by each

of the three edges tov in conf0 — two of the three edges must have assigned the same digit

to v. Since these two edges differ in rank, they must have a different configuration (and
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therefore, a different digit in the column corresponding tov) in at least one of the blocks.

Thus, the rows corresponding to the three edges contain an additional∗ corresponding to

vertexv in addition to the3t ∗s corresponding to the remaining three vertices, contradicting

the fact that each row has exactly3t ∗s. 2

The above proof shows that k-Anonymity is NP-hard even with a ternary alphabet for

k = 3. By reduction from EDGE PARTITION INTO r-CLIQUES [Kan94], we can extend

the above proof fork =
(

r
2

)
, for r ≥ 3. By replicating the graph in the above reduction, we

can further extend the proof fork = α
(

r
2

)
for any integerα andr ≥ 3.

2.3 Algorithm for General k-Anonymity

In this section, we study the problem ofk-Anonymity with Generalization for generalk

and arbitrary alphabet size, and give anO(k)-approximation algorithm for the problem. In

this section,k-Anonymity refers to the problem ofk-Anonymity with Generalization.

Construction of Graph. Given an instance of thek-Anonymity problem, we create an

edge-weighted complete graphG = (V, E). The vertex setV contains a vertex correspond-

ing to each vector in thek-Anonymity problem. For two rowsa andb, let the unscaled

generalization cost for thejth component,ha,b(j), refer to the lowest level of generaliza-

tion for attributej for which thejth components of botha andb are in the same partition,

i.e. the lowest level for which both have the same generalized value. The weight,w(e),

of an edgee = (a, b) is the sum over all componentsj of the scaled generalization cost,

i.e. w(e) =
∑

j ha,b(j)/lj (recall that the scaling factorlj corresponds to the total number

of levels of generalizations for thejth attribute). Thejth attribute is said to contribute a

weight ofha,b(j)/lj to the edgee.

Limitations of the Graph Representation. As mentioned in the introduction, with this

representation, we lose some information about the structure of the problem, and cannot

achieve a better thanΘ(k) approximation factor for thek-Anonymity problem. We show

this by giving two instances (on binary alphabet) whosek-Anonymity cost differs by a

factor ofΘ(k), but the corresponding graphs for both the instances are identical. Letl =
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2k−2. For the first instance, takek vectors withkl-dimensions each. The bit positions

(i − 1)l + 1 to il are referred to as theith block of a vector. Theith vector has ones in

the ith block and zeros everywhere else. Thek-Anonymity cost for this instance isk2l.

For the second instance, takek vectors with4l = 2k dimensions each. Theith vector

breaks up its2k dimensions into2i equal-sized blocks and has ones in the odd blocks and

zeros in the even blocks. This instance incurs ak-Anonymity cost of4kl. Note that the

graph corresponding to both the instances is ak-clique with all the pairwise distances being

2l = 2k−1.

Definition 2.1 (Charge of a vertex) For any givenk-Anonymity solution, define thecharge

of a vertex to be the total generalization cost of the vector it represents.

Idea Behind the Algorithm. Let OPT denote the cost of an optimalk-Anonymity so-

lution, i.e.,OPT is the sum of the charges of all the vertices in an optimalk-Anonymity

solution. LetF = {T1, T2, . . . , Ts}, a spanning forest (i.e. a forest containing all the ver-

tices) in which each treeTi has at leastk vertices, be a subgraph ofG. This forest describes

a feasible partition for thek-Anonymity problem. In thek-Anonymity solution as per this

partition, the charge of each vertex is no more than the weight of the tree containing the

vertex; recall that the weight of a treeTi is given byW (Ti) = Σe∈E(Ti)w(e), whereE(Ti)

denotes the set of edges in treeTi. We can see this as follows: if attributej has to be

generalized to levelr for the vertices in treeTi (note that an attribute is generalized to the

same level for all rows in a cluster), there must exist a pair of vertices(a, b) in the cluster

which have an unscaled generalization costha,b(j) equal tor. Thus, attributej contributes

a weight of at leastr/lj to the length of all paths (in G) betweena andb. In particular,

attributej contributes a weight of at leastr/lj to the weight of treeTi. Next, we sum the

charges of all the vertices to get that thek-Anonymity cost of the partition corresponding

to the forestF is at mostΣi|V (Ti)|W (Ti). We will refer to this as thek-Anonymity cost

of the forest. Note that the weight of a forest is simply the sum of the weights of its trees.

Hence, the ratio of thek-Anonymity cost to the weight of a forest is at most the number

of vertices in the largest tree in the forest. This implies that if we can find a forest with

the size of the largest component at mostL and weight at mostOPT , then we have an
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L-approximation algorithm. Next, we present an algorithm that finds such a forest with

L ≤ max{2k − 1, 3k − 5}.
The algorithm has the following overall structure, which is explained in more detail in

the next two subsections.

Outline of the Algorithm:

1. Create a forestG with cost at mostOPT . The number of vertices in each tree is at

leastk.

2. Compute a decomposition of this forest (deleting edges is allowed) such that each

component has betweenk andmax{2k − 1, 3k − 5} vertices. The decomposition is

done in a way that does not increase the sum of the costs of the edges.

2.3.1 Algorithm for Producing a Forest with Trees of Size at leastk

The key observation is that since each partition in ak-Anonymity solution groups a vertex

with at leastk− 1 other vertices, the charge of a vertex is at least equal to its distance to its

(k − 1)st nearest neighbor. The idea is to construct a directed forest such that each vertex

has at most one outgoing edge and(−→u, v) is an edge only ifv is one of thek − 1 nearest

neighbors ofu.

Algorithm FOREST

Invariant:

• The chosen edges do not create any cycle.

• The out-degree of each vertex is at most one.

1. Start with an empty edge set so that each vertex is in its own connected component.

2. Repeat until all components are of size at leastk:

Pick any componentT having size smaller thank. Letu be a vertex inT without

any outgoing edges. Since there are at mostk−2 other vertices inT , one of the

k − 1 nearest neighbors ofu, sayv, must lie outsideT . We add the edge(−→u, v)

to the forest.Observe that this step does not violate any of the invariants.
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Lemma 2.3.1 The forest produced by algorithmFORESThas minimum tree size at leastk

and has cost at mostOPT .

Proof: It is evident from the algorithm description that each component of the forest it

produces has at leastk vertices.

Let the cost of an edge(−→u, v) be paid by vertexu. Note that each vertexu pays for at

most one edge to one of itsk − 1 nearest neighbors. As noted earlier, this is less than the

charge of this vertex in anyk-Anonymity solution. Thus, the sum of costs of all edges in

the forest is less thanOPT , the total charge of all vertices in an optimal solution. 2

2.3.2 Algorithm to Decompose Large Components into Smaller Ones

We next show how to break any component with size greater thanmax{2k − 1, 3k − 5}
into two components each of size at leastk. Let the size of the component we are breaking

bes > max{2k − 1, 3k − 5}.

Algorithm DECOMPOSE-COMPONENT

1. Pick any vertexu as the candidate vertex.

2. Root the tree at the candidate vertexu. Let U be the set of subtrees rooted at the

children ofu. Let the size of the largest subtree ofu be φ, rooted at vertexv. If

s−φ ≥ k−1, then we do one of the following partition and terminate (see Figure 2.3).

A. If φ ≥ k ands − φ ≥ k, then partition the tree into the largest subtree and the

rest.

B. If s − φ = k − 1, partition the tree into a component containing the subtrees

rooted at the children ofv and the rest. To connect the children ofv create a

dummy vertexv′ to replacev. Note thatv′ is only a Steiner vertex (see Fig-

ure 2.4) and does not contribute to the size of the first component. Clearly, the

sizes of both the components are at leastk.

C. If φ = k− 1, then partition into a component containing the subtree rooted atv

along with the vertexu and the rest. In order to connect the children ofu in the

second component, we create a Steiner vertexu′.
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...

...

u

D

A

B

C

v

Figure 2.3: The decompositions corresponding to the sub-cases of the algorithm
DECOMPOSE-COMPONENT.

D. Otherwise, all subtrees have size at mostk − 2. In this case, we create an

empty partition and keep adding subtrees ofu to it until the first time its size

becomes at leastk − 1. Clearly, at this point, its size is at most2k − 4. Put the

remaining subtrees (containing at leastk − 1 vertices, since there are at least

3k − 4 vertices in all) into the other partition. Observe that sinces ≥ 2k, at

most one of the partitions has size equal tok − 1. If such a partition exists, add

u to that partition, else addu to the first partition. In order to keep the partition

not containingu connected, a Steiner vertexu′ corresponding tou is placed in

it.

3. Otherwise, pick the root of the largest subtreev as the new candidate vertex and go

to Step 2.
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Steiner vertex

......

v’ u

v

Figure 2.4: The decomposition corresponding to case B; the left partition contains a Steiner
vertexv′ that does not contribute to its size.

Lemma 2.3.2 The above algorithm terminates.

Proof: We will prove this by showing that the size of the largest componentφ (in Step 2)

decreases in each iteration. Consider moving from candidate vertexu in one iteration to

candidate vertexv in the next iteration. Since the algorithm did not terminate withu, if

we root the tree atv, then the size of the subtree rooted atu is less thank − 1. When we

consider the largest subtree underv, either it is rooted atu, in which case, it is smaller than

k − 1 < s − (k − 1) and the algorithm terminates in this step; otherwise, the new largest

subtree is a subtree of the previous largest subtree. 2

Theorem 2.3.3 There is a polynomial-time algorithm for thek-Anonymity problem, that

achieves an approximation ratio ofmax{2k − 1, 3k − 5}.

Proof: First, use Algorithm FOREST to create a forest with cost at mostOPT and min-

imum tree size at leastk. Then repeatedly apply Algorithm DECOMPOSE-COMPONENT

to any component that has size larger thanmax{2k − 1, 3k − 5}. Note that both these

algorithms terminate inO(kn2) time. 2

The above algorithm can also be used when the attributes are assigned weights and

the goal is to minimize the weighted generalization cost. In this case, the cost contributed

by an attribute to an edge in the graphG is multiplied by its weight. The rest of the

algorithm proceeds as before. It is also easy to extend the above analysis to the version

of the problem where we allow an entire row to be deleted from the published database,

instead of forcing it to pair with at leastk − 1 other rows. The deletion of an entire row is
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modeled as suppressing all the entries of that row (or generalizing all the entries of that row

to the highest level). The objective function is the same as before: minimize the overall

generalization cost. We first note that the distance between any two vertices is no more than

the cost of deleting a vertex. Thus, if we run the same algorithm as above, the total cost

of the forestF produced by Algorithm FORESTis no more than the optimalk-Anonymity

cost (this is because the charge of any vertex in the optimalk-Anonymity solution is still

no less than its distance to its(k − 1)st nearest neighbor). The analysis for the rest of the

algorithm remains the same.

2.4 Improved Algorithm for 2-Anonymity

In this section, we study the special case ofk = 2. The algorithm of the previous section

gives a 3-approximation algorithm for this case. We improve upon this result for binary

alphabet, and provide a polynomial-time1.5-approximation algorithm for2-Anonymity

(note that for binary alphabet, generalization is equivalent to suppression). This algorithm

uses a technique that is completely different from the previous algorithm, and could po-

tentially be extended to get an improved approximation factor for the general case. For

this algorithm, we use the minimum-weight[1, 2]-factor of a graph constructed from the

2-Anonymity instance. A[1, 2]-factor of an edge-weighted graphG is defined to be a span-

ning (i.e., containing all the vertices) subgraphF of G such that each vertex inF has degree

1 or 2. The weight ofF is the sum of the weights of the edges inF . Cornuejols [Cor88]

showed that a minimum-weight[1, 2]-factor of a graph can be computed in polynomial

time.

Given an instance of the 2-Anonymity problem on binary alphabet, we create an edge-

weighted complete graphG = (V, E) as follows. The vertex setV contains a vertex

corresponding to each vector in the 2-Anonymity problem. The weight of an edge(a, b)

is the Hamming distance between the vectors represented bya andb (i.e., the number of

positions at which they differ). First we obtain a minimum-weight[1, 2]-factor F of G.

By optimality, F is a vertex-disjoint collection of edges and pairs of adjacent edges (if a

[1, 2]-factor has a component which is either a cycle or a path of length≥ 3, we can obtain

a [1, 2]-factor of smaller weight by removing edge(s)). We treat each component ofF as a
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cluster, i.e., retain the bits on which all the vectors in the cluster agree and replace all other

bits by∗s. Clearly, this results in a2-anonymized table.

Theorem 2.4.1 The number of∗s introduced by the above algorithm is at most1.5 times

the number of∗s in an optimal 2-Anonymity solution.

Before we prove this theorem, consider threem-bit vectorsx1, x2 andx3 with pairwise

Hamming distancesα, β and γ as shown in Figure 2.5. Without loss of generality, let

γ ≥ α, β. Let xmed denote themedianvector whoseith bit is the majority of theith bits

of x1, x2 andx3 and letp, q andr be the Hamming distances toxmed from x1, x2 andx3

respectively. Letxs be thestar vector obtained by minimal suppression ofx1, x2 andx3,

i.e., it has the common bits where the three vectors agree and∗s elsewhere. Observe that

α = q + r, β = r + p andγ = p + q. The other relevant distances are shown in the figure.

p

med

x x

2

3

x1

s

p+q+r

p+q+r

q

x

p+q+rβ

γ

α
r

x

Figure 2.5: Three vectors and their corresponding “median” and “star” vectors

Observation 2.4.2 If verticesx1, x2 andx3 (as shown in Figure 2.5) form a cluster in ak-

Anonymity solution, the number of∗s in each modified vector is exactly equal top+q+r =
1
2
(α + β + γ). If the cluster contains additional vertices, then the number of∗s is at least

1
2
(α + β + γ).
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To see this, first note that sincexmed is the median vertex, the attributes that contribute

to p, q andr are distinct. Therefore, the number of∗s in each modified vector is at least

p + q + r. Moreover, whenx1, x2 andx3 are the only three vertices in the cluster, each

attribute corresponding to a∗ in the modified vector contributes to exactly one ofp, q and

r.

Let cOFAC denote the weight of an optimal[1, 2]-factor, letcALG be the cost of the

2-Anonymity solution obtained from it and letOPT denote the cost of the optimal 2-

Anonymity solution respectively. The optimal 2-Anonymity solution can be assumed to

consist only of disjoint clusters of size2 or 3 (as bigger clusters can be broken into such

clusters without increasing the cost). We can derive a[1, 2]-factor from this solution as

follows: for each cluster of size 2, include the edge between the two vertices; for a cluster

of size 3, include the two lighter edges of the triangle formed by the three vertices. Denote

the weight of this[1, 2]-factor bycFAC .

Lemma 2.4.3 cALG ≤ 3 · cOFAC

Proof: Consider the optimal[1, 2]-factor and thek-Anonymity solution corresponding to

it. For a cluster of size 2, we have to suppress all the bits at which the two vectors differ so

that the total number of∗s in the two rows is twice the Hamming distance (which is equal

to the edge weight). For a cluster of size 3, say the one in the figure, by Observation 2.4.2,

the number of∗s in each row is exactly(α + β + γ)/2. So, the total number of stars is
3
2
(α + β + γ) ≤ 3(α + β) (using triangle inequality). The optimal[1, 2]-factor would

have contained the two lighter edges of the triangle, incurring a cost of(α + β) for this

cluster. Summing over all the clusters formed by the optimal[1, 2]-factor algorithm, we get

cALG ≤ 3 · cOFAC . 2

Lemma 2.4.4 cFAC ≤ 1
2
OPT

Proof: Consider the optimalk-Anonymity solution and the[1, 2]-factor corresponding to

it. For a cluster of size 2, cost incurred by the[1, 2]-factorFAC is equal to half the cost

incurred inOPT . For a cluster of size 3, say the one in Figure 2.5, cost incurred inFAC

is equal toα + β ≤ 2
3
(α + β + γ) = 4

3
(p + q + r), where the inequality is obtained by

using the factγ ≥ α, β. Since the cost incurred inOPT is 3(p + q + r), cost incurred in
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FAC is at most half the cost incurred inOPT . By summing over all the clusters, we get

cFAC ≤ OPT/2. 2

SincecOFAC ≤ cFAC , it follows from the above lemmas thatcALG ≤ 3
2
OPT , which

proves Theorem 2.4.1. For an arbitrary alphabet size,xmed is no longer defined. However,

it can be shown thatOPT ≥ (α + β + γ) ≥ 3
2
(α + β), provingcFAC ≤ 2

3
OPT . Since

cALG ≤ 3 · cOFAC holds as before, we getcALG ≤ 2 · OPT . Thus, the same algorithm

achieves a factor2 approximation for2-Anonymity with Suppression for arbitrary alphabet

size.

2.5 Improved Algorithm for 3-Anonymity

We now present a 2-approximation algorithm for 3-Anonymity with a binary alphabet

(again generalization is equivalent to suppression in this case). The idea is similar to the al-

gorithm for 2-Anonymity. We construct the graphG corresponding to the 3-Anonymity in-

stance as in the previous algorithm. A 2-factor of a graph is a spanning subgraph with each

vertex having degree 2 (in other words, a collection of vertex-disjoint cycles spanning all

the vertices). We first run the polynomial-time algorithm to find a minimum-weight 2-factor

F of the graphG [Cor88]. We show that the cost of this 2-factor, saycOFAC , is at most

2/3 times the cost of the optimal 3-Anonymity solution, sayOPT . Then, we show how

to transform this 2-factorF into a 3-Anonymity solutionALG of costcALG ≤ 3 · cOFAC ,

giving us a factor-2 approximation algorithm for 3-Anonymity.

Lemma 2.5.1 The cost of the optimal 2-factor,cOFAC on graphG corresponding to the

vectors in the 3-Anonymity instance is at most2
3

times the cost of the optimal 3-Anonymity

solution,OPT .

Proof: Consider the optimal 3-Anonymity solution. Observe that it will cluster 3, 4 or 5

vertices together (any larger groups can be broken up into smaller groups of size at least 3,

without increasing the cost of the solution). Given an optimal solution to the 3-Anonymity

problem, we construct a 2-factor solution as follows: for every cluster of the 3-Anonymity

solution, pick the minimum-weight cycle involving the vertices of the cluster. Next, we

analyze the costcFAC of this 2-factor. Define thechargeof a vertex to be the number of
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∗s in the vector corresponding to this vertex in the 3-Anonymity solution. We consider the

following three cases:

(a) If a clusteri is of size 3, the 2-factor contains a triangle on the corresponding vertices.

Let a, b andc be the lengths of the edges of the triangle. By Observation 2.4.2, we

get that(a+ b+ c) is twice the charge of each vertex in this cluster. Thus,OPT pays

a total cost ofOPTi = 3
2
(a + b + c) while FAC payscFAC,i = a + b + c = 2

3
OPTi.

(b) If a clusteri is of size 4, the 2-factor corresponds to the cheapest 4-cycle on the four

vertices. Letτ be the sum of the weights of all the
(
4
2

)
= 6 edges on these four

vertices. Consider the three 4-cycles on these vertices. As each edge appears in two

4-cycles, the average cost of a 4-cycle is2
3
τ . By choosing the minimum weight 4-

cycle, we ensure that the cost paid byFAC for these verticescFAC,i ≤ 2
3
τ . Also,

by Observation 2.4.2, the charge of any of these 4 vertices is at least half the cost

of any triangle on (three of) these four vertices. The cost of the most expensive

triangle is at least equal to the average cost over all the
(
4
3

)
= 4 triangles, which is

equal to2
4
τ (since each edge appears in two triangles). Hence the cost paid byOPT ,

OPTi ≥ 4 · 1
2
· 2

4
· τ = τ . Thus,cFAC,i ≤ 2

3
OPTi.

(c) If a clusteri is of size 5, letτ be the sum of weights of all
(
5
2

)
= 10 edges on these five

vertices. By an argument similar argument to (b),FAC payscFAC,i ≤ 5
10

τ . Also,

the charge of any of these vertices is at least half the cost of any triangle on (three of)

these vertices. Since the average cost of a triangle is3
10

τ , the number of∗s in each

vertex is at least1
2

3
10

τ . Thus, cost paid byOPT for clusteri, OPTi ≥ 5· 1
2
· 3
10
·τ = 3

4
τ .

Thus,cFAC,i ≤ 2
3
OPTi.

Thus, adding up over all clusters, we getcFAC ≤ 2
3
OPT . Thus,cOFAC ≤ 2

3
OPT . 2

Lemma 2.5.2 Given a 2-factorF with costcF , we can get a solution for 3-Anonymity of

costcALG ≤ 3 · cF .

Proof: To get a solution for 3-Anonymity, we make every cycle inF with size 3, 4 or 5 into

a cluster. Letlen(C) denote the length of a cycleC in the 2-factor. For each cycle larger

C, if len(C) = 3x for x an integer, then we decompose it intox clusters, each containing
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3 adjacent vertices ofC. Similarly, if len(C) = 3x + 1, x an integer, we decompose it into

x clusters:x − 1 of size 3, and one of size 4. Iflen(C) = 3x + 2, x an integer, then we

decompose it intox− 2 clusters of size 3, and two clusters of size4. In all these cases, of

all the possible decompositions, we choose the one in which the total cost of edges of the

cycle within the clusters is minimized. Depending on the size of the cycleC in the 2-factor,

we can show that the 3-Anonymity solutionALG pays as follows:

(a) For a triangle,ALG pays3 · 1
2
len(C) ≤ 3 · len(C).

(b) For a 4-cycle,ALG pays at most4 · 1
2
len(C) ≤ 3 · len(C).

(c) For a 5-cycle,ALG pays at most5 · 1
2
len(C) ≤ 3 · len(C).

The above inequalities follow from an observation similar to Observation 2.4.2,

namely that the vertices of a cycleC can differ in at most1
2
len(C) attributes.

