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Abstract

The last couple of decades have witnessed a phenomenal growth in the networking in-
frastructure connecting computers all over the world. The Internet has now become an
ubiquitous channel for information sharing and dissemination. This has created a whole
new set of research challenges, while giving a new spin to some existing ones. In this
thesis, we address problems from two areas: (a) protection of data privacy, and (b) sale of
advertisement space on Internet web sites.

The first part of the thesis deals with privacy issues involved in the exchange of informa-
tion between non-trusting entities. The scenarios of interest include the Census Bureau pub-
lishing population statistics, hospitals sharing patient data with medical researchers, federal
agencies sharing intelligence information with each other, a group of people wishing to find
their common interests, and several universities trying to compute combined statistics about
faculty salaries, among others. In most cases, exchange of a relevant synopsis or aggregate
would be sufficient; however, in the absence of knowledge about what synopsis would be
most relevant, the data tends to be disseminated in the raw. This threatens personal privacy
and creates an opportunity for dishonest entities to misuse the information to further their
own selfish agenda. We focus our attention on two abstract problems derived from this
setting. We first consider the problem of anonymizing databases before dissemination, so
as to safeguard the privacy of the individuals described by the databases. A solution to this
problem can be used by the Census Bureau as well as hospitals to provide data containing
personal information to interested parties without sacrificing privacy. We adopt the privacy
framework ofk-anonymity proposed by Samarati and Sweeney, and present approximation
algorithms for anonymizing databases. The second problem we study is that of computing
a function over data split between two or more non-trusting entities. The goal is to enable
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the entities to compute the value of the function without either entity having to reveal any
unnecessary information to the other entity. In particular, we study the problem of comput-
ing statistics over data shared between multiple entities. We present efficient protocols for
computing a fundamental statistical function, namely/ké ranked element of a dataset
split between multiple entities. These protocols form a practical solution to the problem of
compiling faculty salary statistics covering several universities.

The pervasiveness of the Internet has fueled a rapid growth in advertising on Internet
web sites. In the second part of the thesis, we consider the problem of selling advertisement
space on the Internet. Given the dynamic nature of the online advertising market — advertis-
ers join and leave, the popularity of the web site changes over time, the value of an Internet
user clicking on an advertisement link varies over time — auctions are the logical choice for
selling advertisement space on web sites, and indeed, major search engines like Google and
Yahoo! are using auctions to sell advertisement slots on their search result pages. However,
a lack of understanding of good bidding strategies has kept marketers from fully embrac-
ing online advertising channels. One solution is to use selling mechanisms where the best
strategy for advertisers is simple and well-understood. The class of truthful mechanisms
has the property that the best strategy for any advertiser is to bid an amount equal to her
true valuation of the object she is bidding for. Since the use of truthful auction mechanisms
considerably simplifies the task of bidding, we propose using truthful auctions for selling
web advertisements. We study two different problem formulations in this setting. We first
consider the problem of selling a single slot on a web page that gets a known number of
hits per day, assuming that the number of visitors desired by each advertiser is known in
advance. We present a truthful auction that is competitive with respect to an optimal
scientpricing scheme that obeys a natural monotonicity property. The second problem we
study is that of selling multiple advertisement slots on a web page. This problem is more
closely aligned with the problem faced by search engines. We present an auction that is
truthful when the advertisers are not budget-constrained. Moreover, under some reasonable
assumptions, we show that its revenue is equivalent to the non-truthful auctions currently
being used by search engines.

Vi
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Chapter 1
Introduction

The last couple of decades have witnessed a phenomenal growth in the networking in-
frastructure connecting computers all over the world. The Internet has now become an
ubiquitous channel for information sharing and dissemination. This has created a whole
new set of research challenges, while giving a new spin to some existing ones. In this
thesis, we address problems from two areas: (a) protection of data privacy, and (b) sale of
advertisement space on Internet web sites.