(e) For a(3x + 1)-cycle,x > 1, ALG pays at most6(x−1)+12
3x+1

· len(C) ≤ 3 · len(C). This

is obtained by considering the minimum 3-Anonymity cost over the(3x+1) possible

decompositions into clusters. Each edgee of the cycleC appears in a cluster of size 4

in three decompositions and contributes a cost of at most4w(e) to thek-Anonymity

cost of the decomposition. In addition, each edge appears in a cluster of size 3 in

(2(x− 1)) decompositions contributing a cost of at most3w(e) to thek-Anonymity

cost of these decompositions. Summing over all edges, the totalk-Anonymity cost

of all the3x + 1 decompositions is at most(3 · 2(x− 1) + 4 · 3) · len(C) andALG

pays no more than the average cost of a decomposition.

(f) For a(3x + 2)-cycle,x > 1, ALG pays at most6(x−2)+24
3x+2

· len(C) ≤ 3 · len(C). This

is obtained by an analysis similar to (e) above. Note that we get a better bound on

the cost by splitting intox− 2 clusters of size 3 and two clusters of size4, instead of

x− 1 clusters of size 3 and one clusters of size5.

Thus, summing over all clusters,ALG pays no more than three times the total cost of

all cycles, i.e.,cALG ≤ 3 · cF . 2
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Note that the above analysis is tight, since equality can hold in case (f), whenx = 2, e.g.

for vectors{0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000}, where the optimal2-factor is

a cycle through all the vertices in the given order.

Combining the above lemmas, we obtain a factor 2 approximation for 3-Anonymity.



Chapter 3

Secure Computation of thekth-ranked

Element

In this chapter, we consider the problem of computing statistical functions over the union

of large, confidential datasets held by different parties. In particular, we are interested in

the problem of computing thekth-ranked elementof an ordered setS split between two or

more parties in a privacy-preserving manner.

For an ordered setS ⊂ R, thekth-ranked element is the valuex ∈ S that is rankedk

when the setS is sorted in increasing order. Of particular interest is the median, which is

the element with rankp = d|S|/2e. Given two partiesA andB with datasetsDA, DB ⊂ F,

respectively, we consider the problem of privately computing thekth-ranked element of

DA ∪DB. We also consider this problem in the multi-party case.

We are interested in scenarios where the datasetsDA andDB contain proprietary in-

formation, and neither party is willing to share its data with the other. Furthermore, the

datasets involved are very large. For example, consider two health insurance companies

wishing to compute the median life expectancy of the smokers insured by them. In such

a setting, both the number of insured smokers as well as their life expectancies are private

information, but the median life expectancy is of combined mutual interest. Another exam-

ple is the annual Taulbee survey which collects salary and demographic data for faculty in

computer science and computer engineering departments in North America. Typically, aca-

demic departments report only a small number of statistics like the minimum, maximum,

33
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average and median salary for assistant, associate and full professor positions. The Taulbee

survey is thus able to publish only limited aggregate information. A privacy-preserving,

multi-party solution for thekth-ranked element would enable universities to quickly com-

pute the combined salary statistics without trusting individual salaries to Taulbee. Such a

protocol would also facilitate the computation of histograms [GMP97, PGI99, JKM+98] in

a privacy-preserving manner.

Prior Work

The problem we discuss is referred to asSecure Function Evaluation (SFE)in the cryp-

tography literature. It involves several parties with private inputs that wish to compute a

function of their joint inputs, and require that the process of computing the function does

not reveal to an adversarial party (or a coalition of such parties) any information that cannot

be computed using the input of the adversary and the output of the function.

There exist well-known solutions that enable two or more parties to perform secure

computation of any function [Yao86, GMW87]. The general method employed by these

solutions is to construct a combinatorial circuit that computes the required function, and

then run a distributed protocol that securely evaluates the circuit. We provide a brief sketch

of a two-party protocol due to Yao in Section 3.2.21. The communication overhead of these

generic protocols is linear in the size of the circuit. The computation involves (at the least)

running an oblivious transfer protocol for every input gate, or for every gate of the circuit,

depending on the implementation. LetM be the size of the domainF from which the

datasetsDA andDB are drawn, and letn = |DA| + |DB| be the total number of the input

elements. Then, thekth-ranked element can be computed via a circuit of sizeΩ(n log M)

(since reading in the input requires at leastn log M gates), which implies that for large

values ofn, the overhead of a secure protocol obtained from generic constructions is too

large.

In another generic construction, Naor and Nissim [NN01] show that any two-party

communication protocol can be translated into a secure computation protocol. Effectively,

1 The interested reader can find a detailed description of these protocols in the references above. Alter-
natively, descriptions of the two-party protocols are available at, e.g., [LP02, Gol98], and descriptions of the
multi-party protocols can be found, for example, in [BMR90, FY92, Gol98].
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a protocol with communication complexity ofc bits is transformed into a secure protocol

which performsc invocations of oblivious transfer (or SPIR) from a database of length2c.

Since there is a protocol, due to Karchmer, for computing the median withlog n communi-

cation [KN97], the implication is that the size of the database for the OT/SPIR invocations

is polynomial inn, and the communication islog n times that of the OT/SPIR protocol.

If the protocol uses SPIR based on the PIR protocol of Cachin et al. [CMS99], it obtains

polylogarithmic communication overhead. The drawback, in addition to hidden constants,

is that it requires application of a public-key operation to each item in the database, which

implies that the number of public-key operations is polynomial inn.

Contributions

The results in [Yao86, GMW87] and [NN01] are quite powerful in that they enable general

transformations from known algorithms to secure protocols. Our interest, however, is to

determine how efficiently a specific function, namely thekth-ranked element, can be com-

puted. We are motivated by applications where the total number of data pointsn owned by

the parties is very large, and thus even a linear communication and computation overhead

might be prohibitive; even taking recent results on extending oblivious transfers [IKNP03]

into account, the overhead isΩ(n). We describe protocols with sub-linear communication

and computation overhead. Specifically, in the two-party case, we reduce the computation

of the kth-ranked element toO(log k) secure comparisons2 of (log M )-bit inputs, where

log M is the number of bits needed to describe the elements in the setsDA, DB. We also

show how to obtain security against malicious adversaries. In the multi-party case, we re-

duce the computation of thekth-ranked element toO(log M) simple secure computations

that involve additions and a comparison of (log M )-bit long numbers. Again, this protocol

can be made secure against malicious adversaries. Interestingly, the multi-party solution

can be applied to the two-party scenario if it uses secure two-party protocols as primitives.

This is in contrast to the typical case in secure computation where secure multi-party proto-

cols require the presence of an honest majority, which is not available in the two-party case.

While the two-party protocol requires inputs comprising of distinct values, the multi-party

2If the two parties possess inputsx andy, a secure comparisonreveals 0 ifx ≥ y and 1 otherwise, and
nothing more.
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protocol can be applied directly even to inputs that contain duplicate items. The advantage

of our two-party solution is that the number of rounds is logarithmic in the number of input

items, whereas the number of rounds of the multi-party solution is logarithmic in the size

of the domain of possible input values.

The protocols given here are modifications of well known algorithms in the communica-

tion complexity literature [Rod82, KN97]. Our contribution is the modifications and proofs

of security that result in privacy-preserving solutions, for both semi-honest and malicious

adversaries. In addition, we show how the parties can compute thekth-ranked element

while hiding the actual sizes of their databases from each other. We note that the commu-

nication complexity lower bound for computing the median ismin{log n, log M} [KN97]

whereas our result entails a communication cost ofO(log n · log M) for asecurecomputa-

tion.

Efficient Secure Computation via Reduction and Composition

We take the same approach as that of previous solutions for secure computation over large

inputs (e.g. [LP02, FIM+01, CIK+01]), and reduce this task to many invocations of secure

computation of simpler functions of small inputs (but unlike these constructions, we also

design protocols which are secure against malicious adversaries). That is, we describe a

protocol for computing thekth-ranked element that uses oracle queries to a few simple

functionalities and is secure if these functionalities are computed by a trusted oracle. A

composition theorem (see [Can00, Can01] and discussions below) shows that if the ora-

cle queries are replaced by secure protocols, then the resulting combined protocol is also

secure. In the semi-honest case, the oracle queries can be replaced by very simple invo-

cations of secure function evaluation. In the malicious adversary case, they are replaced

by a reactive secure computation of a simple function. The result of the reduction is a

distributed protocol whose overhead is sub-linear in the size of the inputs and is actually

feasible even for very large inputs. We also note that the protocol computes theexactvalue

of thekth-ranked item, rather than computing an approximation.
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3.1 Security Definitions and a Composition Theorem

We describe protocols that are secure against malicious adversaries; we therefore use def-

initions that compare the actual execution of the protocol to anideal implementation,

rather than use definitions that use simulation. The definitions we use follow those of

Canetti [Can00] and Goldreich [Gol98]. We also state a composition theorem that is used

in proving the security of the protocols.

A semi-honest adversaryis an adversary that follows the instructions of the protocol.

It might try, however, to use the information that it learns during the execution to learn

information about the inputs of the other parties. Amalicious adversaryis an adversary

that can behave arbitrarily. In particular, there are several things that a malicious adversary

can do which we cannot hope to avoid: (1) it can refuse to participate in the protocol, (2) it

can substitute an arbitrary value for its input, and (3) it can abort the protocol prematurely.

Following [Can00, Gol98] we do not consider solutions to the early termination problem

(i.e. item (3) above), also known as the fairness issue, since there is no perfect solution for

this issue and existing solutions are quite complex. Furthermore, premature termination of

the protocol by one party is detected by the other parties which, in many scenarios, can

then take measures against the corrupt party. This is different than other types of malicious

activity which are not easily detected.

The security definition we use captures both the correctness and the privacy of the

protocol. We only provide definitions for the two-party case. For a detailed discussion

of security definitions, for the two-party and multi-party scenarios, we refer the reader

to [Can00, Gol98]. The definition is based on a comparison to the ideal model in which

there is a trusted third party (TTP), and the corrupt parties can choose to give any arbitrary

input to the trusted party, and to terminate the protocol prematurely, even at a stage where

they have received their output and the other parties have not. We limit it to the case where

both parties compute the same functionf : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.

Definition 3.1 (The Ideal Model) A strategy for partyA in the ideal model is a pair of

PPT (probabilistic polynomial time) algorithms,AI(X, r) that uses the inputX and a se-

quence of coin flipsr to generate an input thatA sends to the trusted party, andAO(X, r, Z)

which takes as an additional input the valueZ that A receives from the TTP, and outputs
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A’s final output. IfA is honest thenAI(X, r) = X andAO(X, r, Z) = Z. A strategy for

partyB is similarly defined using functionsBI(Y, r) andBO(Y, r, Z).

The definition is limited to the case where at least one of the parties is honest. We

call an adversary that corrupts only one of the parties anadmissible adversary. The joint

execution ofA andB in the ideal model, denoted byIDEALA,B(X, Y ), is defined to be

• If B is honest,

– IDEALA,B(X, Y ) equals(AO(X, r, f(X ′, Y )), f(X ′, Y )), whereX ′ = AI(X, r)

(in the case that A did not abort the protocol),

– or, IDEALA,B(X,Y ) equals(AO(X, r, f(X ′, Y )),−), whereX ′ = AI(X, r) (if

A terminated the protocol prematurely).

• If A is honest

– IDEALA,B(X, Y ) equals(f(X, Y ′), BO(Y, r, f(X, Y ′))), whereY ′ = BI(Y, r),

– or, IDEALA,B(X, Y ) equals(−, BO(Y, r, f(X, Y ′))), whereY ′ = BI(Y, r).

In the real execution, a malicious party could follow any strategy that can be imple-

mented by a PPT algorithm. The strategy is an algorithm mapping a partial execution

history to the next message sent by the party in the protocol.

Definition 3.2 (The Real Model (for semi-honest and malicious adversaries))Let f be

as in Definition 3.1, andΠ be a two-party protocol for computingf . Let(A′, B′) be a pair

of PPT algorithms representing the parties’ strategies. This pair is admissible w.r.t.Π if

at least one of(A′, B′) is the strategy specified byΠ for the corresponding party. In the

semi-honest case, the other party could have an arbitrary output function. In themalicious

case, the other party can behave arbitrarily throughout that protocol.

The joint execution ofΠ in the real model, denotedREALΠ,A′,B′(X, Y ) is defined as the

output pair resulting from the interaction betweenA′(X) andB′(Y ).

The definition of security states that an execution of a secure real model protocol under

any admissible adversary can be simulated by an admissible adversary in the ideal model.
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Definition 3.3 (Security (for both the semi-honest case and the malicious case))Letf

and Π be as in Definition 3.2. ProtocolΠ securely computesf if for every PPT pair

(A′, B′) that is admissible in the real model (of Definition 3.2) there is a PPT pair(A, B)

that is admissible in the ideal model (of Definition 3.1), such thatREALΠ,A′,B′(X, Y ) is

computationally indistinguishable fromIDEALA,B(X, Y ).

3.2 Cryptographic Tools

In the section, we briefly describe some of the tools from the cryptography literature that

we will be using in our protocols. We will base our description on the one given in [Pin03].

Good sources for further details are Ronald Cramer’s lecture notes that provide an ele-

mentary introduction to the methods of secure computation [Cra00], and Oded Goldreich’s

manuscript detailing a rigorous introduction to secure multi-party computation [Gol98].

3.2.1 Oblivious Transfer

Oblivious transfer is a basic protocol, that is the main building block of secure computation.

In fact, Kilian [Kil88] showed that oblivious transfer is sufficient for secure computation in

the sense that given an implementation of oblivious transfer, one can construct any secure

computation protocol without using any other cryptographic primitive.

The notion of 1-out-of-2 oblivious transfer was suggested by Even, Goldreich and Lem-

pel [EGL85] as a variant of a different but equivalent type of oblivious transfer that has been

suggested by Rabin [Rab81]. The protocol involves two parties – thesenderand there-

ceiver. The sender’s input is a pair(x0, x1) and the receiver’s input is a bitσ ∈ 0, 1. At the

end of the protocol, the receiver learnsxσ (and nothing else), and the sender learns nothing.

In other words, if we use the notation(inputA, inputB) → (outputA, outputB) to define

the outcome of the function, then oblivious transfer is the function((x0, x1), σ) → (λ, xσ),

whereλ is the empty output.

It is known how to design oblivious transfer protocols based on virtually all known

constructions of trapdoor functions, i.e. public key cryptosystems. For the case of semi-

honest adversaries, there exist simple and efficient protocols for oblivious transfer [EGL85,
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Gol98]. One straightforward approach is for the receiver to generate two random public

keys – a keyPσ whose decryption key he knows, and a keyP1−σ whose decryption key

he does not know. The receiver then sends these two keys to the sender, who encryptsx0

with the keyP0 and encryptsx1 with the keyP1, and sends the two encrypted values to the

receiver. The receiver can then decryptxσ but notx1−σ. It is easy to show that the sender

does not learn anything aboutσ, since the only message that she receives contains two

random public keys, and there is no way for her to deduce the one for which the receiver

has a private key. As for the sender’s privacy, if the receiver follows the protocol, he knows

the private key corresponding to only one of the public keys and can therefore decrypt

only one of the inputs, and if the encryption scheme is secure he cannot gain information

about the other input. To be secure against malicious adversaries, the oblivious transfer

protocol must also ensure that the receiver chooses the public keys appropriately, i.e. the

receiver knows the private key corresponding to only one of the public keys. This can be

done by using zero-knowledge proofs by which the receiver proves that he has chosen the

keys correctly. Fortunately, there are very efficient zero-knowledge proofs for this case,

see e.g. [NP01]. Oblivious transfer is often the most computationally intensive operation

of secure protocols, and is repeated many times. Each invocation of oblivious transfer

typically requires a constant number of invocations of trapdoor permutations (i.e. public-

key operations, or exponentiations). It is possible to reduce the amortized overhead ofn

oblivious transfers to one exponentiation perlog n oblivious transfers, even for the case of

malicious adversaries [NP01].

3.2.2 Yao’s Protocol for Two-party Secure Computation

In [Yao86], Yao presented a constant-round protocol for privately computing any prob-

abilistic polynomial-time function. Denote the parties as Alice (A) and Bob (B), and

denote their respective inputs byx andy. Let f be the function that they wish to com-

pute (for simplicity, we assume that we want only Bob to learn the value off(x, y) at

the end of the protocol). The protocol is based on expressingf as a combinatorial circuit

with gates defined over some fixed baseG. For example,G can include all the functions

g : {0, 1} × {0, 1} → {0, 1}. The bits of the input are entered into input wires and are
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propagated through the gates. Note that it is known that any polynomial-time function can

be expressed as a combinatorial circuit of polynomial size (see, e.g. [Sav72]).

Encoding the Circuit. Informally, Yao’s protocol works by having one of the parties

(say Alice) first generate anencryptedor garbled circuit for computingf and send its

representation to Bob. The encrypted circuit is generated in the following way: first, Alice

hardwiresher input into the circuit, generating a circuit computingf(x, ·). She then assigns

to each wirei of the circuit two random “garbled” values(W i
0; W

i
1) corresponding to values

0 and1 of the wire (the random values should be long enough to be used as keys to a pseudo-

random function, e.g. 80-128 bits long). Consider a gateg which computes the value of

the wirek as a function of wiresi andj. Alice prepares a tableTg that encrypts the garbled

value of the output wire using the output of a pseudo-random functionF keyed by the

garbled values of the input wiresi andj. The table therefore has four entries, one entry for

every combination of input values. (Note that pseudo-random functions are usually realized

using private-key primitives such as block ciphers or hash functions, and are therefore very

efficient.) The table enables computation of the garbled output ofg, from the garbled inputs

to g. Moreover, given the two garbled inputs tog, the table does not disclose information

about the output ofg for any other inputs, nor does it reveal the values of the actual input

or output bits. The representation of the circuit includes the wiring of the original circuit

(namely, a mapping from inputs or gate outputs to gate inputs), the tablesTg, and tables

that translate the garbled values of the output wires of the circuit to actual 0/1 values. In

this form, the representation reveals nothing but the wiring of the circuit, and therefore Bob

learns nothing from this stage. (We assume that the functionf is public and the wiring of

the circuit is not secret).

Encoding Bob’s Input. The tables described above enable the computation of the gar-

bled output of every gate from its garbled inputs. Therefore, if Bob is given the garbled

values of the input wires of the circuit in addition to these tables, he can compute the gar-

bled values of its output wires and then translate them to actual values. In order for Bob

to obtain the garbled values of the input wires, Alice and Bob engage, for each input wire,

in a 1-out-of-2 oblivious transfer. In this protocol, Alice is the sender, and her input pair
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consists of the two garbled values of this wire, and Bob is the receiver, and his input is his

input bit. As a result of the oblivious transfer protocol Bob learns the garbled value of his

input bit and nothing about the garbled value of the other bit, and Alice learns nothing.

Computing the Circuit. At the end of the oblivious transfer stage, Bob has sufficient

information to compute the output of the circuit on his own. After computingf(x, y), he

can send this value to Alice if she requires it.

Security of the Protocol. To show that the protocol is secure, it must be shown that none

of the two parties learns anything that it cannot compute from the input and output only.

To see that the protocol is secure against Alice, we note that Alice receives messages only

during the oblivious transfer protocol, and being the sender, she does not learn anything

from that protocol. As for security against Bob, we observe that every masking value

(e.g. the output of the pseudo-random functionF ) is used only once, and that the pseudo-

randomness ofF ensures that without knowledge of the correct keys, i.e. garbled values of

the input wires of a gate, the output values of the gate look random. Therefore, knowledge

of one garbled value of each of the input wires of a gate discloses only a single garbled

output value of the gate and Bob cannot distinguish the other garbled value from random.

Now, the oblivious transfer protocol ensures that Bob learns only a single garbled value for

each input wire. Therefore, inductively, Bob can compute only a single garbled value of

each gate, and in particular of the output of the circuit. Moreover, the method by which the

tables were constructed hides the values of intermediate results (i.e. of gate outputs inside

the circuit).

Overhead. The protocol involves: (1) Alice and Bob engaging in an oblivious transfer

protocol for every input wire of the circuit, (2) Alice sending to Bob tables of size lin-

ear in the size of the circuit, and (3) Bob computing a pseudo-random function a constant

number of times for every gate (this is the cost incurred in evaluating the gates). The num-

ber of rounds of the protocol is constant (namely, two rounds using the oblivious transfer

of [EGL85, Gol98, NP01]). The computation overhead is dominated by the oblivious trans-

fer stage, since the evaluation of the gates uses pseudo-random functions which are very
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efficient compared to the oblivious transfer protocol. It is roughly linear in the size of Bob’s

input. The communication overhead, on the other hand, is linear in the size of the circuit.

Thus, Yao’s protocol is efficient if and only if the circuit representation off and the input

of one of the parties are not very large.

3.2.3 Secure Comparison

The main primitive that we use in our two-party protocol is a protocol for secure compar-

ison. The protocol involves two parties – party A having an inputx and party B having

an inputy. The output is 0 ifx ≥ y and 1 otherwise. We can implement the protocol

by encoding the comparison function as a binary circuit and then using Yao’s protocol for

secure computation. The overhead is|x| oblivious transfers, andO(|x| + |y|) applications

of a pseudo-random function, as well asO(|x|+ |y|) communication. More efficient, non-

interactive comparison protocols also exist (see e.g. [Fis01]). Among other specialized

protocols for this problem is a protocol suggested by Cachin that ensures fairness given a

semi-trusted third party [ACCK01].

3.2.4 Reactive Computation

A reactive computation consists of a series of steps in which parties provide inputs and

receive outputs. Each step generates astatewhich is used by the following step. The input

that a party provides at stepi can depend on the outputs that it received in previous steps.

(We limit ourselves to synchronous communication, and to an environment in which there

are secure channels between the parties.) The protocols that we design for the malicious

case implement reactive computation. We refer the reader to [Can01, CLOS02] for a

discussion of the security definitions and constructions for reactive computation.

3.2.5 A Composition Theorem

Our protocols implement the computation of thekth-ranked element by running many in-

vocations of secure computation of simpler functionalities. Such constructions are covered

by theorems of secure composition [Can00, Can01]. Loosely speaking, consider ahybrid
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modelwhere the protocol uses a trusted party that computes the functionalitiesf1, . . . , f`.