1.1 Privacy in a Networked World

The first part of the thesis deals with privacy issues involved in the exchange of information
between non-trusting entities. The scenarios of interest include the Census Bureau publish-
ing population statistics, hospitals sharing patient data with medical researchers, federal
agencies sharing intelligence information with each other, a group of people wishing to
find their common interests, and several universities trying to compute statistics about fac-
ulty salaries, among others. In most cases, exchange of a relevant synopsis or aggregate
would be sufficient; however, in the absence of knowledge about what synopsis would be
most relevant, the data tends to be disseminated in the raw. This threatens personal privacy
and creates an opportunity for dishonest entities to misuse the information to further their
own selfish agenda. We focus our attention on two facets of this problem.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Anonymization

More and more data is being exchanged and even posted on the Internet without suffi-
cient anonymization. Moreover, one can use increasingly sophisticated tools to integrate
data from different sources and reconstruct highly detailed information about an individual.
One way to deal with the threat to rising threat to personal privacy is to refuse to divulge
any private information. However, in many scenarios, information exchange can prove
socially beneficial. For example, if medical researchers have access to databases contain-
ing the medical histories of various individuals, they can discover the association between
certain lifestyle factors and higher risk of certain diseases; geographical occurrence data
on communicable diseases can enable detection of the outbreak of epidemics at an early
stage, thereby preventing its spread to larger populations. With the goal of enabling such
applications, it is quite desirable that hospitals make their records available to medical sci-
entists. At the same time, such personal data has a great potential for misuse; for example,
a health insurance company could exploit such data to selectively raise the health insurance
premiums of certain individuals. Unfortunately, we cannot trust all medical researchers to
uphold the privacy of the data. Even if they are all honest and well-meaning, they might
not be technically savvy enough to prevent unauthorized access.

One possible solution is that instead of releasing the entire database, the database
owner answers aggregate queries posed by medical researchers after ensuring that answers
to the queries do not reveal sensitive information. This approach is called query audit-
ing [KPRO3,[KMNO5,/ DNO4&a]. This requires the researchers to formulate their queries
without access to any data. In this case, one can also use techniquesefrora multi-
party computatioriYao86, GMW87| LP02, AMPQ4, ENP04]. However, many of the data-
mining tasks are inherently ad hoc and the data mining researchers need to examine the data
in order to discover data aggregation queries of interest. In such cases, query auditing and
secure function evaluation techniques do not provide an adequate solution, and we need to
release an anonymized view of the database that enables the computation of non-sensitive
guery aggregates, perhaps with some error or uncertainty.

We consider the problem of anonymizing databases before dissemination, in order to
safeguard the privacy of the individuals described by the databases. One approach to
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anonymization is to usperturbationtechniques in order to hide the exact values of the
data [ASO0/ AAOL| DNO3, DN04h, EGS03, AST05, CDBE]. However, this may not

be suitable if one wants to draw inferences with 100% confidence. Another approach is to
suppressome of the data values, while releasing the remaining data values exactly. We
note that suppressing just the identifying attributes, like name and address, is not suffi-
cient to protect privacy. In order to ensure privacy, we adopt the privacy framework of
k-Anonymity which was proposed by Samarati and Sweenhey [Swe02] SS98]. Suppose
we have a table with each tuple havingquasi-identifying attributes. The-Anonymity
framework provides for suppressing or generalizing (see Chppter 2) some of the entries
in the table so as to ensure tHat each tuple in the modified table, there are at least

k — 1 other tuples in the modified table identical to ®he idea is that even if an adver-
sary gets hold of all the quasi-identifying attributes of all the individuals in the table, it
cannot track down an individual’s record further than a sét cécords in the worst case.

We study the problem of making a datab&sAnonymous, while minimizing the extent

of suppression/generalization and provide approximation algorithms for it. The algorithms
and hardness results (joint work with Tomas Feder, Krishnaram Kenthapadi, Rajeev Mot-
wani, Rina Panigrahy, Dilys Thomas and An Zhu) were originally published in [AF3

and are described in Chapfeér 2.