The secure composition theorem states that if we consider security in terms of comparing

the real computation to the ideal model, then if a protocol is secure in the hybrid model, and

we replace the calls to the trusted party by calls to secure protocols computingf1, . . . , f`,

then the resulting protocol is secure. A secure composition theorem applies to reactive

computation, too [Can01, CLOS02].

3.3 Two-party Computation of the kth-ranked Element

This section describes protocols for secure two-party computation of thekth-ranked ele-

ment of the union of two databases. The protocols are based on the observation that a

natural algorithm for computing thekth-ranked element discloses very little information

that cannot be computed from the value of thekth-ranked element itself. Some modifica-

tion to that protocol can limit the information that is leaked by the execution to information

that can be computed from the output alone.

To simplify the description of the basic insecure protocol, we describe it for the case

of two parties, A and B, each having an input of sizen/2, that wish to compute the value

of the median, i.e.(n/2)th-ranked element, of the union of their two inputs sorted in

increasing order of their values. This protocol is a modification of the algorithm given

in [Rod82, KN97].3 Assume for simplicity that all input values are different. The protocol

operates in rounds. In each round, each party computes the median value of his or her

remaining input, and then the two parties compare their two median values. If A’s median

value is smaller than B’s then A adjusts her input by removing the values which are less

than or equal to her median, and B removes from his input items which are greater than

his median. Otherwise, A removes from her input items which are greater than her median

and B removes from his input items which are less than or equal to his median. The

protocol continues until the remaining input sets are of length 1 (thus the number of rounds

is logarithmic in the number of input items). The protocol is correct since when A’s median

3Another variant of the algorithm that is presented there, and is due to Karchmer, reduces the communi-
cation overhead toO(log n) bits (instead ofO(log2 n)). Our protocols do not use this improvement. In any
case, the communication associated with the secure computation overshadows the communication overhead
of the basic protocol.
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is smaller than B’s median, each of the items that A removes is smaller than A’s median,

which is smaller than at leastn/4 inputs of A andn/4+1 inputs of B. Therefore, the items

removed by A are all smaller than the median. Similarly, all the items removed by B are

larger than the median. Moreover, the protocol removesn/4 items smaller than the median

andn/4 items greater than it; therefore, the median of the new data is the same as that of

the original input. The other case follows similarly.

Suppose now that the comparison is done privately, i.e. the parties only learn which

party’s median value is greater, and do not learn any other information about each other’s

median value. We show below that, in this case, the protocol is secure. Intuitively, this is

true because each party can deduce the result of the comparison from the value of the over-

all median and its own input. For example, if party A knows the median value of her input

and the median of the union of the two inputs, and observes that her median is smaller than

the median of the union, then she can deduce that her median value is smaller than that of

B. This means that given the final output of the protocol, both parties can simulate the re-

sults of the comparisons. Consequently, we have a reduction from the problem of securely

computing the median of the union to the problem of securely computing comparisons.

3.3.1 Protocol for Semi-Honest and Malicious Parties

Following is a description of a protocol that finds thekth-ranked element in the union of

two databases and is secure against semi-honest parties. The computation of the median is

a specific case wherek is set to be the sum of the sizes of the two inputs divided by two.

The protocol reduces the general problem of computing thekth-ranked element of arbitrary

size inputs, to the problem of computing the median of two inputs of equal size, which is

also a power of 2. For now, we will assume that all the inputs aredistinct. This issue is

further discussed later.

Security Against a Malicious Adversary. The protocol for the semi-honest case can be

amended to be secure against malicious adversaries. The main change is that the protocol

must now verify that the parties provide consistent inputs to the different invocations of the

secure computation of the comparisons. For example, if party A gave an input of value100
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to a secure comparison computation, and the result was that A must delete all its input items

which are smaller than100, thenA cannot provide an input which is smaller than100 to

any subsequent comparison. We provide a proof that given this enforcement, the protocol

is secure against malicious behavior. For this protocol, we do not force the input elements

to be integers. However, if such an enforcement is required (e.g. if the input consists of

rounded salary data), then the protocol for the malicious case also verifies that there is room

for sufficiently many distinct integers between the reported values of different elements of

the input. This is made more precise later.

In protocol FIND-RANKED-ELEMENT that we describe here, we also specify thead-

ditional functionalitythat is required in order to ensure security against malicious parties.

Then in Section 3.3.3 we describe how to implement this functionality, and show that given

this functionality, the protocol is secure against malicious adversaries. Of course, to ob-

tain a protocol which is secure only against semi-honest adversaries, one should ignore the

additional highlighted steps that provide security in the malicious case.

Protocol FIND-RANKED-ELEMENT

Input: DA known to A, andDB known to B. Public parameterk (for now, we assume that

the numerical value of the rank of the element is known). All items inDA∪DB are distinct.

Output: Thekth-ranked element inDA ∪DB.

1. Party A (resp., B) initializesSA (resp.,SB) to be the sorted sequence of

its k smallest elements inDA (resp.,DB).

2. If |SA| < k then Party A pads(k − |SA|) values of “+∞” to its sequence

SA. Party B does the same: if|SB| < k then it pads(k − |SB|) values of

“+∞” to its sequenceSB.

3. Let 2j be the smallest power of 2 greater than or equal tok. Party A

pre-padsSA with (2j − k) values of “-∞” and Party B padsSB with

(2j − k) values of “+∞”. (The result is two input sets of size2j each,

whose median is thekth-ranked element inDA ∪DB .)

In the malicious case:The protocol sets boundslA = lB = −∞ and

uA = uB = ∞.
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4. For i = (j − 1), . . . , 0 : [Roundi]

A. A computes the(2i)th element ofSA, denotedmA, and B computes

the (2i)th element ofSB, mB. (I.e., they compute the respective

medians of their sets.)

B. A and B engage in asecure computationwhich outputs 0 ifmA ≥
mB, and 1 ifmA < mB.

In the malicious case:The secure computation first checks thatlA <

mA < uB andlB < mB < uB. If we want to force the input to be

integral, then we also check thatlA + 2i ≤ mA ≤ uA − 2i and

lB + 2i ≤ mB ≤ uB − 2i. If these conditions are not satisfied, then

the protocol is aborted. Otherwise, ifmA ≥ mB, the protocol sets

uA = mA andlB = mB. Otherwise it updateslA to mA anduB to

mB. Note that the lower and upper bounds are not revealed to either

party.

C. If mA < mB, then A removes all elements ranked2i or less fromSA,

while B removes all elements ranked greater than2i from SB. On the

other hand, ifmA ≥ mB, then A removes all elements ranked higher

than2i from SA, while B removes all elements ranked2i or lower

from SB.

5. (By now, bothSA andSB are of size 1.) PartyA andB output the result of

a secure computationwhich computes the smaller of the two remaining

elements.

In the malicious case:The secure computation checks that the inputs

given in this step are consistent with the inputs given earlier. Specifically,

for any item other than item2j of the original set of A (respectively B),

this means that the value must be equal touA (respectivelyuB). For the

item ranked2j in the original set of party A (respectively B), it is verified

that its value is greater thanlA (respectivelylB).
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Overhead: Since the valuej is at mostlog 2k and the number of rounds of communi-

cation is(j + 1), the total number of rounds of communication is at mostlog 2k. In each

round, the protocol performs at most one secure computation, which requires a comparison

of (log M)-bit integers. Thus the total communication cost isO(log M · log k) times the

security parameter.

Proof of Correctness

Regardless of security issues, we first have to show that the protocol indeed computes the

kth-ranked item. We need to show that (a) The preprocessing performed in Steps 1-3 does

not eliminate thekth-ranked element and (b) The(2i+1)st smallest value ofSi
A ∪ Si

B is the

kth-ranked element inDA ∪ DB for eachi = j − 1, . . . , 0 (whereSi
A, Si

B are the sorted

sequences maintained by partiesA, B, respectively, during roundi). These two properties

are shown in Lemma 3.3.1.

Lemma 3.3.1 In ProtocolFIND-RANKED-ELEMENT, the(2i+1)st-ranked element (i.e., the

median) ofSA∪SB in roundi of Step 4 is equal to thekth-ranked element inDA∪DB, for

i = (j − 1), . . . , 0.

Proof: Note that in the preprocessing (Step 1) we do not eliminate thekth-ranked element

since thekth-ranked element cannot appear in position(k+1) or higher in the sorted version

of DA or DB. Step 2 ensures that both sequences have size exactlyk without affecting the

kth-ranked element (since padding is performed at the end of the sequences). And, Step 3

not only ensures that the length of both sequences is a power of 2, but also padsSA andSB

so that the(2j)th element of the union of the two sequences is thekth-ranked element of

DA ∪DB. This establishes the lemma for the case wherei = (j − 1).

The remaining cases ofi follow by induction. By induction hypothesis, at the beginning

of round i, the original problem is equivalent to the problem of computing the median

between two sets of size2i+1. We claim that, in roundi, neither party removes the median

of SA ∪ SB: if mA < mB then there are2 · 2i + 1 points inSA andSB that are larger

thanmA and2 · 2i − 1 points inSA andSB that are smaller thanmB; thus all points in

SA that are less than or equal tomA are smaller than the median, and all points inSB that

are greater thanmB are greater than the median. A similar argument follows in the case
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thatmA > mB. Furthermore, the modifications made toSA andSB maintain the median

of SA ∪SB since in each round, an equal number of elements smaller than and greater than

the median are removed. The lemma follows. 2

3.3.2 Security for the Semi-honest Case

In the semi-honest case, the security definition in the ideal model is identical to the defi-

nition which is based on simulation. Thus, it is sufficient to show that, assuming that the

number of elements held by each party is public information, party A (and similarly party

B), given its own input and the value of thekth-ranked element, can simulate the execution

of the protocol in the hybrid model, where the comparisons are done by a trusted party;

then the security of the protocol follows from the composition theorem. We describe the

proof details for the case of party A simulating the execution in the hybrid model. Letx be

thekth-ranked element which the protocol is supposed to find. Then, party A simulates the

protocol as follows:

Algorithm SIMULATE -FIND-RANK

Input: DA andx known to A. Public parameterk. All items in DA ∪DB are distinct.

Output: Simulation of running the protocol for finding thekth-ranked element inDA∪DB.

1. Party A initializesSA to be the sorted sequence of itsk smallest elements

in DA.

2. If |SA| < k then Party A pads(k − |SA|) values of “+∞” to its sequence

SA.

3. Let 2j be the smallest power of 2 larger thank. Party A pre-padsSA with

(2j − k) values of “-∞”.

4. For i = (j − 1), . . . , 0 : [Roundi]

A. A computesmA, the(2i)th element ofSA.

B. If mA < x, then the secure comparison is made to output 1, i.e.,

mA < mB, else it outputs 0.
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C. If mA < x, then A removes all elements ranked2i or less fromSA.

On the other hand, ifx ≤ mA, then A removes all elements ranked

higher than2i from SA.

5. The final secure computation outputsx.

Lemma 3.3.2 The transcript generated by AlgorithmSIMULATE -FIND-RANK is the same

as the transcript generated by ProtocolFIND-RANKED-ELEMENT. In addition, the state

information that Party A has after each round, namely (SA, k), correctly reflects the state

of ProtocolFIND-RANKED-ELEMENT after the same round.

Proof: We prove the lemma by induction on the number of rounds. Assume that the

lemma is true at the beginning of a round, i.e. Algorithm SIMULATE -FIND-RANK has been

correctly simulating Protocol FIND-RANKED-ELEMENT and its state correctly reflects the

state of Protocol FIND-RANKED-ELEMENT at the beginning of the round. We show that

mA < x if and only if mA < mB. If mA < x, then the number of points inSi
A smaller

thanx is at least2i. If, by way of contradiction,mB ≤ mA, thenmB < x, implying that

the number of points inSi
B smaller thanx is at least2i. Thus the total number of points

in Si
A ∪ Si

B smaller thanx would be at least2i+1, contradicting thatx is the median. So,

mA < mB. On the other hand, ifmA < mB, and by way of contradiction,mA ≥ x, then

x ≤ mA < mB, implying that the number of points inSi
B greater thanx is strictly more

than2i. Also, at least2i points inSi
A are greater thanx. Thus, the number of points in

Si
A ∪ Si

B greater thanx is strictly more than2i+1, again contradicting thatx is the median.

So,mA < x. Therefore, the secure comparisons in Step 4 of Algorithm SIMULATE -FIND-

RANK return the same outputs as in Protocol FIND-RANKED-ELEMENT, thereby ensuring

that the setSA is also updated correctly. 2

Duplicate Items. Protocol FIND-RANKED-ELEMENT preserves privacy as long as no

two input elements are identical (this restriction must be met for each party’s input, and

also for the union of the two inputs). The reason for this restriction is that the execution of

the protocol reveals to each party the exact number of elements in the other party’s input

which are smaller than thekth-ranked item of the union of the two inputs. If all elements

are distinct then, given the value of thekth-ranked element, each party can compute the
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number of elements in its own input that are smaller than it, and therefore each party can

also compute the number of such elements in the other party’s input. This information

is sufficient for simulating the execution of the protocol. However, if the input contains

identical elements then, given the value of thekth-ranked element, it is impossible to com-

pute the exact number of elements in the other party’s input which are smaller than it, thus

preventing one from simulating the protocol. For example, if several items in A’s input

are equal to thekth-ranked element then the protocol could have ended with a comparison

involving any one of them. Therefore A does not know which of the possible executions

took place.

Handling Duplicate Items. Protocol FIND-RANKED-ELEMENT-MULTI PARTY in Sec-

tion 3.4 can securely compute thekth-ranked item even if the inputs contain duplicate

elements, and can be applied to the two-party case (the downside is that it involveslog M

rounds, instead oflog k). Also, protocol FIND-RANKED-ELEMENT can be applied to in-

puts that might contain identical elements, if they are transformed into inputs containing

distinct elements. This can be done, for example, in the following way: Let the total num-

ber of elements in each party’s input ben. Adddlog ne+1 bits to every input element, in the

least significant positions. For every element in A’s input, let these bits be a “0” followed

by the rank of the element in a sorted list of A’s input values. Apply the same procedure to

B’s inputs using a “1” instead of a “0”. Now run the original protocol using the new inputs,

but ensure that the output does not include the new least significant bits of thekth-ranked

item. The protocol is privacy-preserving with regard to the new inputs (which are all dis-

tinct). Also, this protocol does not reveal to party A more information than running the

original protocol with the original inputs and providing A with the additional information

of the number of items in B’s input which are smaller than thekth-ranked element (the

same holds of course w.r.t. B as well). This property can be verified by observing that if

A is given thekth-ranked element of the union of the two inputs, as well as the number of

elements inB’s input which are smaller than this value, it can simulate the operation of the

new protocol with the transformed input elements.
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Hiding the Size of the Inputs. We now consider the case where the parties wish to hide

the size of their inputs from each other. Note that ifk is public then the protocol that we

described already hides the sizes of the inputs, since each party transforms its input to one

of sizek. This solution in insufficient, though, ifk discloses information about the input

sizes. For example, if the protocol computes the median, thenk is equal to half the sum of

the sizes of the two inputs. We next show how to hide the size of the inputs when the two

parties wish to compute the value of the element with rankbφnc.

Let φ = φn/φd, where bothφn andφd are integers. We assumeU , a multiple ofφd,

is known to be an upper bound on the number of elements held by each party. If bothSA

andSB divide φd, then party A pads its input withφ(U − |SA|) elements with value−∞,

and (1 − φ)(U − |SA|) elements with value+∞; similarly, party B pads its input with

φ(U − |SB|) elements with value−∞, and(1 − φ)(U − |SB|) elements with value+∞.

Otherwise, partyX, for X ∈ {A, B}, needs to reveal the value of|SX | modφd to the other

party. We note that for small values ofφd, such a revelation is usually acceptable even in

cases where the two parties want to hide the size of their respective data sets from each

other. LetrA = φd − (|SA| modφd) and letrB = φd − (|SB| modφd). First, party A

addsφ(U − (|SA|+ rA)) elements with value−∞ and(1− φ)(U − (|SA|+ rA)) elements

with value+∞; similarly party B addsφ(U − (|SB| + rB)) elements with value−∞ and

(1−φ)(U−(|SB|+rB)) elements with value+∞. Next, assume without loss of generality

thatrA ≥ rB (otherwise, interchange the role of A and B in the following). Ifφ ≤ 0.5 then

party A addsdφ(rA + rB)e more elements with value−∞ and addsrA − dφ(rA + rB)e
more elements with value+∞, while party B addsrB more elements with value+∞. If

φ > 0.5, then party A addsb(1 − φ)(rA + rB)c more elements with value∞ and adds

rA − b(1 − φ)(rA + rB)c more elements with value−∞, while party B addsrB more

elements with value−∞. Then the parties engage in a secure computation of the(2φU)th-

ranked element of the new inputs, using the protocol we described above.
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3.3.3 Security for the Malicious Case

We assume that the comparison protocol is secure against malicious parties. We then show

that although the malicious party can choose its input values adaptively during the execu-

tion of the protocol, it could as well have constructed an input a priori and given it to a

trusted third party to get the same output. In other words, although the adversary can define

the values of its input points depending on whether that input point needs to be compared

or not in our protocol, this does not give it any more power. The proof is composed of two

parts. First, we show that the functionality provided by the protocol definition provides the

required security. Then, we show how to implement this functionality.

Lemma 3.3.3 For every adversaryA′ in the real model there is an adversaryA′′ in the

ideal model, such that the outputs generated byA′ and A′′ are computationally indistin-

guishable.

Proof: Based on the composition theorem, we can consider a protocol in the hybrid model

where we assume that the comparisons are done securely by a trusted party. (We actually

need a composition theorem for a reactive scenario here. We refer the reader to [Can01,

CLOS02] for a treatment of this issue.)

Visualize the operation ofA′ as a binary tree. The root is its input to the first comparison

performed in the protocol. The left child of the root is its input to the second comparison

if the answer to the first comparison is 0, and the right child is its input to the second com-

parison if the first answer is 1. The tree is constructed recursively following this structure,

where every node corresponds to the input provided byA′ to a comparison done at Step

4(B). We add leaves corresponding to the input provided byA′ to the secure computation in

Step 5 of the protocol; note that for each possible outcome of the sequence of comparisons

in Step 4(B), there is a unique leaf corresponding to it.

Fix the random input used by adversaryA′. We also limit ourselves to adversaries

that provide inputs within the bounds maintained by the protocol (otherwise the protocol

aborts, and since early termination is legitimate in the ideal model, we are done). We must

generate an input that can be given to the trusted party in the ideal model in order to generate

a computationally-indistinguishable transcript. For this, we runA′ by providing it with the

output of the comparisons. We go over all execution paths (i.e. paths in the tree) by stopping
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and rewinding the operation. (This is possible since the tree is of logarithmic depth.) Note

that each of theinternal nodes corresponds to a comparison involving adifferentlocation

in the sorted list thatA′ is supposed to have as its input. Associate with each node the value

thatA′ provides to the corresponding comparison. Observe the following facts:

• For any three internal nodesL, A, R whereL andR are the left and right children

of A, the bounds checked by the protocol enforce that the value ofL is smaller than

that ofA, which is smaller than that ofR. Furthermore, an inorder traversal of the

internal nodes of the tree results in a list of distinct values appearing in ascending

order.

• When the computation reaches a leaf (Step 5),A′ provides a single value to a com-

parison. For the rightmost leaf, the value is larger than any value seen till now, while

for each of the remaining leaves, the value is the same as the value on the rightmost

internal node on the path from the root to the leaf (this is enforced by checking that

the value is the same asuA or uB respectively).

• Each item in the input ofA′ is used in at most a single internal node and exactly one

leaf of the tree.

Consequently, the values associated with the leaves are sorted, and agree with all the values

thatA′ provides to comparisons in the protocol. We therefore use these values as the input

to the trusted third party in the ideal model. When we receive the output from the trusted

party we simulate the route that the execution takes in the tree, provide outputs toA′ and

B, and perform any additional operation thatA′ might apply to its view in the protocol.4 2

Implementing the Functionality of the Malicious-Case Protocol

The functionality that is required for the malicious case consists of using the results of the

first i comparisons to impose bounds on the possible inputs to the following comparison.

This is areactive secure computation, which consists of several steps, where each step

4Note that we are assuming that the inputs can be arbitrary real numbers. If, on the other hand, there
is some restriction on the form of the inputs, the protocol must verify thatA′ provides values which are
consistent with this restriction. For example, if the inputs are integers then the protocol must verify that the
distance between the reported median and the bounds is at least half the number of items in the party’s input
(otherwise the input items cannot be distinct).
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operates based on inputs from the parties and state information that is delivered from the

previous step. This scenario, as well as appropriate security definitions, was described

in [Can01, CLOS02].

Reactive computation can be implemented using the generic constructions provided

in [Can01, CLOS02], which are secure against malicious parties. The main idea there is

to construct a separate circuit for evaluating each step, where part of the output of every

circuit is the state information which is input to the next circuit. This state information is

output in an encrypted and authenticated form, to prevent the party evaluating the circuit

from learning or changing it. It must be verified and decrypted by the secure computation

of the following step. We can use efficient encryption and authentication schemes, like

one-time pads and universal hashing, for this purpose.

3.4 Multi-party Computation of the kth-ranked Element

We now describe a protocol that outputs the value of thekth-ranked element of the union

of multiple databases. For this protocol we assume that the elements of the sets are integer-

valued, but they need not be distinct. Let[α, β] be the (publicly-known) range of input

values, and letM = β − α + 1. The protocol runs a series of rounds in which it (1)

suggests a value for thekth-ranked element, (2) performs a secure computation to which

each party reports the number of its inputs which are smaller than this suggested value,

adds these numbers and compares the result tok, and (3) updates the guess. The number

of rounds of the protocol is logarithmic inM .