1.1.2 Secure Computation

The ease of transferring data over computer networks has led to an increase in data ex-
change and sharing. Many a times, two entities who do not know or trust each other trade
information for mutual benefit. For example, two corporations might wish to exchange
information about their respective customer bases, in order to evaluate the viability of a
merger; two or more federal agencies might wish to exchange intelligence information
with each other; a group of people might wish to find out their common interests; a set of
universities might try to compile statistics on faculty salaries (the Taulbee survey), ans so
on. In many of these cases, the entities are interested in sharing some kind of aggregate
information about private data that each of them holds. Examples of aggregation functions
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include statistics over data sets, clustering over data points, intersection (size) of sets, Ham-
ming distance between vectors etc. While the parties feel comfortable sharing aggregate
information, typically they do not wish to reveal the raw data to each other. In such a case,
it is desirable to perform the computation of the aggregate information without having to
revealanyinformation that is not implied by the aggregate itself. One might argue that this

is an unnecessarily stringent requirement and harmless information leaks should be permit-
ted; however, in the absence of a good characterizatibawhlesdeaks, we will insist on

not leaking any additional information. This privacy requirement has been formalized in
the cryptography literature &ecure Function Evaluation (SFBYainst asemi-honesor
amaliciousadversary. Let be the private data held by one entity anlde the private data

held by the other entity. It has been shown [Yao86, GMW87] that it possible to evaluate any
function f(x, y) that can be represented as a Boolean cit€uit, y) using a protocol that

has a communication and computation overhea@ @€' (x, y)|). While such an overhead

is acceptable for simple functions and small data sizes, these protocols are prohibitively ex-
pensive for computing functions over large databases or computing complicated functions
represented by large circuits. In this case, it is desirable to have special-purpose protocols
to compute specific functions more efficiently. In fact, efficient protocols have recently
been developed for computing a decision tree for classification securely using an approx-
imate version of the ID3 algorithm [LP02], secure computation of approximate Hamming
distance between two vectors held by different parties [FOM, and secure computation

of the intersection of sets held by different parties [FNP04], among others.

We study the problem of computing a basic statistical quantity, namely’th@nked
element of a set shared between two or more parties in a privacy-preserving manner. Of
particular interest is the median of a set shared by two or more parties. First consider
the following application scenario. Two health insurance companies wish to compute the
median life expectancy of the smokers insured by them. In this setting, both the number of
insured smokers as well as their life expectancies are private information, but the median
life expectancy is of combined mutual interest. Another example is the annual Taulbee
survey which collects salary and demographic data for faculty in computer science and
computer engineering departments in North America. Typically, academic departments
report only a small number of statistics like the minimum, maximum, average and median
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salary of professors. The Taulbee survey is thus able to publish only limited aggregate
information. An efficient and secure multi-party solution for computation oktheanked
element would enable universities to quickly compute combined salary statistics without
revealing individual salary values to others. It would even facilitate secure computation of
salary histograms [GMP97, PGI99, JK198].

We take the same approach as that of previous solutions for secure computation over
large inputs (e.g/ [LP02, FIM01,/CIKT01]), and reduce this task to many invocations of
secure computation of simpler functions over small inputs; but unlike these constructions,
we also design protocols which are secure against malicious adversaries. We present the
protocols and proofs of their security (joint work with Nina Mishra and Benny Pinkas and
originally published in[AMPO4]) in Chaptéf 3.

1.2 Auctions for Web Advertisements

The development of excellent networking infrastructure has made the Internet a pervasive
influence in people’s lives. Marketers have responded by pushing more of their budgets
online, especially into search advertising, display ads, and rich-media TV-style ads. Search
engines like Google and Yahoo!, most of whose profits come from advertising on the Inter-
net, are showing a rapid increase in profits [Gd005, Yah05]. According to a forecast from
Forrester Inc.[[For05], in 2010, marketers will spend $26 billion on online advertising,
which will represent 8% of all advertising spending, rivaling spending on cable/satellite
TV and radio.

The web advertisement market is highly dynamic in nature, with advertisers arriving
and leaving all the time. Moreover, the number of hits received by a website changes
over time, as does the value of an Internet user clicking on an advertisement. This makes
auctions the logical choice for selling advertisement space on web sites. Indeed, major
search engines like Google and Yahoo! are using auctions to sell advertisement slots on
their search result pages. However, none of the existing auctions provides a clear-cut best
strategy for bidding. Thus, an advertiser must understand the underlying game-theoretic
issues in order to be able to bid well. In fact, according to the marketers surveyed by
Forrester[[For05], “a lack of online advertising standards and hands-on experience have
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kept marketers from fully embracing online channels”. One possible way to attract more
advertisers to the online advertising marketing is to use selling mechanisms where the best
strategy for advertisers is simple and well-understood. The class of truthful mechanisms
has the property that the best strategy for a bidder is to bid an amount equal to their true
valuation (i.e., an estimate of worth) of the object they are bidding for. In scenarios where
this true valuation is known (or can be evaluated), the use of truthful auction mechanisms
simplifies the task of bidding immensely. With this consideration in mind, we wish to
develop truthful auctions for selling web advertisements. We further discuss the desirability
of using truthful auctions in Chapte} 4.

Consider a web page with some slots where advertisements can be displayed. Whenever
an Internet user accesses the web page, the web page owner can choose to display one or
more advertisements. The process of displaying an advertisement is calladraasion
Depending on the content of the web page, a variety of advertisers might be interested in
displaying advertisements on the web page. Each of these advertisers will invoke a different
level of interest from the Internet users visiting the web page. Thus, each advertiser will
have a different click-through rate (CTR) associated with her advertisement (the click-
through rate of an advertisement is the fraction of its impressions that result in a click
by an Internet user). We assume that the web page owner has (or can collect) statistical
information about the CTRs of various advertisers. Furthermore, each advertiser values an
impression or a click on her advertisement differently and this valuation is known only to
her. The web page owner wants to design a selling mechanism for the advertisement slot(s)
on her web page with the goal of maximizing profit.

The problem of designing a good auction for this setting is multi-faceted — advertis-
ers may have combinatorial preferences (when multiple keyword combinations are relevant
to an advertisement campaign), advertisers may have restricted funds (limited budget) to
spend on advertising, the search engines might (and usually do) display multiple adver-
tisements for every search keyword, and availability and needs may vary over time. Each
of these aspects of the problem in themselves represents a significant auction design chal-
lenge. In this thesis, we focus on two particular, yet fundamental, problem formulations in
this setting.
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1.2.1 Selling a Single Advertisement Slot

We first study the problem of selling a single advertisement spot on a web page over the
course of a day. We assume that the web page owner knows the (average) number of times
the web page is accessed in a day. We let each advertiser have a limit on the number of
clicks on her advertisement that she can handle in a single day. We assume that these limits
are known to the web page owner, perhaps due to repeated interaction with the advertisers.
The web page owner can use these limits together with the click-through rates of various
advertisements, and compute the maximum number of impressions desired by each ad-
vertiser. This will be referred to as tltemandof the advertiser. It is assumed that the
valuation of a click to an advertiser is not known to the auctioneer. We wish to develop a
truthful auction for this problem with the goal of maximizing revenue.

The above problem can be modeled gwigate-valueversion of the (fractionalknap-
sack problen{the limitation imposed by the number of times a web page is accessed in a
day acts as the capacity of the knapsack; details are given in Chapter 5). We will refer to
this version as th&napsack auction problemIt models several other interesting applica-
tions as well. For example, knapsack auctions can be used to model auctions for satellite
bandwidth. Suppose a satellite broadcasting service provider has a total bandwidth of
and content providers have different bandwidth needs,d.€oy provider:, and different
valuations for the fulfillment of their needs. This problem translates directly into the knap-
sack auction problem assuming that it is not possible for providers to falsely declare their
bandwidth needs.