Malicious Adversaries. We describe a protocol which is secure against semi-honest ad-

versaries. The protocol can be amended to be secure against malicious adversaries by

verifying that the parties are providing it with consistent inputs. We specify in the proto-

col the additional functionality that needs to be implemented in order to provide security

against malicious adversaries.

Protocol FIND-RANKED-ELEMENT-MULTI PARTY

Input: PartyPi, 1 ≤ i ≤ s, has databaseDi. The sizes of the databases are public, as is
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the valuek. The range[α, β] is also public.

Output: Thekth-ranked element inD1 ∪ · · · ∪Ds.

1. Each party ranks its elements in ascending order. Initialize the current

range[a, b] to [α, β] and setn =
∑
|Di|.

In the malicious case:Set for each partyi bounds(l)i = 0, (g)i =

0. These values are used to bound the inputs that partyi reports in the

protocol. (l)i reflects the number of inputs of partyi strictly smaller

than the current range, while(g)i reflects the number of inputs of partyi

strictly greater than the current range.

2. Repeat until “done”

(a) Setm = d(a + b)/2e and announce it.

(b) Each party computes the number of elements in its database which

are strictly smaller thanm, and the number of elements strictly greater

thanm. Let li andgi be these values for partyi.

(c) The parties engage in the following secure computation:

In the malicious case:Verify for every partyi that li + gi ≤ |Di|,
li ≥ (l)i, and gi ≥ (g)i. In addition, ifm = a, then we check that

li = (l)i; or if m = b, we verify thatgi = (g)i.

• Output “done” if
∑

li ≤ k− 1 and
∑

gi ≤ n−k. (This means

thatm is thekth-ranked item.)

• Output “0” if
∑

li ≥ k. In this case, setb = m−1. (This means

that thekth-ranked element is smaller thanm.)

In the malicious case:Set(g)i = |Di|−li. (Note that as the right

end-point of the range decreases,(g)i is non-decreasing. This

can be seen by noting that|Di|− li ≥ gi, which is enforced to be

at least as much as the previous value of(g)i. (Since the left end-

point of the range remains the same,(l)i remains unchanged.)

• Output “1” if
∑

gi ≥ n − k + 1. In this case seta = m + 1.

(This means that thekth-ranked element is larger thanm.)

In the malicious case:Set(l)i = |Di| − gi.
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Correctness: The correctness of this algorithm follows from observing that ifm is the

kth-ranked element then the first condition will be met and the algorithm will output it.

In the other two cases, thekth-ranked element is in the reduced range that the algorithm

retains.

Overhead: The number of rounds islog M . Each round requires a secure multi-party

computation that computes two summations and performs two comparisons. The size of

the circuit implementing this computation isO(s log M), which is also the number of input

bits. The secure evaluation can be implemented using the protocols of [GMW87, BMR90,

FY92].

3.4.1 Security for the Semi-honest Case

We provide a sketch of the proof of the security of the protocol. Assume that the multi-

party computation in step 2(c) is done by a trusted party. Denote this scenario as the hybrid

model. We show that in this case the protocol is secure against an adversary that controls

up tos− 1 of the parties. Now, if we implement the multi-party computation by a protocol

which is secure against an adversary that controls up tot parties, e.g. using [GMW87,

BMR90, FY92], it follows from the composition theorem that the resulting protocol is

secure against this adversary. Of course,t < s− 1 in the actual implementation, since the

protocols computing the “simple” functionalities used in the hybrid model are not secure

againsts− 1 parties, but rather against, say, any coalition of less thans/3 corrupt parties.

In the hybrid model, the adversary can simulate its view of the execution of the protocol,

given the output of the protocol (and without even using its input). Indeed, knowing the

range[a, b] that is used at the beginning of a round, the adversary can compute the target

valuem used in that round. Ifm is the same as the output, it concludes that the protocol

must have ended in this round withm as the output (if the real execution did not outputm

at this stage,m would have been removed from the range and could not have been output).

Otherwise, it simply updates the range to that side ofm which contains the output (if the

real execution had not done the same, the output would have gone out of the active range

and could not have been the output). Along with the knowledge of the initial range, this
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shows that the adversary can simulate the execution of the protocol.

3.4.2 Security for the Malicious Case

We show that the protocol is secure given a secure implementation of the functionality that

is described in Step 3 of algorithm FIND-RANKED-ELEMENT-MULTI PARTY. Since this is

a multi-party reactive system we refer the reader to [Can01, CLOS02] for a description of

such a secure implementation. The idea is that the parties run a secure computation of each

step using, e.g., the protocol of [BMR90]. The output contains encrypted and authenticated

sharesof the current state, which are then input to the computation of the following step,

and checked by it.

For every adversary that corrupts up tos − 1 parties in the computation in the hybrid

model, there is an adversary with the same power in the ideal model. We limit the analysis

to adversaries that provide inputs that agree with all the boundary checks in the algorithm

(otherwise the protocol aborts, and this is a legitimate outcome in the ideal model).

Imagine a tree of sizeM with each node in the tree corresponding to a guessm (in the

protocol) for the value of the median. The root corresponds to the initial guessm = m0 =

d(β − α)/2e with the initial range being[α, β]. Its left child corresponds to the next guess

for m if the first guess is incorrect and the median is discovered to be smaller thanm0 and

is associated with the range[a, b], with a = α andb = m0 − 1. Similarly, the right child

corresponds to the next guess form if the median is discovered to be larger thanm0, and

is associated with the range[m0 + 1, β]. The whole tree is constructed recursively in this

manner. The leaves are associated with ranges containing a single integer. Note that each

integer in the interval[α, β] is associated with the single nodeu in the tree at which the

guessm is set to the value of this integer.

Fix the random values (coin flips) used by the adversary in its operation. Run the

adversary, with rewinding, checking the values that are given by each of the parties it

controls to each of the comparisons. Let the guessu be associated with the nodeu. Then,

the two valueslu andgu that partyp provides to the comparison of nodeu are supposed

to be the number of items in the input of partyp which are smaller than and larger than

u respectively. Also,eu = |Di| − lu − gu denotes the number of items that are specified
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by the adversary to be equal tou. Assume that we first examine the adversary’s behavior

for the root node, then for the two children of the root, and continue layer by layer in

the tree. The boundary checks ensure that if nodei + 1 is a descendant of nodei, then

li+1 = Di− gi = li + ei, and if nodei is a descendant of nodei + 1, thengi = Di+1− li+1,

or equivalently thatli+ei = li+1. We next observe that by construction, for any consecutive

nodesi andi + 1, eitheri is a descendant ofi + 1 or i + 1 is a descendant ofi. This is so

because only a node with value betweenu andv can put two nodesu andv into different

subtrees. Thus, fori = α, . . . , β − 1, we haveli + ei = li+1. Moreover, our checks make

sure thanlα = 0 andgβ = 0 implying lβ + eβ = Di. Summing over all these equalities, we

get
∑β

i=α ei = Di.

Thus, we can use the result of this examination to define the input that a corrupt partyp

provides to the trusted party in the ideal model. Specifically, we set the input to containeu

items of valueu, for everyu ∈ [α, β]. The trusted party computes thekth-ranked element,

say using the same algorithms as in the protocol. Since in the protocol itself, the values

provided by each party depend only on the results of previous comparisons (i.e. path in the

tree), the output of the trusted party is the same as in the protocol.
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Chapter 4

Introduction to Auction Design

In the second part of the thesis, we will study profit-maximization problems related to sell-

ing advertisement space on Internet web sites. Clearly, the optimal selling price depends

on the benefit derived by the advertisers from the display of their advertisements. In most

cases, the web site owner does not have a good estimate of the value of this benefit, as the

advertisers’ needs often change with time. This is unlike classical optimization problems

where the optimizer (the advertisement seller in our case) knows the values of all the vari-

ables over which the optimization is to be carried out. In the online advertising market,

the web site owners often take recourse to asking the advertisers themselves for their val-

uations of the benefit they will receive. The value reported by the advertiser is called her

bid. However, the advertisers, being selfish agents, need not reveal their valuations truth-

fully if it is in their self-interest to do so. The goal of the web site owner is to set up a

selling mechanism that uses these reported values to determine the price(s) to be offered to

the advertisers, in such a way that maximizes profit when each agent bids according to her

best interest. At the same time, as discussed in Chapter 1, the web site owner would like

to keep the process of finding the optimal bidding strategy simple in order to attract more

advertisers to the online advertising market. In general, the optimal strategy of an agent

depends on how the outcome varies with the bids of various agents as well as on the bids

of the other agents. One approach to simplifying the bidding process is to use a dominant

strategy mechanism which we discuss in the next section.

63
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4.1 Mathematical Framework

Game Theoryis a branch of mathematics that attempts to understand how rational agents

behave in strategic situations. One area of game theory, calledmechanism design, deals

with the construction of mechanisms, or games which are designed to get the agents to

behave in a certain way so as to achieve some desired outcome. In this thesis, we adopt

the algorithmic mechanism design framework set forth by Nisan and Ronen [NR99]. The

mechanism deals with a set of agentsN and wishes to choose from a collection of outcomes

O. Each agenti is assumed to have avaluation functionvi : O → R. We will sometimes

refer to the valuation function as thetypeof the agent. Intuitively, the valuation function

describes agenti’s intrinsic preference for each outcome. An agent’s valuation function

is known only to that agent. Letn = |N | be the number of agents and letT denote the

set of all possible valuation functionsO → R. Let v ∈ T n denote the vector of types of

all agents. The mechanism works by asking each agent to report her type and computing

an outcome and a set of payments based on the reported types. We refer toi’s reported

type as herbid bi, and letb ∈ T n denote the vector of bids. LetPi : T n → R be the

payment made by agenti, andP = (Pi)i∈N be the paymentscheme. Thus, a mechanism

M consists of a pair(O,P ), whereO : T n → O is the output function andP is the

payment scheme. A mechanism is deterministic if the output function and the payment

scheme are a deterministic function of the bid vector. A mechanism is randomized if the

procedure by which the auctioneer computes the output and the payments is randomized.

Each agent’s goal is to maximize herutility function, which is assumed to be of the form

ui(O,Pi) = vi(O)−Pi. In the literature, this form of utility function is calledquasi-linear.

Since the mechanism determines the outcome and the payments based on the bid vectorb,

we will often abbreviateui(O(b), Pi(b)) andvi(O(b)) to ui(b) andvi(b) respectively.

Clearly, an agent’s utility depends not only on her valuation function, but also on the

bid vector. Letb−i = (b1, . . . , bi−1, ?, bi+1, bn) denote the vector of bids with agenti’s

bid hidden by a question mark. We will sometimes refer to this as themasked bid vector.

Similarly, let v−i denote the vector of all other agents types, and letT−i = T n−1 be the

space of those type vectors. For convenience, we will writeb as (b−i, bi). A strategy

Si : T → T is said to be adominant strategyfor agenti if ui(b−i, Si(vi)) ≥ ui(b−i, bi)
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for all b−i ∈ T−i andbi, vi ∈ T ; in other words, agenti’s best strategy is to report her

type asSi(vi) whenever her true type isvi. A mechanism is said to be adominant strategy

mechanismif every agent has a dominant strategy.

Definition 4.1 (Truthful Mechanism) A truthful mechanism is a dominant strategy mech-

anism in which truth-telling is a dominant strategy for every agent, i.e.

ui(b−i, vi) ≥ ui(b−i, bi) ∀ b−i ∈ T−i andbi, vi ∈ Ti.

Theorem 4.1.1 (Bid-independence principle)If the mechanism(O,P ) is truthful, and

O(b−i, bi) = O(b−i, b
′
i), thenPi(b−i, bi) = Pi(b−i, b

′
i).

Proof: Suppose the contrary, i.e.Pi(b−i, bi) > Pi(b−i, b
′
i) while O(b−i, bi) = O(b−i, b

′
i).

When vi = bi and all other agents bidb−i, agenti is better off lying and biddingb′i,

contradicting truthfulness. 2

This principle asserts that in a truthful mechanism, the bid of an agent affects the pay-

ment made by the agent only through its effect on the outcome of the mechanism.

4.2 Truthfulness as a Means to Simplified Bidding

As mentioned earlier, we would like to construct mechanisms for selling advertising space

on Internet web sites under which it is easy for the advertisers to determine their optimal

bidding strategies. Unless an advertiser has a dominant strategy, she would be forced to

speculate (or hire someone to speculate for her) on how the other advertisers are going

to bid in order to determine her optimal strategy. Thus, in order to get rid of speculation

and keep the process of bidding simple, we would like each advertiser to have a dominant

strategy, i.e. we would like to use a dominant strategy mechanism. Now, we invoke the

Revelation principlestated below to conclude that we can restrict our attention to truthful

mechanisms without missing any possible combination of outcome and payment functions

(when we view the outcome and payment as a function of valuation rather than bids).
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Theorem 4.2.1 (Revelation principle [Mye79, DHM79])Every dominant strategy mech-

anism can be converted to a truthful mechanism without changing the outcome or the pay-

ments on any type vector (i.e., vector of valuation functions of all agents).

Proof: Given a dominant strategy mechanismM , construct a truthful mechanismM ′ that

simulates each bidder’s dominant strategy inM . Let Si be agenti’s dominant strategy

underM . Then,M ′ produces the same outcome and payments on bid vectorb as the

mechanismM produces on the bid vector(Si(bi))i∈N . Clearly, agenti’s dominant strategy

underM ′ is to bidbi = vi, because this is equivalent to playing the dominant strategySi(vi)

in M . 2

4.3 The Vickrey Auction

We next give an example of a classical truthful mechanism due to Vickrey [Vic61]. Given

the nature of its payment scheme, it is also called thesecond-price auction. It is used for

selling a single item; so the outcome consists of the item being given to one of the agents.

The valuation functions of the agents take a very simple form: if an agent gets the item,

her valuation of the outcome isvi (here we are slightly abusing notation by using the term

vi to refer to a single number); otherwise her valuation of the outcome is0. The auction

consists of inviting bids for the item, and giving the item to the highest bidder and charging

her an amount equal to the second-highest bid. If two bidders tie for the highest bid, the

item goes to the bidder with the lower index. The proof of the following theorem is simple,

but instructive.

Theorem 4.3.1 The Vickrey auction is truthful.

Proof: In order to prove truthfulness, we have to show that none of the bidders can benefit

by not revealing her true valuation function. Fix an agenti and leth be the highest bid

among the other agents. Ifvi > h, then the agent gets the item for an amounth whenever

she bids an amount higher thanh (which includes bidding her true valuation function). In

this case, her utility isvi − h. The only possible way she can change the outcome is by

bidding no more thanh in which case her utility is0. On the other hand, ifvi ≤ h, she
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makes a profit of0 as long as she bidsh or less (which includes bidding her true valuation).

She can possibly change the outcome by raising her bid aboveh, in which case her utility

becomes negative. This shows that bidderi cannot benefit by not bidding her true valuation.

2

In fact, it can be shown that bidding one’s true valuation is the only dominant strategy

under the Vickrey auction. This is so because for every bid valuebi 6= vi, there exists ab−i

for which this bid value is sub-optimal. In particular, bid valuebi is sub-optimal whenever

maxj 6=i bj lies strictly betweenbi andvi.

4.4 The Vickrey-Clarke-Groves Mechanism

The most celebrated result in truthful mechanism design is the Vickrey-Clarke-Groves

(VCG) mechanism [Vic61, Cla71, Gro73] (also see Chapter 23 of [MCWG95]). It is a

generalization of the Vickrey auction and can be used when the goal of a mechanism is to

maximize the total valuation of all the agents. The VCG mechanism(O,P ) is given by:

O(b) = o∗ whereo∗ ∈ argmaxo∈O
∑
i∈N

bi(o)

Pi(b) = −
∑

j 6=i bj(o
∗) + hi(b−i)

where the functionshi are arbitrary. That is, VCG selects the outcome that maximizes the

total reported valuation, and charges agenti an amountPi that depends onbi only through

its influence on the outcomeo∗, just as required by bid-independence principle. Since the

hi terms in the payment are completely independent of agenti’s bid, they are irrelevant to

truthfulness. The
∑

j 6=i bj(o) term in the payment is quite special though — it aligns the

utility function of agenti with the utilitarian objective function. This makes the mechanism

truthful, as asserted by the following theorem.

Theorem 4.4.1 The VCG mechanism is truthful.

The basic VCG mechanism can be augmented by weighting the agents differently and

adding a bias to the outcome function, while preserving truthfulness [GL77, Rob79]. More
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formally, let w ∈ RN
+ be a set of non-negative weights. LetH : O → R be a “bias”

function. The resultingweighted, biased VCG mechanismis defined by:

O(b) = o∗ whereo∗ ∈ argmaxo∈O

(∑
i∈N

wibi(o) + H(o)

)
Pi(b) = − 1

wi

(∑
j 6=i wjbj(o

∗)
)

+ hi(b−i) whenwi > 0

Pi(b) = hi(bi) whenwi = 0

where the functionshi are arbitrary.

Theorem 4.4.2 For every choice of weights and bias function, the weighted, biased VCG

mechanism is truthful.

4.5 Analysis Framework

Our goal is to design truthful auctions that maximize the auctioneer’s profit. Ideally, we

would like to design optimal auctions — auctions that, on any given input, perform bet-

ter (or at least no worse) than any other truthful auction. In fact, we do precisely that

for the problem of selling multiple advertisement slots on a single web page when there

are no budget constraints and the outcome function comes from a certain natural class of

functions. If we are unable to provide an auction that is optimal for all inputs, our next

goal would be to design auctions that perform well compared to a meaningful benchmark.

In this case, we will analyze them in the competitive analysis framework of Goldberg et

al. [GHW01] for profit-maximizing auctions. Prior to [GHW01], profit maximization in

mechanism design was considered in a Bayesian framework. In such a framework, it is

assumed that the agents’ valuations are drawn from some probability distribution and that

the mechanism designer has knowledge of this prior distribution. The goal is to design

the Bayesian optimal mechanism for the given prior distribution. The obvious drawback

of this approach is that the mechanism designer must know the prior distribution, which is

exactly the pre-requisite that we are trying to eliminate. Therefore, we would like to design

a truthful auction mechanism that performs well without knowing anything about the input,
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i.e., a single mechanism that works well for all inputs and does not need to have any prior

knowledge about the preferences of various agents.

We will look to design an auction that obtains a profit that is comparable to the profit

of some natural benchmark. The competitive ratio of an auction will be defined as the

supremum over all possible input bid vectors, of the ratio of the benchmark revenue to the

revenue of the auction. LetrA(b) be the revenue of an auctionA on the bid vectorb and

let rOPT (b) be the benchmark revenue onb. Then the competitive ratio of auctionA is

defined as:

sup
b

rOPT (b)

rA(b)

A key part of setting up a competitive framework for analyzing solutions to a problem is

coming up with the right metric for comparison. As a starting point, we could try com-

peting with the strongest possible benchmark, namely the profit of an auctioneer who is

omniscient, i.e., knows the valuations of all the agents, and can use them to compute the

outcome and the payments. However, in most interesting auction design problems, it can

be shown that it is not possible for a truthful auction to achieve any finite competitive ratio

against such a powerful benchmark. The next step is to constrain the benchmark auctioneer

in some reasonable manner. Consider the problem of selling multiple identical units of an

item to a set of indistinguishable agents each of whom desires one unit of the item. In this

case, we can specify the outcome of the auction and the payments by specifying an offer

price for each agent — an agent gets a unit if and only if her bid is no less than the price

offered to her. If the same pricep is offered to all the agents, the revenue isp · n(p), where

n(p) denotes the number of agents whose valuation (and bid in a truthful auction) is at least

p. One possible benchmark is the revenue earned by the ex post (or omniscient) optimal

single price that can be offered to all the agents. We denote this revenue byF orF(b).

Theorem 4.5.1 ([GHK+02]) For any truthful auctionA, and anyβ ≥ 1, there is a bid

vectorb such that the expected profit ofA onb is less thanF(b)/β.

The intuition behind this result is that if one agent has a bid much higher than the rest,

then offering the optimal single price will result in a revenue equal to this bid. However, in

the absence of competition, there is no truthful way to extract this high bid value from the

agent. This benchmark can be generalized as follows.
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Definition 4.2 Let Pi be the set of all pricesp such that at leasti agents have bidsp or

higher. ThenF (i) denotes the maximum possible revenue from offering the same price

p ∈ Pi to all the agents.

Goldberg et al. [GHW01] useF (2) as the benchmark for their competitive analysis.

(Note thatF (2) is identical toF whenever the optimal single price can be afforded by at

least two agents.) This benchmark seems reasonable when the agents are indistinguishable

and [GHK+02] shows that indeed no truthful mechanism in a large natural class of auction

mechanisms can outperform this benchmark. To make this more precise, let an auction

mechanism be calledmonotonicif an agent’s chances of getting an item do not decrease as

her bid increases. Then, [GHK+02] prove the following theorem.

Theorem 4.5.2 For any set of bidsb, the revenue of a monotonic, truthful auction is no

more thanF(b).

We note here that the auctions that compete with a given benchmark need not satisfy

the constraints that the benchmark pricing function has to meet. For example, for the above

problem, we do not require the auction to offer the same price to all the agents. In fact,

Goldberg and Hartline [GH03b] show the following.

Theorem 4.5.3 LetFm, denote the revenue of the optimal single price at which at leastm

of the agents get a unit. If a truthful auction always offers the same price to all bidders, it

cannot beO(log n
m

/ log log n
m

)-competitive withFm.

Next, consider theattribute auction problem, or the problem of selling identical copies

of an item to agents who can be distinguished on the basis of some known attribute, like the

postal zip code of the agent. In this case, the benchmark auctioneer can be allowed to divide

the agents into, say,r sets (based on their attributes), and offer different prices to different

sets (but the same price to all agents in the same set). Blum and Hartline [BH05] use the

optimal revenue from such a pricing function as the benchmark. When we are trying to

sell a divisible good, e.g. network bandwidth, and the attribute represents the demand of

the agent, e.g. the amount of bandwidth the agent needs, it seems reasonable to constrain

the auctioneer to offer higher prices (or at least not lower prices) to agents with higher



4.5. ANALYSIS FRAMEWORK 71

attributes. We call such a pricing functionmonotoneas the offer prices are monotone in

attribute, and we will use the profit of the optimal such pricing function as the benchmark

for analyzing the auctions presented in Chapter 5.

4.5.1 Some Competitive Auction Results

The problem of designing a truthful auction for selling multiple identical units of an item

that performs well in the worst-case has received considerable attention recently [GHW01,

FGHK02, GH03a, GHKS04, HM05]. The current best truthful auction [HM05] achieves a

competitive ratio of3.25 with respect to the revenue of the optimal single price that sells to

at least two agents.

The attribute auction problem was introduced by Blum et al. [BH05] who investigated

whether it was possible to get a revenue higher than the revenue of the optimal single price

when the auctioneer is able to distinguish between agents based on a known attribute of the

agents. LetOPT (r) be the profit of an omniscient auctioneer who is allowed to divide the

agents intor sets (based on their attributes), and offer different prices to different sets, and

let h be an upper bound on the value of the highest bid. Then, [BH05] presents a truthful

auction that achieves a revenue of at leastOPT(r)/16− rh/2 simultaneously for allr.



Chapter 5

Auctions for a Single Advertisement

Slot: The Knapsack Auction Problem

Consider a web page with a single slot where an advertisement can be displayed. Whenever

an Internet user accesses the web page, the web site owner can choose to show her an adver-

tisement. The process of displaying an advertisement is called animpression. Depending

on the content of the web page, a variety of advertisers might be interested in displaying

advertisements on the web page. Each of these advertisers will invoke a different level

of interest from the Internet users visiting the web page. Thus, each advertiser will have

a different click-through rate (CTR) associated with her advertisement (the click-through

rate of an advertisement is the fraction of its impressions that result in a click by an Inter-

net user). We assume that the web site owner has (or can collect) statistical information

about the CTRs of various advertisers. Moreover, each advertiser might have a limit on

the number of clicks on her advertisement that she can handle in a single day. We assume

that this limit is known to the web site owner. One scenario in which this assumption is

justified is when the web site owner interacts with the advertisers repeatedly. Thus, the

web site owner knows the maximum number of impressionsci desired by an advertiseri,

which can be computed as the product of the maximum number of clicks desired and the

average number of impressions needed to generate a click (the reciprocal of the CTR). This

is called thedemand(or size) of the advertiser. In addition, the web site owner has an esti-

mate of the total number of impressions available during the course of the day. He would

72
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like to allocate the available impressions among the interested advertisers with the goal of

maximizing profit. To make an informed decision, he needs to know the benefit that each

advertiser derives from a click on her advertisement. However, an advertiser’s valuation

of a click or an impression is known only to the advertiser. We letvi denote advertiseri’s

valuation ofci impressions. The fact that the valuations are private implies that the web

site owner has to resort to soliciting bids from the advertisers and running an auction to

sell the advertisement space. As discussed in the previous chapter, unless the seller uses

a dominant strategy mechanism, the optimal bidding strategy of an advertiser will depend

on the bids of other agents, making the process of bidding complex. Also, by the revela-

tion principle, every dominant strategy mechanism has an equivalent truthful mechanism.

Thus, motivated by the desire to keep bidding simple, we would like to design atruthful

mechanism for selling advertisement space with the goal of maximizing profit.

Outline of the Chapter. The rest of the chapter is organized as follows. We define the

problem formally in Section 5.1. We discuss the analysis framework and state our results in

Section 5.2. Related work is discussed Section 5.3. In Section 5.4, we present a compari-

son of the different pricing rules that we consider in this chapter. In Section 5.5, we discuss

the algorithmic complexity of computing the optimal pricing function without any consid-

eration of the game-theoretic issues. We present competitive auctions for our problem in

Section 5.6. For this, we first show (in Section 5.6.1) how to reduce the limited-supply auc-

tion problem to the unlimited-supply auction problem with a small loss in approximation

factor. Then in Section 5.6.2, we give an unlimited-supply auction that achieves a constant

fraction of the benchmark revenue (with a small additive loss).

5.1 Problem Definition

We model our problem as the following abstractprivate-valueversion of the (fractional)

knapsack problem. We will refer to it as theknapsack auction problem. There is a set

of n agentsN = {1, . . . , n}, each of whom has an object. Letci represent the publicly-

known size of agenti’s object. Each of these agents desires to have her object placed in a

knapsack with total capacityC. Our goal is to design a single-round, sealed-bid auction for
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this setting. In this auction, an outcome is characterized by a set of agents calledwinners.

The winning agents have their items placed into the knapsack and losing agents do not

(although our auction will only accept whole items, it will be shown to perform well with

respect to benchmarks that are allowed to accept fractional items). A set of agents forms a

feasible outcome if and only if the total demand of all the winning agents does not exceed

the capacity of the knapsack. Letvi denote agenti’s valuationfor having their item placed

in the knapsack. This valuation represents the benefit received by the agent from winning.

(Note that we are again abusing notation by usingvi to refer to a single number rather

than a function as in Section 4.1). We can also define a fractional version of the knapsack

auction problem, where the auctioneer can accept a fraction of each object and bidderi

values the acceptance ofφi fraction of its object atφivi. We assume that all the agents

attempt to maximize theirutility, measured as the difference between their valuation and

their payment.

We will assume that the all the agents’ valuations fall within a known range[1, h].

We denote byb = (b1, . . . , bn) the vector of bids submitted by the agents and byc =

(c1, . . . , cn) the vector of publicly-known object sizes. We assume for convenience that the

agents are indexed by decreasing size, i.e.,c1 ≥ c2 ≥ · · · ≥ cn. Following [BH05], we

sometimes refer to these object sizes asattributes. An auction’sprofit, A(b, c), is the sum

of the payments of the winning agents.

Our goal is to design a profit-maximizing truthful mechanism. Recall that in a truthful

mechanism, each advertiser’s optimal strategy, irrespective of others’ bids, is to bid her

true valuation. In auction problems like the current one, truthful mechanisms are known

to have the following algorithmic characterization [GHW01]. Related formulations to the

one below have appeared in numerous places in recent literature, e.g., [AT01, FGHK02,

LOS99]. Recall that the masked bid vectorb−i denotes the vectorb with bi replaced with

a ‘?’, i.e.,b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn).

Definition 5.1 (Bid-Independent Auction) Letf be a function that maps any masked bid

vector (with a ‘?’) and attribute vector pair to a price (non-negative real number). The

deterministic bid-independent auction defined byf , BIf , works as follows. For each agent

i:
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1. Setti = f(b−i, c).

2. If ti < bi, agenti wins at priceti.

3. If ti > bi, agenti loses.

4. Otherwise (ti = bi), the auction can either accept the bid at priceti or reject it.

A randomized bid-independent auction is a distribution over deterministic bid-independent

auctions.

The proof of the following theorem can be found, for example, in [FGHK02].

Theorem 5.1.1 An auction is truthful if and only if it is equivalent to a bid-independent

auction.

Prior-free Optimization. Through the study of the knapsack auction problem, we wish

to develop a better understanding of how to do prior-free optimization (i.e. optimization

without assuming any prior knowledge of the distribution of the valuations) when there are

non-trivial constraints on the allocation. In our case, items selected for the knapsack must

all fit in the available space. A similar direction was attempted by Fiat et al. in [FGHK02]

for the multicast pricingproblem in which an obvious market segmentation could be ex-

ploited to reduce the problem from aprivate-valueoptimization problem to apublic-value

optimization problem. In the knapsack auction problem, however, there is no obvious mar-

ket segmentation and indeed, figuring out how to segment the agents into markets in a

truthful manner constitutes a key portion of the solution. To the best of our knowledge, this

work represents the first solution to a non-trivial private-value optimization problem when

market segments are not given in advance.

5.2 Analysis Framework and Results

As discussed in Chapter 4, we analyze the performance of our auctions in thecompetitive

analysisframework of Goldberg et al. [GHW01] for profit-maximizing auctions. We are

looking to design an auction that obtains a profit that is comparable to the profit of a natural
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optimalomniscientauction. As in the bid-independent auction (see Definition 5.1), we will

specify the allocation and payments through a pricing function that maps agents to offer

prices — each agents with a bid above her offer price gets her item placed in the knapsack,

while the items of all the agents with bids below their offer price get rejected. For any agent

whose bid is equal to her offer price, the auctioneer has the discretion to either accept her

item or reject it.

For the case that the agents are indistinguishable, [GHW01] uses the profit of the ex post

optimal single price that can be offered to all agents as the benchmark. For this benchmark,

the offer price can not depend on the agent at all and the pricing function is constant. We

refer to such pricing schemes asuniform pricing. While this benchmark is reasonable

for indistinguishable agents (see Theorem 4.5.2), it might be too weak when the seller

knows the value of some attribute of the agents (their demand in our case) which can

be used as a basis to distinguish between them. In this case, it is more reasonable to

let the pricing function vary with the attribute value (but remain constant for any given

attribute value). One natural candidate pricing strategy is to charge the same price per unit

demand. Thus, agents demanding more of the capacity pay proportionally more. We refer

to such pricing schemes aslinear pricing, since the only valid pricing functions are linear

in demand. The most general pricing strategy we will consider follows the least restrictive

natural assumption we can place on prices: that agents desiring more capacity not pay less

than those desiring less. We refer to this asmonotone pricing, since the only valid pricing

functions for this class are monotone non-decreasing in demand. Clearly, both uniform

pricing and linear pricing are special cases of monotone pricing. As such, we will use

the revenue of the optimal omniscient monotone pricing scheme as the benchmark revenue

throughout the chapter. We note that an auction that achieves a constant fraction of the

revenue of the optimal monotone pricing function also achieves a constant fraction of the

revenue of optimal uniform and linear pricing functions.

We would like to note here that our auctions will not produce a monotone pricing func-

tion — in fact, it can be shown that any truthful auction that always produces a monotone

pricing function cannot perform well with respect to any of the above benchmarks. To see

this, recall Theorem 4.5.3 which shows that for the case of indistinguishable agents, no

truthful auction that offers the same price to all the agents can perform well with respect to
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the revenue of the ex post optimal single price for all agents. Next, note that for the special

case of our problem where all the agents have the same attribute value, producing a mono-

tone pricing function is equivalent to offering the same price to all the agents; in addition,

all the above benchmarks reduce to the revenue of the ex post optimal single price. Thus,

we get the following corollary of Theorem 4.5.3.

Corollary 5.2.1 LetFm, denote the revenue of the optimal single price at which at leastm

of the agents get a unit. If a truthful auction always produces a monotone pricing function,

it cannot beO(log n
m

/ log log n
m

)-competitive withFm.

Our Contributions

Let OPT be the revenue obtained by the best monotone pricing function. We can apply

Theorem 4.5.1 to the case when all the agents have the same attribute value to conclude

that it is not possible to obtain a constant fraction ofOPT in the worst case. We design

auctions that obtain at least a constant fraction ofOPT minus a small additive loss term,

i.e., α OPT−λh (whereh is an upper bound on the highest bidder’s valuation). Ideally

bothα andλ should be constants. Here, we achieve a constantα andλ ∈ O(log log log n).

We first consider a special case of the knapsack auction problem, namely theunlimited-

supplycase where the capacity of the knapsack,C, exceeds the total demand,
∑

i ci. This is

an interesting special case of the original problem that is much less constrained. We present

a truthful auction that achieves a revenue ofα OPT−O(log log log n)h. We then use this

auction to solve the limited-supply case. In doing so, we outline a general approach for

dealing with non-trivial optimization problems. The first step of this approach is to solve

theunlimited-supplyversion of the problem. The second step is to reduce thelimited-supply

(or general) version of the problem to the unlimited-supply version. This approach works

in general for “monotone” optimization problems, where the feasibility of an allocation

implies the feasibility of all subsets of the allocation as well. The reduction works by

(a) selecting a set of agents that can all be allocated together,

(b) running the unlimited-supply solution on this selected set, and
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(c) deciding offer prices based on the prices determined in step (b) and some other crite-

ria discovered in step (a). Step (a) and (c) must be done rather carefully to preserve

incentive-compatibility and the competitive ratio.

In order to preserve a constant competitive ratio, the optimal unlimited-supply monotone

pricing on the selected agents must be within a constant factor of the optimal limited-supply

monotone pricing on the original set of agents. To preserve incentive compatibility, step

(a) and (c) must be performed to meet additional conditions discussed later.

5.3 Related Work

The private-value knapsack problem has earlier been studied by Mu’alam et al. [MN02]

with the objective of maximizing social welfare, rather than profit. The problem of design-

ing profit-maximizing auctions for selling advertisements on Internet web sites has been

the subject of some recent work [MSVV05, BCI+05]. Mehta et al. [MSVV05] ignore the

game-theoretic issues and instead focus on the algorithmic problem of matching advertis-

ers to web pages when their valuations and budgets are known to the auctioneer. Borgs et

al. [BCI+05] study the problem of selling multiple identical units when the agents are inter-

ested in getting multiple units as long as their payment does not exceed their budget. Both

the valuation and the budget of an advertiser are considered private values. As such, unlike

our setting, they are unable to distinguish between bidders and are only able to compete

with the revenue of the optimal single price at which at least two agents get a unit.

A problem closely related to ours is theattribute auction problem. It was introduced

by Blum et al. [BH05], who investigated whether it was possible to get a higher profit

when the auctioneer is able to distinguish between agents based on a known attribute of the

agents. They presented a solution for the unlimited-supply, single-dimensional-attribute

auction problem, and analyzed its performance by comparing its profit to that of the optimal

piecewise-constant (not necessarily monotone) pricing rule. We will henceforth refer to

this attribute auction as thegeneral attribute auction. We will be make use of the following

result.

Theorem 5.3.1 [BH05] Let OPT (r) be the profit of an omniscient auctioneer who is
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allowed to divide the agents intor sets (based on their attributes), and offer different prices

to different sets. Also, leth be an upper bound on the value of the highest bid. Then, the

general attribute auctionobtains a profit of at leastOPT(r)/16− rh/2 simultaneously for

all r.

5.4 Pricing Rules

For a given instance of the knapsack problem, we consider a pricing rule and selection of

items to be contained in the knapsack to bevalid if

1. the valuation of each item in the knapsack is at least equal to the price set for items

of that size, and

2. the valuation of each item not in the knapsack is no more than the price set for items

of that size.

Thepayoffof a particular pricing rule is simply the number of items in the knapsack at each

size times the price for items of that size summed over all item sizes. The goal of a pricing

algorithm, then, is to find a valid pricing rule that maximizes the total payoff. We note that

the validity conditions can be viewed as a requirement for the pricing rule and assignment

to beenvy-free[GHK+05] in the sense that each agent prefers her outcome to the outcome

of every other agent, or equivalently that none of the agents is envious of the outcome of

another agent.

As mentioned in the introduction, we will be primarily interested in three classes of

pricing functions:uniform pricing, linear pricing andmonotone pricing. In uniform pric-

ing, we will assume that there is a single price for all item sizes. In linear pricing, we will

assume that there is a single price per unit size. Finally, our most general class of pricing

functions will be monotone pricing where the price has to be a non-decreasing function of

the item sizes. One can view the restriction to monotone prices as an additional require-

ment for envy-freedom, since without monotone prices, a small object would be envious of

a larger object being placed into the knapsack at a smaller price than it.

We now consider the worst case relationship between optimal uniform pricing, optimal

linear pricing, and optimal monotone pricing. As uniform and linear pricing are a special
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case of monotone pricing, it is clear that the profit of the optimal monotone pricing is better

than that of both the optimal uniform and the optimal linear pricing. We now get bounds

on how much worse uniform and linear pricing can be.

Lemma 5.4.1 Uniform pricing can be a logarithmic factor worse than monotone and lin-

ear pricing and this is tight.

Proof: Considern items withvi = ci = 1/i andC = ∞. Optimal monotone and linear

pricing use the pricing ruleπ(c) = c for a total payoff of
∑

i 1/i = Θ(log n). Uniform

pricing on the other hand must choose a single priceπ(c) = p. Since the number of items

with value at leastp is at most1/p, the total payoff of uniform pricing is at most 1. This

provides the desired logarithmic factor separation. Tightness follows from the following

observation: for anyv1, . . . , vn reordered such thatvi ≤ vi+1, the payoff of the optimal

uniform price is given bymaxi ivi. Sincevi ≤ maxi ivi

i
for all i, the maximum possible

payoff
∑

vi ≤ log n ·maxi ivi. 2

Lemma 5.4.2 Linear pricing can be a linear factor worse than monotone and uniform

pricing and this is tight.

Proof: TakeC = ∞, vi = 1, andci = n−(i−1) for all i. Optimal monotone and uniform

pricing setπ(c) = 1 and obtain a payoff ofn. The optimal linear pricing function uses the

pricing functionπ(c) = c. This gives a payoff of
∑

i n
−(i−1) = O(1). To see tightness, note

that linear pricing can always obtain a payoff of at leastmaxi vi, which is at least(1/n)th

of the optimal monotone and uniform pricing payoffs. 2

These results imply that asymptotically, monotone pricing is more powerful than uni-

form or linear pricing.

5.5 Pricing Algorithms

In this section, we explore the non-game-theoretic problem of designing goodknapsack

pricing algorithms. As in the mechanism design problem, we assume that the knapsack

has sizeC and that itemi has sizeci and valuevi. These knapsack pricing algorithms differ
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from conventional knapsack algorithms in that the payoff earned by the seller from placing

an item in the knapsack is not the item’s value, but instead a price that is a function of the

size of the item.

First note that if we were allowed to accept objects fractionally, then a greedy pricing

strategy would yield an optimal algorithm for each of the three pricing policies. However,

when the objects are indivisible, we show the following lemmas.

Lemma 5.5.1 Optimal uniform pricing is in P.

Lemma 5.5.2 Optimal linear pricing is NP-hard.

Lemma 5.5.3 Optimal monotone pricing is NP-hard.

Lemma 5.5.1 follows from the following simple procedure for computing the profit for

any offer pricep. First add all items with value strictly greater thanp; these must be in any

knapsack when pricep is offered. If this exceeds the capacity of the knapsack, thenp is an

infeasible offer price. Otherwise, add the items with value equal top to the knapsack from

smallest to largest. This maximizes the number of items in the knapsack given the offer

price ofp. Given this procedure, we can find the optimal uniform offer price by searching

through then item values,v1, . . . , vn, as possible offer prices.

Lemmas 5.5.2 and 5.5.3 follow from the hardness of the subset-sum problem by the fol-

lowing simple reduction. Given an instance of the subset-sum problem with itemi having

sizeĉi, create an instance of the knapsack problem with the same number of items, and set

vi = ci = ĉi for all i. Set the knapsack capacity toS, the desired subset sum. The optimal

pricing function is simplyπ(x) = x (which is linear and therefore monotone); however,

the algorithm still has the discretion to “break ties” by choosing which subset of the items

to put in the knapsack (the validity conditions are satisfied for any subset of the items). The

reduction is complete when we observe that there exists a subset of items with sumS if

and only if the optimal profit for this knapsack problem instance isS.

5.5.1 Pricing Algorithms for Unlimited Supply

An interesting special case of the knapsack pricing problem, referred to as theunlimited-

supplyproblem, is the case whereC is effectively infinite, i.e.C ≥
∑

i ci. We first note that
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with unlimited supply, an optimal algorithm would either accept an object in its entirety or

reject it completely. Thus, the optimal fractional pricing rule is identical to the optimal

integral pricing rule. It turns out that the unlimited-supply cases of the knapsack pricing

problem are relatively easy to solve in polynomial time. Contrast this with the envy-free

pricing problems from [GHK+05], where even simple special cases of the unlimited-supply

pricing problems considered are APX-hard, i.e., unlessP = NP , there is no polynomial

time approximation scheme (PTAS).

Lemma 5.5.4 Optimal unlimited-supply linear pricing is in P.

Proof: To compute the optimal linear pricing for items1, . . . , n, item i with valuevi and

sizeci, we compute each item’s value per unit size,di = vi/ci. For each price ratedi,

the payoff of the algorithm isdi ×
∑

j : dj≥di
cj. Payoffs for all values ofdi can easily be

computed inO(n log n) time by first sorting the items bydi. 2

Lemma 5.5.5 Optimal unlimited-supply monotone pricing is in P.

Proof: The optimal monotone pricing rule can be computed by using the following dy-

namic programming algorithm. Intuitively, the table entryT [i, p] corresponds to the opti-

mal payoff from the smallesti items using monotone prices, when the highest price offered

is p.

1. Order the items by increasing size, i.e.c1 ≤ c2 · · · ≤ cn.

2. Solve the following dynamic program for allp ∈ {v1, . . . , vn}.

T [0, p] = 0

T [i, p] = profit(vi, p) + max
q∈{v1,...,vn}; q≤p

T [i− 1, q]

with profit(vi, p) = p if vi ≥ p and 0 otherwise.

3. Outputmaxp∈{v1,...,vn} T [n, p].

2
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5.5.2 Limited-Supply Approximation via Reduction to Unlimited Sup-

ply

We now show how to approximate the optimal monotone knapsack pricing in the general

case by using an optimal or approximate pricing algorithm for the unlimited-supply case.

A similar technique can be applied to the linear pricing variant of the problem. We consider

the following technique for composing two pricing algorithms,A1 andA2:

Definition 5.2 (Pricing Algorithm Composition) Given two pricing algorithmsA1 and

A2, we define the composite algorithmA1 ◦ A2 as:

1. RunA1 to obtain pricing functionπ1(·) and letH be the set of winners.

2. RunA2 onH to obtain pricing functionπ2(·).

3. Outputπ(x) = max(π1(x), π2(x)) for the agents inH. For an agent not inH, let x̂

be the smallest-sized agent inH whose size is no smaller thanx. Offerx a price of

π(x) = π(x̂).

If algorithmA1 produces a set of winnersH that is feasible (for our knapsack problem,

feasibility means that all items inH can fit in the knapsack simultaneously), then we can

chooseA2 as the optimal unlimited-supply monotone pricing algorithm. Since the feasible

solutions to the knapsack problem areclosed under inclusion, meaning that any subset of

a feasible set is also feasible,A2 will always produce a feasible set. All we need to argue

then is that the composite pricing algorithm yields a monotone pricing and that it performs

well.

Lemma 5.5.6 If A1 andA2 are monotone pricing algorithms, thenA1 ◦ A2 also yields

monotone pricing.

Let WinnersA(X) denote the winners of algorithmA applied to the agent setX.

Definition 5.3 (Performance Preservation)Consider a performance benchmarkOPT ,

with OPT (Y ) denoting the value of the benchmark on the agent setY . An algorithm
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A approximately preservesthe performance benchmark,OPT, if for all inputs with agent

setX,

OPT(WinnersA(X)) ≥ α OPT(X)− γh

for some constantsα andγ, whereh is the maximum value of any item.

Note that if algorithmA1 approximately preserves the performance of optimal mono-

tone pricing, andA2 is optimal (or constant-competitive), then their composition achieves a

payoff of at leastα′ OPT(N )−γ′h for some constantsα′ andγ′. We next discuss monotone

pricing algorithms that approximately preserve the performance of the optimal monotone

pricing and produce a feasible winner set. Recall the standard weighted knapsack problem:

given item valuesv1, . . . , vn, item sizesc1, . . . , cn, and knapsack capacityC, find the set of

items,H, with maximum total value that simultaneously fit in the knapsack. We present a

pricing algorithm based on a natural approximation algorithm for the knapsack problem.1

Algorithm APPROX-KNAPSACK

Input: Items with valuesv1, . . . , vn and sizesc1, . . . , cn and a knapsack of sizeC.

Output: A monotone pricing functionπ.

1. Ignore large items withci > C/2.

2. List the remaining items in the order of decreasing value-per-unit-size,di = vi/ci.

3. Select the largest prefix of the item list that fits in the knapsack as the winner setH.

4. Offer π(x) = d∗x, whered∗ is the largest value-per-unit-size among the losers, for

x ≤ C/2 and offer∞ otherwise.

Lemma 5.5.7 AlgorithmAPPROX-KNAPSACK approximately preserves the optimal frac-

tional monotone pricing,OPT, with OPT(H) ≥ OPT(N )/3− h.

Proof: Let N ′ ⊂ N be the items with size at mostC/2. At most one item from the set

N −N ′ can fit in the knapsack. Thus, the algorithm can restrict its attention to the setN ′

without losing more than an additive term ofh.

1We add Step 4 to output a monotone pricing in addition to a setH that approximates the optimal knap-
sack.
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If all of N ′ fits into the knapsack then the theorem follows. Otherwise, the items in the

winner setH fill at least half of the knapsack. This is because there is some item inN ′

that could not fit into the remaining space of the knapsack, and the items inN ′ have size

at mostC/2. Therefore,π(x) is a monotone (in fact, a linear) pricing rule that obtains a

payoff of at leastd∗C/2; this is because the value-per-unit-size of agents inH is at least

d∗. Thus,OPT(H) ≥ d∗C/2.

Let L = N ′ \ H be the items not included in the knapsack (which all have value-per-

unit-size at mostd∗). Clearly,OPT(L) ≤ d∗C ≤ 2 OPT(H). Therefore,3 OPT(H) ≥
OPT(H) + OPT(L) ≥ OPT(N ′). 2

Note that the lemma above holds for the optimalfractionalmonotone pricing. As noted

before, for unlimited supply, the optimal fractional pricing rule is identical to the optimal

integral pricing rule. Thus, we get the following theorem.

Theorem 5.5.8 The composite algorithm obtained from AlgorithmAPPROX-KNAPSACK

and the optimal unlimited-supply monotone pricing algorithm achieves a payoff of at least

OPT /3− h, whereOPT is payoff of the optimal fractional monotone pricing rule.

We can similarly define a composition method for linear pricing. The only change that

we need to make is in Step 3 of the composition method (see Definition 5.2). Let the two

algorithmsA1 andA2 output a linear pricing rule. Let the pricing rule output byA1 be

π1(x) = τ1x and the pricing rule output byA2 beπ2(x) = τ2x. ThenA1 ◦ A2 uses the

pricing ruleπ(x) = max{τ1, τ2, τ}x, whereτ is the maximum value-to-size ratio among

items with size greater thanC/2. A theorem similar to Theorem 5.5.8 above holds for this

composition method.

5.6 Approximately Optimal Knapsack Auctions

In this section, we extend the technique of composing pricing algorithms to mechanism de-

sign problems. These techniques suggest a general procedure for reducing limited-supply

(or, constrained) problems to unlimited-supply (or, unconstrained) mechanism design prob-

lems.
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5.6.1 Reduction via Composition

Consider any constrained profit maximization problem in a private-value setting, e.g., the

single-parameter agent settings of [FGHK02, GH05]. One can think of the unlimited-

supply case as that where all outcomes are feasible; whereas the limited-supply case is

constrained to produce some outcome in a restricted feasible set. In the case where the set

of feasible outcomes (sets of agents) isclosed under inclusion, meaning that all subsets of

a feasible set are also feasible, the following general approach can be attempted: first find

a good feasible set, then run an unlimited-supply auction on it. Below we formalize the

game-theoretic issues that arise with this approach.

Definition 5.4 (Mechanism Composition)Given two mechanismsM1 andM2, we de-

fine the composite mechanismM1 ◦M2 as:

1. SimulateM1 and letH be the set of winners.

2. SimulateM2 on the setH.

3. For each agent inH, offer a price equal to the maximum of the prices offered to her

byM1 andM2. An agent not inH is declared a loser.

We will be looking to use this composition technique with a mechanismM1 that always

outputs a set of winners for which all subsets are feasible, and a mechanismM2 which

takes such a set of agents (i.e., a set with respect to which the mechanism effectively has

unlimited supply) and computes offer prices with the goal of maximizing profit.

There are three potential issues when using this approach: correctness, truthfulness,

and performance.

Correctness. The technique is correct if it produces a feasible outcome. A mechanism

for the unlimited-supply case,M2, could output any subset ofH as its final outcome; this

immediately imposes the constraint that the set of feasible outcomes must be closed under

inclusion. This condition, which is satisfied by the knapsack problem, is also sufficient as

asserted by the following lemma.

Lemma 5.6.1 If the set of feasible outcomes are closed under inclusion andM1 produces

a feasible outcome thenM1 ◦M2 produces a feasible outcome.
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Truthfulness. We would also like the construction to yield a truthful mechanism. Un-

fortunately, the condition thatM1 andM2 be truthful is not enough to guarantee the

truthfulness of the composite mechanism. In this discussion, we refer to the agents in

H (Definition 5.4) as thesurvivorsand the prices offered by Step 1 as thesurvival prices.

Note that ifM1 is truthful, the survival price of an agent does not depend on her bid. How-

ever, even for a truthful mechanismM1, the winner setH could be a function of some

survivor’s bid value. In this case, that agent can manipulate her bid to change the setH

which may affect the price she is offered byM2. Thus, we must require thatM1 satisfy a

stronger property than truthfulness.

Definition 5.5 (Composability) A mechanism iscomposableif it is truthful and the sur-

vivor set produced does not change as a winning agent’s bid varies above her survival

price.

Lemma 5.6.2 AlgorithmAPPROX-KNAPSACK is composable.

Proof: First we show truthfulness, then we show composability. For truthfulness, note that

Algorithm APPROX-KNAPSACK specifies amonotone allocation rule, which means that

with all other agents’ bids fixed, if a winning agent raises her bid, she continues to be in

the winning set. For such a monotone allocation rule, the truthful payment rule is to have

each agent pay the minimum value that they could bid to be selected. For winning agenti,

this value is preciselyd∗ci as set by the algorithm.

For composability, we need to show that when the bids of all the agents except one are

fixed arbitrarily, the set of selected items as a function of this one agent’s bid is unchanged

for all the winning bid values of this agent. Whenever the Algorithm APPROX-KNAPSACK

selects agenti, the other agents selected are exactly those that would have been selected

had we run the algorithm without agenti on a knapsack of sizeC ′ = C − ci (after ignoring

agents with size greater thanC/2). Since agenti cannot affect the outcome of this process,

the algorithm is composable. 2

The rationale for the term “composable” comes from the following lemma.2

2Note that composability plays a role similar tocancellability in Fiat et al. [FGHK02]. In a cancellable
auction, the auction’s profit is not a function of the value of any winning bid. This allows the auction to be
canceled as a function of its profit.
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Lemma 5.6.3 If mechanismM1 is composable and mechanismM2 is truthful then the

composite mechanism,M1 ◦M2, is truthful.

Performance. The final issue in using this composition technique to reduce a limited-

supply optimization problem to an unlimited-supply optimization problem is to ensure that

it has good performance. Given some benchmark for gauging performance on the full input,

the feasible outcome produced byM1 must not limit the possible solutions to ones that are

substantially worse, in terms of the chosen benchmark, than the optimal solution on the full

input. If this is the case, then with an approximately-optimal unlimited-supply mechanism,

M2, the composite mechanism approximates the chosen benchmark on the full input.

Recall the definition ofperformance preservation(Definition 5.3), and Lemma 5.5.7

which asserts that Algorithm APPROX-KNAPSACK approximates preserves the revenue

of the optimal fractional monotone pricing. This makes Algorithm APPROX-KNAPSACK

a good candidate forM1. The missing ingredient thus far is an approximately-optimal

unlimited-supply knapsack auction that can be used asM2. We present such an auction

in the next section. We combine Lemma 5.5.7 with Theorem 5.6.10, which shows that the

unlimited-supply knapsack auction that we present in the next section approximates the

optimal monotone pricing, to get the following theorem.

Theorem 5.6.4 Let OPT be the payoff the optimal fractional limited-supply monotone

pricing function. Then the payoff of the composite mechanism obtained from Auction

APPROX-KNAPSACK and AuctionUNLIMITED -SUPPLY-KNAPSACK is at least

α OPT−γh lg lg lg n

for some constantsα andγ.

Our auction can be modified slightly to get a payoff of at leastαOPTn′ − γh lg lg lg n′,

whereOPTn′ is the optimal monotone payoff from at mostn′ winners for any choice ofn′.
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5.6.2 Unlimited-Supply Knapsack Auction

In this section, we consider the knapsack auction problem whenC = ∞. We first at-

tempt to use the general attribute auction of Blum et al. [BH05] to solve this problem.

Since the optimal monotone pricing rule might offer a different price to every agent, the

number of piecewise-constant pieces needed to emulate this rule could be as high as the

number of agentsn. Thus, a direct application of the attribute auction result (Theo-

rem 5.3.1) to the knapsack auction problem would only guarantee a minimum profit of

OPT /16 − nh/2 ≤ 0, whereOPT ≤ nh is the payoff of the optimal monotone pricing

rule. Still, the unlimited-supply knapsack auction problem remains closely related to the

attribute auction problem, and we will be making use of Theorem 5.3.1 in this section.

Let n′ be the number of winners for the optimal monotone pricing function. Our results

come from observing Lemma 5.6.5 below, which implies that there is a monotone pricing

function with close to optimal payoff that

(a) divides the size range intolg n′ intervals and for each interval, offers the same price

to all agents whose size lies in the interval, and

(b) most (all butO(lg lg lg n)) of the intervals have many (at leastO(lg lg n)) winners.

Simply using part (a) of this fact and applying the result of Blum and Hartline [BH05], we

can obtain an auction that isOPT /32 − h lg n′/2. The main result of this section will be

to use part (b) of this fact to improve the additive loss term toO(h lg lg lg n).

We obtain this result by analyzing two possible cases. In the first case, most of the

payoff of the optimal monotone rule with exponential intervals (see Definition 5.6 below)

comes from the large intervals with at leastΩ(lg lg n) winners. For these large intervals,

we can apply random sampling techniques and the Chernoff bound to show that a general-

ization of the random sampling auction [GHW01] that uses the optimal pricing rule with

exponential intervals will obtain a constant fraction of the optimal monotone payoff.

On the other hand, if most of the payoff of the optimal monotone rule with these prop-

erties comes from theΘ(lg lg lg n) small intervals, then the result of Blum and Hartline

can be applied to get an auction that obtains a constant fraction ofOPT less an additive

term that is linear in the number of relevant intervals. This gives an additive loss term of

O(h lg lg lg n).
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A convex combination of these two techniques gives the auction below. We start with a

definition and a lemma.

Definition 5.6 A monotone pricing rule with exponential intervalsis a monotone pricing

rule in which the winners can be partitioned into equal-priced intervals over the attributes

such that theith interval (in decreasing order of attribute value) contains at least2i−1

winners, unlessi is the last interval.

Lemma 5.6.5 Given any monotone pricing rule,π(·), that obtains total payoffP on in-

stance(v1, . . . , vn; c1, . . . , cn; C = ∞), there is a monotone pricing rule with exponential

intervals,π′(·) with payoff at leastP/2.

Proof: Order the winners ofπ(·) on the instance by decreasing size (breaking ties arbi-

trarily). Divide the attribute range into intervals such that theith interval has at least2i−1

winners but strictly fewer than2i−1 winners with size strictly bigger than the smallest win-

ner ini. This can be done by considering the attributes in decreasing order and adding them

to the current interval until the first time the number of winners in the interval becomes at

least2i−1. At this point, we move on to the next interval. Letc(i) be the size of this smallest

item in intervali. Considerπ′(·) defined such that all items in intervali are offered price

π(c(i)).

Now we show that the payoff ofπ(·) is no more than twice that ofπ′(·). The loss

for interval i is the difference in payoff betweenπ′(·) andπ(·) over the attribute interval

[c(i), c(i − 1)). There is no loss from items with size exactlyc(i) and the loss from other

items in intervali is bounded byπ(c(i − 1)) − π(c(i)). Since intervali contains fewer

than2i−1 items with size strictly more thanc(i), the total loss is no more than(2i−1 − 1)×
(π(c(i − 1)) − π(c(i))). We charge this loss to the winners in all the previous intervals.

There are at least
∑i−1

j=1 2j−1 = 2i−1 − 1 such winners; so each winner is charged at most

π(c(i − 1) − π(c(i)). Now consider the total amount charged to a winner in intervali by

subsequent intervals. The charges made to any given winner in intervali telescope and

sum to at mostπ(c(i)); thus the total loss can be accounted for by the total payoff ofπ′(·).
Therefore the payoff ofπ′(·) is at least half that ofπ(·). 2

Now, we are ready to define the random-sampling part of the unlimited-supply auction.
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Auction RANDOM-SAMPLING-KNAPSACK or RSK

1. Partition the agents into two setsA andB uniformly at random.

2. Compute the optimal ‘monotone pricing rule with exponential intervals (restricting

prices to powers of two) for each partition. Let the pricing rules forA andB beπA

andπB respectively.

3. UseπA, the pricing rule forA, to offer prices to setB and vice versa.

Lemma 5.6.6 AuctionRANDOM-SAMPLING-KNAPSACK or RSK is truthful.

Proof: Recall the definition of a bid-independent auction (Definition 5.1). Theorem 5.1.1

implies that if the price offered to each agent is independent of her bid, then the auction is

truthful. Now note that the price offered by RSK to an agenti (say in set A) depends only

the bids of the agents in set B, and does not depend on her bid at all. 2

Let πA on A havenA winners. Letn̄A be the largest power of 2 that is no larger than

nA. Then, the winners are divided up into at mostlg n̄A+1 equal-priced markets. A market

is said to belarge for A if it has at least256 lg lg n̄A winners whenπA is applied to A. Note

that all markets other than the firstlg lg lg nA+8 markets and the last market (by decreasing

attribute value) are large. Markets that are not large are calledsmall. We wish to analyze

the performance of RSK on the large markets. Defineπ′A to be a the pricing rule that is the

same asπA, except that it offers a price of∞ to the small markets. LetP (π, A) denote the

total profit of pricing functionπ applied to setA. LetL be an ordering of the agents in the

decreasing order of attribute value (breaking ties arbitrarily). LetLp denote the orderingL
restricted to agents having bidsp or higher. We first prove a few useful lemmas.

Definition 5.7 (Bad Event, Bad Set, Potential Bad Set)A Bad Eventis said to have oc-

curred in RSK if there exists anη = 2k for integerk ≥ 4, a pricep = 2r for integerr s.t.

lg h/η2 < r ≤ lg h, and a subsetX of agents, satisfying the following properties:

(i) All the agents inX have bidsp or higher, and appear consecutively inLp.

(ii) |X| ≥ 3
2
max

{
mp

6 lg η
, 256 lg lg η

}
, wheremp is the total number of agents with bidp

or higher.
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(iii) One of the two sets created by RSK has more than2|X|/3 of the agents inX.

A setX that satisfies the first two properties is called aPotential Bad Set, while any setX

that satisfies all the above properties is called aBad Set.

Lemma 5.6.7 The probability of a Bad Event occurring in AuctionRANDOM-SAMPLING-

KNAPSACK is no more than0.01.

Proof: We will prove that the probability of the existence of a Bad SetX for which setA

gets more than2|X|/3 of the agents is no more than0.005. By symmetry, the probability

of the existence of a Bad SetX w.r.t. B is also no more than0.005. Then, we can take the

union bound to get the lemma. We first prove the following statement:

Claim: Consider a setX of 3x agents. The probability that setA gets more than2x agents

is no more thane−x/12.

Proof: The expected number of agents fromX that fall into setA is 1.5x. By Cher-

noff bounds [MR95], the probability that fewer thanx agents fall into it is no more than

e
−(1.5x)(1/3)2

2 = e−x/12.

We now use this claim along with a series of union bounds to prove the lemma. Fix a

numberη = 2k for some integerk ≥ 4 and a pricep = 2r for somer s.t. lg h/η ≤ r ≤ lg h.

Let mp be the total number of agents with pricep or higher. Arrange these agents by

decreasing order of attribute value. LetLη = max{ mp

6 lg η
, 256 lg lg η}. Consider a subset

X of 3x consecutive agents where2x ≥ Lη. By the above claim, the probability that this

subset splits such that setA has more than2x of these agents is no more thane−x/12. Taking

the union bound, the probability of such a subset existing for these fixed values ofn andp

is no more than

mp

mp∑
|X|=3Lη/2

e−|X|/36

≤ mpe
−Lη/24/(1− e−1/36)

≤ 36.6 ∗ (6Lη lg η)e−Lη/24

≤ 220Lη2
Lη/2562−1.44Lη/24

= (220Lη2
−Lη/30)2−1.44Lη/24+Lη/256+Lη/30

≤ e−Lη/44
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To get the last inequality, we used the fact thatLη ≥ 256 lg lg η ≥ 512 whenn ≥ 24.

Taking the union bound over all possible values ofp (there are at most2 lg η of them), we

get that the probability of such a subset existing for a given value ofη is no more than

2(lg η)2−Lη/44

≤ 2(2
256 lg lg η

44 lg η)

≤ 2(lg n)−
256
44

+1

≤ 2(lg η)−4.8

Taking the union bound over allη = 2k for k = 4, 5, · · · , we get that the probability is no

more than

2
∞∑

k=4

k−4.8

= 2

(
1

44.8
+

1

54.8
+

1

64.8
+ · · ·

)
≤ 0.005

The inequality is obtained by using an integral to approximate the summation. 2

We now prove the following lemma about the revenue of Auction RANDOM-SAMPLING-

KNAPSACK. A similar lemma holds when the roles ofA andB are interchanged.

Lemma 5.6.8 For AuctionRANDOM-SAMPLING-KNAPSACK,

E [P (π′A, B)] ≥ max

{
0, β

(
E [P (π′A, A)]− 1

2
E [P (πA, A)]− h

2

)}
for β = 0.99/2.

Proof: If n̄A < 16, E [P (π′A, A)] = 0, making the claim trivially true. Thus, we will

assume that̄nA ≥ 16. We will also assume thatE [P (πA, A)] > h; otherwise the claim is

trivially true.

Recall that a market islarge for A if it has at least256 lg lg n̄A winners whenπA is

applied to A. IfπA applied to a large market has a profit greater thanE[P (πA,A)]
2 lg n̄A

, then that
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market is calledsignificantfor A. Since the number of large markets is at mostlg n̄A, the

total profit on applyingπ′A to the significant markets ofA is at leastmax{0,E [P (π′A, A)]−
E [P (πA, A)] /2}. Thus, we can prove the lemma by showing that with constant probability,

E [P (π′A, B)] is at least a constant fraction of the profit from applyingπ′A to the significant

markets ofA.

Let ni(πA, A) denote the number of winners in theith market whenπA is applied to

A, while ni(πA, B) denote the number of winners in theith market whenπA is applied to

B. We will show that assuming noBad Event(see Definition 5.7) has occurred, there is

no significant marketi of A, s.t.ni(πA, A) > 2ni(πA, B). Since no Bad Event occurs with

probability at least0.99, it would immediately imply that

E [P (π′A, B)] ≥ max{0, 0.99

2
(E [P (π′A, A)]− 1

2
E [P (πA, A)])}.

Assume that no Bad Event has occurred. For a contradiction, suppose that there is a

significant large marketi of A that hasni(πA, A) > 2ni(πA, B). Let [a, b] be the attribute

range corresponding to this market. Also let price offered to theith market byπA bep = 2k

for some integerk andmp be the total number of agents with bidp or higher. We claim

thatp > h
n2

A
. Suppose to the contrary, the pricep ≤ h

n2
A

. Then theith market has a payoff

of at most

h

nA

<
h

2 lg n̄A

<
E [P (πA, A)]

2 lg n̄A

This would imply that marketi is not a significant market, a contradiction to the supposition

above.

Recall thatLp is an ordering of all the agents with bidsp or higher in decreasing order

of attribute value. Consider a setX of 3
2
ni(πA, A) agents with bidsp or higher who appear

consecutively inLp, such thatX includes all agents in the attribute range[a, b]. Then,

by assumption, more than2
3
|X| agents from this set are in setA. We show thatX is a

Potential Bad Setwith η = n̄A. We already know that|X| ≥ 3
2
(256 lg lg n̄A). Thus,

all we need to show is that|X| ≥ mp

4 lg n̄A
, or alternatively, thatni(πA, A) ≥ mp

6 lg n̄A
. To
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see this, note that since marketi is significant for A,ni(πA, A)p > P (πA,A)
2 lg n̄A

. In other

words,(2ni(πA, A) lg n̄A)p > P (πA, A). If more than2ni(πA, A) lg n̄A agents in setA had

bids of p or higher, then offering a price ofp to everybody would yield a profit of more

thanP (πA, A), contradicting the optimality ofπA for setA. Thus, the number of agents

in setA with bid p or higher is no more than2ni(πA, A) lg n̄A. Consider the set of all

agents with bidsp or higher. This is a Potential Bad Set. Since the Bad Event has not

occurred, the third condition for a Bad Event is not satisfied. Thus, if setA has no more

than2ni(πA, A) lg n̄A agents with bidp or higher, then the total number of agents with bid

p or highermp ≤ 3(2ni(πA, A) lg n̄A), or ni(πA, A) ≥ mp

6 lg n̄A
, as required.

Thus, the setX is a Potential Bad Set. Since the Bad Event has not occurred, set

X does not satisfy the third condition of being a Bad Set, implying that the number of

agents from setX in setA is no more than2
3
|X|, thus contradicting the supposition that

ni(πA, A) > 2ni(πA, B). 2

Now consider the following combination of the two auctions.

Auction UNLIMITED -SUPPLY-KNAPSACK

1. Perform Step 1 of Auction RANDOM-SAMPLING-KNAPSACK.

2. With probability p, run the general attribute auction on the setsA and B sepa-

rately. With the remaining probability, run the remaining steps of Auction RANDOM-

SAMPLING-KNAPSACK.

It is easy to see that since RSK and the general attribute auction are truthful (and thus

bid-independent), the above auction is also bid-independent. Then, using Theorem 5.1.1,

we get the following lemma.

Lemma 5.6.9 AuctionUNLIMITED -SUPPLY-KNAPSACK is truthful.

Theorem 5.6.10The revenue generated by AuctionUNLIMITED -SUPPLY-KNAPSACK is

α OPT−γh(lg lg lg nA + lg lg lg nB + 19), whereOPT is the payoff of the optimal mono-

tone pricing andα andγ are constants.
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Proof: Recall thatOPT is the payoff of the optimal monotone pricing scheme. Using

Lemma 5.6.5 and losing another factor of2 due to restriction to prices that are powers of

2, OPT ≤ 4(E [P (πA, A)] + E [P (πB, B))].

Recall that any market with fewer than256 lg lg n̄A winners is small forA. There are

at mostlg lg lg n̄A + 9 small markets of A with respect toπA. Similarly, there are at most

lg lg lg n̄A + 9 small markets of B with respect toπB. Note that markets that are not small

are large for their respective sets. LetP (πA, AS) be the payoff of applyingπA to the

small markets ofA. DefineP (πB, BS) similarly. Then,E [P (πA, A)] + E [P (πB, B)] =

E [P (πA, AS)] + E [P (πB, BS)] + E [P (π′A, A)] + E [P (π′B, B)].

With probability p, we use the general attribute auction, in which case, by Theo-

rem 5.3.1, we get an expected revenue of at least

(E [P (πA, AS)] + E [P (πB, BS)])/16− h

2
(lg lg lg nA + lg lg lg nB + 18).

On the other hand, when we use Auction RANDOM-SAMPLING-KNAPSACK (which

we do with probability(1 − p)), we can apply Lemma 5.6.8 and the same lemma withA

andB interchanged, to show that we get an expected revenue of at least

β

(
E [P (π′A, A)]− 1

2
E [P (πA, A)] + E [P (π′B, B)]− 1

2
E [P (πB, B)]− h

)
for β = 0.99/2. Thus, the overall expected revenue is at least

p

16
(E [P (πA, AS)] + E [P (πB, BS)])

− ph

2
(lg lg lg nA + lg lg lg nB + 18)

+ (1− p)β

(
E [P (π′A, A)] + E [P (π′B, B)]− E [P (πA, A)]

2
− E [P (πB, B)]

2
− h

)
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Settingp = 24β
24β+1

, we get an expected revenue of at least

3β

2(24β + 1)
(E [P (πA, AS)] + E [P (πB, BS)])

− 12βh

24β + 1
(lg lg lg nA + lg lg lg nB + 18)

+
β

24β + 1

(
E [P (π′A, A)] + E [P (π′B, B)]− E [P (πA, A)]

2
− E [P (πB, B)]

2
− h

)
≥ β

24β + 1
(E [P (πA, A)] + E [P (πB, B)])

− 12βh

24β + 1

(
lg lg lg nA + lg lg lg nB + 18 +

1

12

)
To get the inequality, we have used the fact thatE [P (πA, A)] + E [P (πB, B)] ≤

E [P (πA, AS)] + E [P (πB, BS)] + E [P (π′A, A)] + E [P (π′B, B)]. Putting in the value

β = 0.99/2, and using the fact thatOPT ≤ 4(E [P (πA, A)] + E [P (πB, B))], we get

the theorem withα = 0.009 andγ = 0.47. 2

Noting thatnA andnB are no more thann, we get Theorem 5.6.4. Auction RANDOM-

SAMPLING-KNAPSACKcan be modified in order to achieve a revenue of at leastα OPT(n′)−
γh(2 lg lg lg n′ + 19), whereOPT(n′) is the payoff of the optimal monotone pricing with

no more thann′ winners andα andγ are the same constants as above. For this, we change

Step 2 of Auction RANDOM-SAMPLING-KNAPSACK and for each of the two sets, com-

pute the optimal monotone pricing rule with exponential intervals (with prices restricted to

powers of 2) that has at mostn′ winners. The rest of the auction proceeds as before.



Chapter 6

The Search Engine Problem

Targeted advertising is an indispensable part of the business model of modern web search

engines and is responsible for a significant share of their revenue. For every keyword,

several advertisements are displayed beside the search results, and the visibility of an ad-

vertisement depends on its location (slot) on the web page. Typically, a number of mer-

chants are interested in advertising alongside each keyword and they naturally prefer slots

with higher visibility. Even if the number of merchants interested in a keyword is no more

than the number of available slots, the search engine has to match merchants to display

locations. However, if the number of merchants is more than the number of advertisement

slots available, the search engine also has to pick a subset of advertisements relevant to

the keyword. In addition, the search engine has to decide on a price to be charged to each

merchant. Due to the dynamic nature of the advertising market, most search engines are us-

ing auctions to solve the problem of selling advertisement space alongside keyword search

results. In a keyword auction, merchants are invited to submit bids on the keyword, i.e. the

maximum amount they are willing to pay for an Internet user clicking on their advertise-

ment. Typically, the search engines charge a merchant only when a user actually clicks on

the advertisement. Based on the bids submitted for the keyword, the search engine (which

we will sometimes refer to as the auctioneer) picks a subset of advertisements along with

the display order. The price charged also depends on the set of submitted bids.

In the auctions currently being used, the search engine first picks the subset of advertise-

ments to be displayed and matches them to slots based on the submitted bids; the matching

98
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criteria is referred to as theranking functionand is an integral component of the existing

keyword auctions. Then, the auctioneer decides on a price for each merchant based on the

bids and the allocation. There are two popular ranking methods:

1. TheOverture(or Yahoo!) method: Merchants are ranked in the decreasing order of

the submitted bids. We will call thisdirect ranking.

2. The Googlemethod: Merchants are ranked in the decreasing order of theranking

scores, where the ranking score of a merchant is defined as the product of the mer-

chant’s bid and estimated click-through rate. We will refer to this asrevenue ranking.

These ranking functions are an inherent part of the advertisement philosophies of Over-

ture and Google respectively. Accordingly, we will assume that these ranking functions

are fixed. Hence the only degree of freedom in running the auction is the price charged per

click-through to each merchant. Both Overture and Google currently charge a merchant the

minimum amount she would need to bid to retain its current rank in the auction1. This price

can never be larger than the submitted bid, since clearly, the submitted bid was enough to

guarantee the merchant her current rank. The utility of a merchant is her expected gain,

i.e., the difference between the benefit she receives and the price she pays for it; it is de-

fined more formally in Section 6.1. We will refer to this auction as thenext-priceauction.

Despite superficial similarity to the truthful second-price auction [Vic61] described in Sec-

tion 4.3, the next-price auction is not truthful — in Section 6.2.1, we present examples

where a merchant has an incentive to bid less than her true valuation under the above auc-

tions. We observe that in the current auctions run by Google and Overture, there is an

asymmetric incentive for merchants — there may be an incentive for a merchant to bid less

than her true valuation for each click on her advertisement, but there is never an incentive

for her to bid more than her true valuation.

Since truth-telling is not a dominant strategy in the current auctions, there is no clear

prescription for merchants to determine their optimum bid. The optimum bid depends in a

complicated and dynamic manner on externalities such as the bids of the other merchants,

and it is often necessary for merchants to hire expensive consultants or intermediaries to

1Plus a fixed small increment, but we will ignore this minor detail.
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formulate their bidding strategies. As mentioned in the introduction, the lack of clear bid-

ding strategies is slowing the growth of online advertising. A truthful mechanism would

simplify the bidding process significantly, since it would require a merchant to only deter-

mine her valuation for the keyword, a quantity that is intrinsic to the merchant. A truthful

mechanism would also remove the incentive for a merchant to under-bid. Furthermore, in

the case of revenue ranking and with an additional separability assumption (defined in Sec-

tion 6.1), a truthful mechanism isefficientin the sense that it maximizes the total (weighted)

utility obtained by the auctioneer and the merchants together. This motivates us to study

the problem of designing truthful keyword auctions.

One might be tempted to suggest that the famous VCG mechanism [Vic61, Cla71,

Gro73] (see Chapter 4 for a description) or a weighted and biased variant of it would yield

a solution to this problem. However, we give an example (Section 6.2.2) where there does

not exist any set of weights and biases for which the VCG mechanism always outputs the

same merchant ordering as the given ranking function. Hence, the VCG mechanism is

not generally applicable to our problem. We further discuss the applicability of VCG in

Section 6.2.

Our Contribution. We design a simple truthful auction for a general class of ranking

functions that includes direct ranking and revenue ranking. A ranking function in this class

assigns an a priori weight to each merchant that is independent of her bid and then ranks

the merchants in the decreasing order of their weighted bids — this is defined formally in

Section 6.1. In particular, setting all the weights to 1 results in the direct ranking used by

Overture, and setting the weights equal to the estimated click-through rates results in the

revenue-ranking scheme used by Google.

We call our auction theladdered auction, since the price charged to a merchant builds

on the price charged to merchants ranked below it. We show that this auction is truthful.

Further, we show that the laddered auction is the unique truthful auction, and hence is

trivially revenue-maximal for the auctioneer among all truthful auctions. The auction is

presented in Section 6.3 and the analysis is in Section 6.4.
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Revenue Equivalence. We then ask the next natural question: how will the auctioneer’s

revenue change as a result of implementing our truthful auction rather than the next-price

auction currently in use? Since the next-price auction is not truthful, its revenue should

be computed assuming that the bids of the merchants are in a Nash equilibrium, i.e., the

bids are such that no merchant can increase her profit by a unilateral change in her bid.

For arbitrary click-through rates, we have not been able to answer this question, primarily

because we can not obtain a simple characterization of the Nash equilibria imposed by the

next-price auction in this case. However, when the click-through rates are separable (i.e. the

click-through rates can be separated into a merchant-specific factor and a position-specific

factor; see Section 6.1 for a formal definition), we prove the following revenue-equivalence

theorem:

There exists apure-strategyNash equilibrium for the next-price auction which

yields exactly the same revenue for the auctioneer as our laddered auction.

We give an explicit characterization of this Nash equilibrium. These results are pre-

sented in Section 6.5. Interestingly, we show that there may exist other pure-strategy Nash

equilibria under which the next-price auction achieves a smaller revenue than the truthful

auction, and yet others under which the next-price auction achieves a higher revenue; these

examples are presented in Section 6.5.1. In fact, starting from the truthful bids, there may

be sequences of self-interested moves (i.e. bid changes) that can lead to a Nash equilib-

rium for the next-price auction of higher or lower revenue than the truthful auction. This

suggests that while the revenue of the current auctions could be better or worse than the

truthful auction depending on which equilibrium the bids settle into, the revenue of our

truthful auction is more predictable.

Discussion and Related Work. We assume throughout that the number of slots,K, that

the auctioneer sells for a given keyword does not depend on the submitted bids (although

it may depend on the number of merchants taking part in the auction). Our auction is not

truthful if the auctioneer computes the optimum number of slots (in terms of the revenue

generated by our laddered pricing scheme) to be displayed. Extending our auctions to this

case appears to be a non-trivial and interesting research direction.
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Since the submitted bids are typically used for more than one impression, in addition

to a merchant’s valuation, her budget may also be a parameter of relevance [MSVV05,

BCI+05]. However, in many cases, merchants want users to go to their web sites to pur-

chase merchandise which results in immediate profit; in this case, a merchant’s true valua-

tion for a keyword is simply her expected immediate profit per click. If the merchant bids

in accordance with the truth-telling strategy that is dominant for our laddered auction, she

would bid an amount equal to her valuation of the keyword. Since the price charged by the

auctioneer is never larger than the bid, each click results in an immediate net profit. Hence,

ignoring budgets would be the right thing to do under this scenario.

Some recent work [MSVV05, BCI+05] studies the web advertisement problem with

budget constraints. Mehta et al. [MSVV05] ignore the game-theoretic issues and instead

focus on the algorithmic problem of matching merchants to web pages when their valua-

tions and budgets are known to the auctioneer. Borgs et al. [BCI+05] study the problem of

selling multiple identical units when the agents are interested in getting multiple units as

long as their payment does not exceed their budget. While a model with multiple identical

units might be applicable to the case of web pages with a single advertisement slot, it is not

suitable for web pages with multiple advertisement slots, as it does not take into account

the inherent differences in visibility between various positions (slots) on the same page.

6.1 Model and Notation

There areN merchants bidding forK < N slots on a specific keyword (ifK ≥ N , reduce

the number of slotsK to N and add a dummy merchant with all relevant parameters set to

0). The slots are numbered in the order of decreasing visibility, i.e. the visibility of the slot

numberedi is no less than that of the slot numberedi + 1 for all i. Let CTRi,j denote the

click-through rate of theith merchant if placed at slotj ≤ K. We assume that CTRi,j is

arbitrary, but known to the auctioneer. Also, we assume that CTRi,j is non-increasing inj.

Set CTRi,j = 0 for j > K. Let vi denote the true valuation of a click-through to merchant

i. (This is again an abuse of notation: we are usingvi to refer to the valuation of a single

click-through for merchanti, rather than the valuation function of merchanti.) We assume

thatvi is known to merchanti, but not to the auctioneer.



6.1. MODEL AND NOTATION 103

As outlined in the introduction, we will assume that the ranking function is externally

specified. We will consider the class of ranking functions where merchanti is assigned an

a priori weightwi that is independent of her bid. Letbi denote the bid of theith merchant

for each click-through. The merchants are ranked in the order of decreasingwibi. Setting

wi = 1 for all i is equivalent to the direct ranking function (the Overture model), while

settingwi = CTRi,1 reduces to the revenue-ranking function (the Google model). Merchant

i is charged a price-per-click,pi ≤ bi, which is determined by the auction. We assume the

merchants to be risk-neutral. As such, if merchanti is placed at positionj, it obtains a

utility of CTRi,j · (vi − pi) per impression. Recall that an auction is truthful if bidding

her true valuation (i.e.bi = vi) is a dominant strategy for every agent (see Chapter 4 for

more background on truthful auctions). Now, we formally define the next-price auctions

currently being used.

Definition 6.1 (Next-price Auction) Given the ranking function,R = (w1, w2, . . . , wn)

and the bid vectorb = (b1, . . . , bn), the next-price auction ranks the merchants in the

decreasing order ofwibi and charges the merchant rankedi an amount-per-click equal to

the minimum bid she needs to have submitted in order to retain ranki. Letwa andwb refer

to the weights of the merchants rankedi and i + 1 respectively. And letbb refer to the bid

submitted by the merchant rankedi + 1. Then the price charged to the merchant rankedi

is wbbb

wa
.

We will now describe the separability assumption, which we will use (only) for our

results on revenue-equivalence. Informally, this assumption states that the click-through

rates can be separated into a merchant-specific factor and a position-specific factor.

Definition 6.2 (Separable Click-through Rates)The click-through rates are said to be

separable if there existµ1, µ2, . . . µn > 0 andθ1 ≥ θ2 ≥ . . . θK > 0 such that the click-

through rate CTRi,j of theith merchant at thejth slot is given byµiθj.

There is evidence to believe that this is a reasonable assumption that holds (approxi-

mately) in many real-world cases.
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6.2 Need for a New Auction

In this section, we begin by giving an example to show that the next-price auctions being

currently used by Google and Overture are not truthful. In order to construct a truthful

auction, the first logical step is to see whether the famous VCG mechanism (see Section 4.4)

applies to the problem. However, this is not the case, and we give instances of ranking

functions for which there does not exist any set of weights and biases for which the ranking

output by the VCG mechanism is always the same as the one output by the given ranking

function.

6.2.1 Next-price Auction is not Truthful

Consider three merchantsA, B andC bidding for two slots. Let all three of them have a

click-through rate of0.5 at the top slot and0.4 at the bottom slot. Let the true valuations per

click of the three merchants be 200, 180, and 100 respectively. Then, if all the merchants

bid truthfully, merchantA ends up paying a price of180 per click, making an expected

profit of (200 − 180) × 0.5 = 10 per impression. In this case, she has an incentive to

undercutB by lowering her bid to110, and make a net profit of(200 − 100) × 0.4 = 40.

We note that there is no incentive to bid higher than one’s true valuation under the next-

price auction. This is because the price-per-click charged is the minimum bid required to

retain one’s rank; therefore, in cases where bidding higher improves one’s rank, the price-

per-click charged is higher than one’s true valuation.

6.2.2 Weighted VCG may not Always Apply

In this section, we show by means of a counter-example that even for the simple case of

direct ranking, there does not exist any set of (bid-independent) weights and biases for

which the VCG solution achieves the same allocation as direct ranking. This will show

that, in general, VCG does not apply to our problem. Consider two merchantsA andB

bidding for two slots on a web page. Let both the merchants have a click-through rate

(CTR) of 0.4 at the first slot. For the second slot, merchantA has a CTR of0.4 while

merchantB has a CTR of0.2. Since any of the merchants can bid the highest and get
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the top slot in direct ranking, both the merchants must have non-zero weight in order for

weighted VCG to achieve the same allocation as direct ranking. LetωA > 0 andωB > 0 be

the weights assigned by the VCG mechanism to merchantsA andB respectively. Denote

the bias assigned to ranking merchantx followed by y by H(x, y) for x, y ∈ {A, B},
x 6= y. Then, the VCG mechanism will rankB beforeA if ωA(0.4bA) + ωB(0.4bB) +

H(B, A) > ωA(0.4bA)+ωB(0.2bB)+H(A, B), which is true wheneverbB > (H(A, B)−
H(B, A))/(0.2ωB), irrespective of merchantA’s bid. On the other hand, the direct ranking

scheme will rankA beforeB wheneverA’s bid is higher thanB’s bid. Thus, the VCG

mechanism does not apply to this instance. In fact, we show the following general theorem.

Theorem 6.2.1 Let the number of merchants with non-zero click-through rates ben >

K. If the click-through rates are not separable, then there exists a ranking functionR =

(w1, w2, . . . , wn) for which there does not exist any set of weights for which unbiased,

weighted VCG always yields the same ranking as the ranking functionR.

Proof: Let CTRi,j be the click-through rate of merchant with indexi at thejth position.

First note that if CTRi,j/CTRi,j+1 = CTRi′,j/CTRi′,j+1 for all values ofi, i′ ≤ n and

j ≤ K − 1, then the click-through rates are separable: just setµi = CTRi,K andθj =

CTR1,j/CTR1,K .

We will show that if for every ranking functionR = (w1, w2, . . . , wn), there exists a

set of VCG weights which always yield the same ranking asR, then CTRi,j/CTRi,j+1 =

CTRi′,j/CTRi′,j+1 for all values ofi, i′ ≤ n and j ≤ K − 1. We will prove this by

downward induction onj.

First consider the base case ofj = K − 1. Consider any pair of merchants. Re-

index the merchants such that the two merchants are indexedj and j + 1. Let α =

CTRj+1,j+1/CTRj,j+1 and letφ = CTRj,j/CTRj,j+1. Now, consider the ranking func-

tion R with wj = 1, wj+1 = α. All the other merchants are assigned a weight of1.

Suppose there exists a weighted VCG mechanism that always results in the same ranking

as this ranking function. Letωi be the weight assigned by the VCG mechanism to mer-

chanti, normalized such thatωj = 1. Then, the VCG mechanism chooses that ranking

scheme that maximizes
∑K

i=1 ωm(i)CTR(m(i), i)bm(i), wherem(i) is the index of the mer-

chant placedi in the ranking scheme. Letρ be the ratio of the maximum click-through rate



106 CHAPTER 6. AUCTIONS FOR SEARCH ENGINES

to the minimum click-through rate over all merchants and positions, and letν be the ratio of

the maximum VCG weight to the minimum VCG weight. Also, letβmax = max{1, 1/α)

and letβmin = min{1, 1/α). Consider the following set of bids:bi = (2n)j−iρνβmax for

i = 1, . . . , j − 1, bj = 1, bj+1 = 1/α, andbi = βmin/((2n)i−(j+1)ρν) for the rest. Then, it

is easy to verify that merchanti is placed at positioni for i = 1, 2, . . . , j−1 and merchants

j andj + 1 share the remaining two positions (i.e., positionsj andj + 1) under both the

ranking functionR as well as the VCG mechanism. The ranking score underR of merchant

j andj + 1 is exactly the same, namely1. Therefore, the ranking functionR can be forced

to place them in any chosen order by an infinitesimal change in the bids. In order for the

VCG mechanism to produce the same ranking asR after the change, VCG must rate both

possible orderings ofj andj + 1 equally as well, i.e. the weighted sum of utilities (with

the above bids) must be the same for both possible orderings.

φ + ωj+1 = 1 + ωj+1
CTRj+1,j

CTRj+1,j+1

(6.1)

We could also have set the bids of the other merchants such that they get ranks1, . . . , j,

leaving merchantsj andj + 1 to compete for rankj + 1 = K. Then, a reasoning similar

to above would show that

1 = ωj+1 (6.2)

Putting equations 6.1 and 6.1 together, we get

CTRj+1,j

CTRj+1,j+1

= φ.

This completes the proof of the base case.

By the induction hypothesis, CTRi,j/CTRi,j+1 = CTRi′,j/CTRi′,j+1 for all values of

i, i′ ≤ n and ĵ < j ≤ K − 1. Next considerj = ĵ. Consider the ranking functionR

with wi = 1 for all merchantsi. Let ωi be the weight assigned by the corresponding VCG

mechanism to merchanti. Again consider a pair of merchants and re-index merchants such

that the pair is indexedj andj + 1. Let bj = bj+1 = 1. As before, we can set the bids of

other merchants such that merchanti is rankedi for i = 1, . . . , j− 1, j +2, . . . , K, while j
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andj + 1 share ranksj andj + 1. Since the ranking score given byR is the same for both

j andj + 1, the VCG mechanism must also be ambivalent towards their order, i.e.

ωjCTRj,jbj + ωj+1CTRj+1,j+1bj+1 = ωjCTRj,j+1bj + ωj+1CTRj+1,jbj+1

which implies that
ωj+1

ωj

=
CTRj,j − CTRj,j+1

CTRj+1,j − CTRj+1,j+1

. (6.3)

We can also set the bids of the other merchants such that they get ranks1, . . . , j, j +

3, . . . , K, leaving ranksj+1 andj+2 for merchantsj andj+1. Then, a reasoning similar

to above would show that

ωj+1

ωj

=
CTRj,j+1 − CTRj,j+2

CTRj+1,j+1 − CTRj+1,j+2

(6.4)

From Equations 6.3 and 6.4, we get

CTRj,j − CTRj,j+1

CTRj+1,j − CTRj+1,j+1

=
CTRj,j+1 − CTRj,j+2

CTRj+1,j+1 − CTRj+1,j+2

Also, by induction hypothesis, we have

CTRj,j+1

CTRj,j+2

=
CTRj+1,j+1

CTRj+1,j+2

Using the above two equations and some elementary algebra, we get,

CTRj,j

CTRj+1,j

=
CTRj,j+1

CTRj+1,j+1

This completes the proof by induction. 2

Although we have presented the theorem above for unbiased VCG, a similar statement

holds for biased, weighted VCG is well. We can see this as follows. In each of the con-

straints 6.1, 6.2, 6.3 and 6.4 above, the two sides of the equation represent the rating given

by the VCG mechanism to two different outcomes. If the biased VCG mechanism adds an

unequal bias to the two outcomes, it can be viewed as adding a non-zero bid-independent
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constant term to the right-hand side. The key idea is that we can scale up the bids uni-

formly without changing the ordering output by the ranking functionR. Thus, the chosen

VCG weights need to satisfy the constraints both for the scaled and the unscaled bid vector,

which is impossible in the presence of a non-zero bid-independent constant term. Thus, the

VCG mechanism must have added the same bias to both sides of each of the constraints,

thereby leaving the constraints unchanged. We state the following theorem without proof.

Theorem 6.2.2 Let the number of merchants with non-zero click-through rates ben > K.

If the click-through rates are not separable, then there exists a ranking functionR =

(w1, w2, . . . , wn) for which there does not exist any set of weights for which biased, weighted

VCG always yields the same ranking as theR.

Interestingly, VCG is applicable under the separability assumption, with appropriately

chosen weights. It is easy to verify the following theorem.

Theorem 6.2.3 Let the click-through rates be separable. Then the VCG mechanism having

merchanti’s VCG weight set towi/CTRi,1 always produces the same ordering as the

ranking function(w1, . . . , wn).

The above theorem implies that with the separability assumption, the ranking func-

tions maximize a certain global utility function. In particular, the revenue-ranking scheme

maximizes the total utility obtained by the merchants and the auctioneer.

6.3 The Truthful Auction

In this section, we will assume without loss of generality that theith merchant also has

the ith rank in the auction. The truthful auction is quite simple: For1 ≤ i ≤ K, set the

price-per-clickpi charged to merchanti as:

CTRi,ipi =
K∑

j=i

(CTRi,j − CTRi,j+1)
wj+1

wi

bj+1. (6.5)

In other words,
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1. For those clicks which merchanti would have received at positioni+1, she pays the

same price as she would have paid at positioni + 1.

2. For the additional clicks, merchanti pays an amount equal to the bid value of mer-

chanti + 1.

Sincewibi ≥ wjbj for j > i, it follows that pi ≤ bi. Hence the price charged per

click-through can be no larger than the submitted bid. We will refer to this auction as

LadderedAuction(w1, . . . , wn) or simply as theladdered auctionwhen thewis are clear

from the context.

6.4 Analysis

Theorem 6.4.1 Given fixedw1, . . . , wn, the laddered auction is truthful. Further, it is the

unique truthful auction that ranks according to decreasingwibi.

Proof: Consider a merchantM . Fix the bids of all the other merchants arbitrarily. With

these bids, letp(j) be the price charged by the laddered auction to merchantM if her rank

is j, with p(K + 1) = 0. Note that the price charged depends only on merchantM ’s

rank and is independent of her exact bid value. LetvM be the true valuation of a single

click for merchantM . If merchantM bidsvM , let her be rankedx. Also, without loss of

generality, assume that all the merchants are indexed such that merchantj would be ranked

j if merchantM bids vM . Then,wjbj ≥ wxvx for all j < x andwxvx ≥ wjbj for all

j > x. To show that the auction is truthful, we will show that merchantM cannot benefit

by lying about her valuation. Among all ranks that give the merchant the highest profit (i.e.,

utility−price), letr be the rank closest tox, i.e. the one with the least|r−x|. Now suppose

that the merchant can benefit by lying, i.e.,r 6= x. For a contradiction, we will show that

there is a rank closer tox which gives at least the same profit. For this, observe that ifr > x,

then the change in profit by moving to rankr−1 is (CTRx,r−1−CTRx,r)(vx− wr

wx
br), which

is non-negative. On the other hand, ifr < x, the change in profit in moving to rankr + 1

is (CTRx,r+1 − CTRx,r)(vx − wr

wx
br), which is again non-negative.

To show uniqueness, consider any truthful auctionA that ranks the merchants in the de-

creasing order ofwibi. Consider any merchantM and fix the bids of all the other merchants
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arbitrarily. With these bids, letpA(j) be the price charged by auctionA to merchantM if

she is rankedj, with pA(K + 1) = 0. Note that in a truthful auction,pA(j) can depend on

the bids of other merchants, but is independent ofM ’s bid (see Theorem 4.1.1). Assume,

without loss of generality, that the other merchants are indexed such that merchanti would

be rankedi if merchantM bids∞. To prove uniqueness, it suffices to show that for any

truthful auction,

pA(j)− pA(j + 1) = (CTRx,j − CTRx,j+1)
wj+1

wx

bj+1 (6.6)

First suppose that merchantM has valuationvM =
wj+1

wx
bj+1 + ε. Then, if she bids

truthfully, for sufficiently smallε > 0, she is rankedj. The additional valuation per im-

pression of being rankedj instead ofj+1 is given by(CTRx,j−CTRx,j+1)vx. Thus, this is

the maximum amount that can be charged by a truthful auction for this additional valuation

(otherwise, the merchant can benefit by bidding lower to get rankj + 1). Sinceε can be

made arbitrarily small, this proves that

pA(j)− pA(j + 1) ≤ (CTRx,j − CTRx,j+1)
wj+1

wx

bj+1 (6.7)

Next, suppose that merchantM has valuationvM =
wj+1

wx
bj+1 − ε. Then, if she bids

truthfully, for sufficiently smallε > 0, she is rankedj + 1. The additional valuation per

impression of being rankedj instead ofj + 1 is given by(CTRx,j − CTRx,j+1)vx. Thus,

this is the minimum amount that can be charged by a truthful auction for this additional

valuation (otherwise, the merchant can benefit by bidding higher to get thejth rank). Since

ε can be made arbitrarily small, this proves that

pA(j)− pA(j + 1) ≥ (CTRx,j − CTRx,j+1)
wj+1

wx

bj+1. (6.8)

Putting together 6.7 and 6.8, we get 6.6, thereby completing the proof. 2

Corollary 6.4.2 For any fixedw1, . . . , wn, the laddered auction is the profit-maximizing

truthful auction that ranks merchants by decreasingwibi.
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6.5 Revenue Equivalence

In this section, we compare the revenue of the laddered auction to the revenue achieved

by the next-price auctions currently being used. As mentioned earlier, truth-telling is not a

dominant strategy for the existing auctions. Thus, we consider the revenue of the existing

auctions under equilibrium conditions, i.e. a setting of bids for which no merchant can

increase her profit by a unilateral change in his bid.

For separable click-through rates (see Definition 6.2), we show that there exists apure-

strategyNash equilibrium under the next-price auction that yields the same revenue as

the laddered auction. Let the weights used by the next-price auction be(w1, w2, . . . , wn).

Re-index the merchants in the decreasing order ofwivi so that

wivi ≥ wi+1vi+1 for i = 1, . . . n− 1 (6.9)

Let the click-through rates be separable with the click-through rate of merchanti at position

j given by µiθj. Also let θK+1 = 0. Then, the bidsbi for this Nash equilibrium are

recursively defined by:

wibi =

(
θi

θi−1

)
wi+1bi+1 +

(
1− θi

θi−1

)
wivi for i = K, . . . , 1 (6.10)

with the initializationbK+1 = vK+1.

Theorem 6.5.1 (Revenue-Equivalence Theorem)The bids defined by the recursive for-

mula given in Equation 6.10 are in equilibrium. Moreover, the ranking induced by these

bids is the same as the ranking induced by truthful bidding.

Proof: To prove this, we unroll the recursion to get:

wibi =
1

θi−1

K∑
j=i−1

(θj − θj+1)wj+1vj+1

Thus,wi+1bi+1 is a convex linear combination ofwjvj for j = i + 1, . . . , K + 1. Since,

wivi ≥ wjvj for j = i+1, . . . , K +1, we getwivi ≥ wi+1bi+1. We also know thatwibi is a

convex linear combination ofwi+1bi+1 andwivi. Hence,wibi ≥ wi+1bi+1. This shows that
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the ranking induced by these bids is the same as that induced by truth-telling, i.e., merchant

i is rankedi by the ranking function of the next-price auction.

Next, we will show that under the next-price auction, no merchant can gain by changing

her bid unilaterally. Consider the merchant ranked (and indexed)x. With the above bids,

she is making a profit of:

U(x) = µxθx(vx − bx+1)

= µx

K∑
j=x

(θj − θj+1)

(
vx −

wj+1vj+1

wx

)

If the merchant changes her bid in order to be rankedy, her profit becomes

U(x) = µxθy(vx − by+1)

= µx

K∑
j=y

(θj − θj+1)

(
vx −

wj+1vj+1

wx

)

If the merchant decreases her bid in order to be rankedy, i.e. y > x, then the net change

in profit is:

−µx

y+1∑
j=x

(θj − θj+1)

(
vx −

wj+1vj+1

wx

)
By equation 6.9,wxvx ≥ wj+1vj+1 for j = x, . . . , y + 1, which in turn implies that this

change is non-positive. Similarly, if the merchant increases his bid in order to be rankedy,

i.e. y < x, the net change in profit is:

µx

x+1∑
j=y

(θj − θj+1)

(
vx −

wj+1vj+1

wx

)
Again, equation 6.9 implies that this change is non-positive. Thus, the bids are in equi-

librium and none of the merchants can improve her profit by changing her bid unilaterally.

2

Note that the merchants can achieve this equilibrium by solely using the knowledge of

their true valuation and the current price being charged to them. To do this, the merchants

start by bidding their true valuations, after which thekth-ranked merchant changes her bid
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to the one indicated in the formula above in order to prevent anybody from under-cutting

her, followed by merchantk − 1 changing her bid to thebk−1 value defined above and so

on. For example, consider four merchantsA, B, C andD bidding for three slots. Let all

four of them have a click-through rate of0.5 at the top slot,0.4 at the middle slot and0.2

at the bottom slot. Let the true valuations per click of the three merchants be 200, 150, 100

and 40 respectively. Let the ranking function be Google’s revenue-ranking function. The

merchants start off by bidding their true valuations, andA, B andC get the top, middle

and bottom slot respectively, and make a profit of25, 20 and12 respectively. At this point,

merchantB has an incentive to undercutC by bidding80, which will result inB making

a profit of22, while C makes a reduced profit of8. In order to remove any incentive for

B to undercut her,C can change her bid to70 as prescribed by the above formula. At this

pointB is making a profit of32. Now,B faces the problem ofA trying to undercut her by

bidding100 (say) in order to make a profit of52, reducingB’s profit to25. To removeA’s

incentive to undercut her,B can change her bid to86 as prescribed by the above formula.

With suitable assumptions, including separability of click-through rates, one can also

use standard techniques such as the envelope theorem [SB94] to prove revenue equivalence.

We omit the details since our first-principles analysis gives a stronger result in the form of

a pure strategy Nash equilibrium under which the next-price auction is revenue-equivalent

to the laddered auction, while the envelope theorem would only guarantee a mixed-strategy

Nash equilibrium. Further, we obtain a simple and explicit characterization of the revenue-

equivalent Nash equilibrium. Admittedly, these results show revenue equivalence to the

next-price auction only. However, since the next-price auction is the auction currently in

deployment, it is arguably the most interesting auction to consider in terms of showing

revenue-equivalence.

6.5.1 Existence of Multiple Nash Equilibria

The foregoing discussion shows that there exists an equilibrium for the next-price auction

which achieves the same ranking and the same revenue as the laddered auction. It should

be pointed out that not all equilibria of the next-price auction have these properties. We

next give an example that shows that there may exist other pure-strategy Nash equilibria
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under which the next-price auction achieves a smaller revenue than the truthful auction,

and yet others under which the next-price auction achieves a higher revenue.

Consider three merchantsA, B andC having valuation-per-click of500, 480 and100

respectively bidding for two slots. Assume that the click-through rates are separable, and

that all the merchants have the sameµi of 1, and that the position-specific factors are given

by θ1 = 0.2 and θ2 = 0.15. Let the ranking function be revenue-ranking. Assuming

that everyone follows the dominant strategy of truth-telling, the laddered auction earns a

revenue of15 + (15 + 24) = 54. Moreover, if everyone bids truthfully, then the next-

price auction would earn a revenue of15 + 96 = 111, more than twice the revenue of

the laddered auction. However, truthful bidding is not an equilibrium for the next-price

auction. One way to achieve equilibrium is for merchant A to change his bid to110 in

which case the revenue earned is15 + 22 = 37. On the other hand, if equilibrium is

achieved by merchantB changing her bid from480 to 200 before merchantA changes his

bid, a different equilibrium is reached. In this case, the revenue earned is15 + 40 = 55.

In this particular example, unless merchantB bids200 or lower, merchantA will have an

incentive to undercut her. This indicates that among all possible equilibria for this instance

(excluding the ones where merchantC bids more than her true valuation, as there is no

incentive for merchantC to do so), the highest revenue earned is55. In order to achieve

an equilibrium that achieves the same revenue as the laddered auction, merchantB could

change her bid to195, again preventing under-cutting by merchantA.

6.6 A Merchant with a Budget Constraint

In this section, we consider a merchant who is interested in advertising on multiple key-

words, and has a limited total budget ofB that she can spend on advertising on those

keywords. For each of the keywords, we assume that the search engine publishes the cur-

rent ranking scorewjbj for each slotj corresponding to the keyword; herewj andbj refer

to the weight and bid respectively of the merchant placed at thejth slot of the keyword.

Given this knowledge and her own weightwM , the merchant can compute how much she

needs to bid (and pay) in order to be placed at a certain slot for any given keyword, i.e.,

effectively she knows the pricepjk of the jth slot of thekth keyword she is interested in.
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In addition, she knows her valuationvjk of a click she receives when placed on thejth slot

of thekth keyword (this valuation may or may not vary with slot). Now she is faced with

the optimization problem of deciding how much money to spend on advertising on each

keyword. If each keyword was searched for infinitely often during the course of a day, it

is in her best interest to spend all her budget on the slot-keyword pair with the maximum

valuation-per-unit-price. However, if the number of queries for a given keyword are finite,

the merchant might not be able to spend all her budget on a single keyword. Let us assume

that she knows the number of times a keyword is queried over the course of a day. Now the

problem is to find the optimal way to split the available budgetB among the keyword-slot

pairs with the goal of maximizing valuation.

We can compute the expected price-per-impressionπjk of a given keyword-slot pair

(j, k) by using the price-per-click and the merchant’s click-through rate for the keyword-

slot pair. Similarly, assuming the merchant is risk-neutral, we can compute her valuation

of an impressionνjk for a given keyword-slot pair(j, k) by using her valuation-per-click

and her click-through rate for the keyword-slot pair.

A Greedy Strategy. One simple strategy is buy impressions greedily according to de-

creasing valuation-per-unit-cost ratio. However, a naı̈ve implementation would end up

buying multiple slots on a single impression of a keyword. To prevent this, we devise

a slightly more clever greedy algorithm as follows. For each keyword, we have a set of

valuation-per-unit-cost ratios corresponding to different slots on the page. Among all the

available keyword-slot pairs, we pick the pair with the maximum valuation-per-unit-cost ra-

tio and buy all available impressions of the keyword (or as much as we can with the current

remaining budget). We now observe that replacing one impression at the just-bought slotj

of keywordk with an impression at another slotj′ (with a higher valuation-per-impression)

of the same keywordk incurs an additional cost of̂πjk′ = πjk′ − πjk and gets an additional

valuation ofν̂jk′ = νjk′ − νjk. Thus, for the remaining slots on the page, we update the

valuation-per-unit-cost to the ratio tôνjk′/π̂jk′. Now we repeat till the remaining budget is

no longer sufficient to buy any more impressions of the current best keyword-slot pair.
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Performance. Until the final step, we always buy the slot that gives the most valuation

for money. The only possible reason for the solution being sub-optimal is the unspent

budget. The potential loss due to this is no more than the valuation of an impression on the

best slot at the end of the algorithm.

Theorem 6.6.1 Let the maximum valuation of a single impression at any slot of any key-

word beq, and letOPT be the total payoff (valuation) achieved by the optimal algorithm.

Then, the greedy algorithm above achieves a payoff of at leastOPT − q.

Note that valuation from a single impression is usually quite small in practice. This

algorithm gives similar performance guarantees whenever the valuation increases linearly

with the cost as we buy more and more impressions of a slot on a page.

NP-hardness. The above problem can be shown to be NP-hard by a straightforward re-

duction from the knapsack problem: for each item, create a page with a single impression,

with the cost of that impression (i.e. the cost of a click multiplied by the click-through rate)

equal to the size of the item and the valuation equal to the profit associated with the item.

Let the budget be equal to the size of the knapsack. Then the problem of maximizing the

total valuation is equivalent to the problem of maximizing profit for the knapsack problem.

We note that the advertising problem instance created in the above reduction is not a

very realistic one, since in most real-life scenarios, the number of available impressions of

a single page is quite large.
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Conclusions

We have presented solutions for several problems that have arisen due to the pervasive use

of the Internet and the networking infrastructure in general. The set of problems considered

fall into two broad areas: (a) protection of data privacy, and (b) selling advertisement space

on the Internet.

With respect to data privacy, we first considered the problem ofanonymizing databases

before dissemination, in order to safeguard the privacy of the individuals described by the

databases. For the privacy framework ofk-Anonymity, we presented approximation algo-

rithms that anonymize databases while maximizing the utility of the anonymized database.

Then, we studied the problem of enabling two or more parties tosecurely and efficiently

compute thekth-ranked elementof a set split between them, without revealing any infor-

mation not implied by the value of the output. We presented protocols with polylogarithmic

overhead for this purpose, improving upon the linear overhead of earlier solutions.

Next, we considered the problem of selling advertisements space on web pages. We

observed that the use of a truthful selling mechanism would considerably simplify the task

of bidding, potentially attracting more advertisers to the online advertising market. We

presented truthful auctions for two problem formulations in this setting — one that models

selling a single slot on a web page with known budget constraints, and another that models

selling multiple slots on a web page with no budget constraints.

Several problems still remain open. We mention a couple of them here:

117
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Extensions of thek-Anonymity framework. One source of concern about the privacy

guarantees under thek-Anonymity model is that for a given record in the public database,

all thek records corresponding to it in the anonymized table might have the same value of

the sensitive attribute(s) (the attributeDiseasesin our examples), thus revealing the sensi-

tive attribute(s) conclusively. To address this issue, we could add a constraint that specifies

that for each cluster in thek-anonymized table, the sensitive attribute(s) should take at least

r distinct values. This would be an interesting extension of the basick-Anonymity frame-

work. Another interesting direction of research is to extend the model to deal with changes

in the database. A hospital may want to periodically release an anonymized version of its

patient database. However, releasing several anonymized versions of a database might leak

enough information to enablerecord linkagesfor some of the records. It would be useful to

extend thek-ANONYMITY framework to handle inserts, deletes and updates to a database.

Selling multiple advertisement slots with budget constraints. A big open problem in

the area of auction design for online advertising is the problem of designing an auction that

takes into account both the interaction between multiple slots on a web page as well as

budgets constraints for advertisers. An interesting extension would be to design auctions

for selling a collection of keywords, when each advertiser is interested in a subset of the

keywords and would like to spend her budget in a way that maximizes her combined utility.
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