Through the study of the knapsack auction problem, we wish to develop a better under-
standing of how to do prior-free optimization (i.e. optimization without having any prior
knowledge about the distribution of the valuations of various agents) when there are non-
trivial constraints on the allocation. In our case, items selected for the knapsack must all
fit in the space available. In addition to presenting a knapsack auction that performs well
(discussed next), we outline a general approach for dealing with non-trivial optimization
problems. The first step of this approach is to solveuhkmited-supplyersion of the
problem. The second step is to select a suitable subset of the bidders and simulate the
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unlimited supply auction on this subset. This general approach workadapbtoneopti-
mization problems, where if an allocation is feasible, then any subset of the allocation is
also feasible.

Following Goldberg et al [GHWO01], we analyze knapsack auctions in the framework
of competitive analysiby comparing the performance of the auction tcoptimal omni-
scient pricing We consider pricing rules that obey the following natural constraint: bidders
desiring more capacity should not be offered lower prices than those desiring less. We refer
to this asmonotone pricingsince the valid pricing functions for this class are monotone
non-decreasing. Accordingly, we defi@ T to be the profit obtained by the best mono-
tone pricing function for bidders’ actual valuations when we assume that a bidder pays the
offered price if and only if it is no more than their valuation. Because it is not possible to
obtain a constant fraction 6P T in the worst case, we design auctions that obtain at least
a constant fraction dDPT less a small additive loss term, i.e.OPT —\h (whereh is an
upper bound on the highest bidder’s valuation). Ideally, we would like bahd A to be
constants. We present an auction that achieves a comstard\ € O(logloglogn). Fur-
ther details of the competitive analysis framework can be found in Chdpter 4. The auction
is presented and analyzed in Chapter 5. These results are joint work with Jason Hartline
and will appear in[JAHOB].

1.2.2 Selling Multiple Advertisement Slots

The second problem we study is that of selling multiple advertisement slots on a web page.
This problem is more closely aligned with the problem faced by search engines. For each
search keyword or web page, let the available advertisement slots be numbered in decreas-
ing order of visibility. In the auctions currently being used by search engines, the advertis-
ers interested in a particular keyword are first ranked according to some criterion (called the
ranking function and matched to the available slots in accordance with the ranking order
obtained. The ranking function is, typically, an inherent part of the advertisement policy
(or “philosophy”) of the search engine. After pairing slots with advertisers, each advertiser
who is assigned a slot is charged a price that is equal to the minimum bid required to retain
her rank. This amount is, of course, no more than the bid of the advertiser. We show that
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this pricing scheme is not truthful and gives an incentive for the advertisers to underbid, i.e.
bid lower than their true valuation.

We develop a truthful auction for this problem under the assumption that the advertisers
are not budget-constrained, i.e., they are willing to buy additional clicks as long as the
marginal profit of getting an additional click is non-negative. This assumption is reasonable
in a lot of scenarios, especially when the advertiser makes an immediate (expected) profit
each time its advertisement is clicked on. Furthermore, since the ranking criterion (also
referred to as theanking function is often an integral part of the advertisement policy
of the search engine, we assume that the ranking function is specified as an input to the
auction design problem. We consider the problem of designing auctions for a class of
ranking functions which includes the current ranking functions being used by major search
engines like Google and Yahoo!. For any ranking function in this class, we give an auction
that ranks according to that function and show that it is the unique truthful auction that
ranks according to the specified function. The uniqueness implies profit-maximality as a
corollary. We also show that, under a reasonable assumption, our auction has a revenue
equivalent to the auctions currently in use. These results are joint work with Ashish Goel
and Rajeev Motwani, and are described in Chggter 6.
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Chapter 2

K-Anonymity

There has been a tremendous growth in the amount of personal data that can be collected
and analyzed. Data mining tools are increasingly being used to infer trends and patterns. In
many scenarios, access to large amounfseo$onal datds essential in order for accurate
inferences to be drawn. For example, at the beginning of an epidemic, a single hospital
might see only a few isolated cases, whereas the combined patient pool of a group of
hospitals might be sufficient to infer the outbreak of an epidemic. However, the use of data
containing personal information has to be restricted in order to protect individual privacy.
As discussed in the introduction, one solution is to release anonymized data that enables one
to draw inferences about global trends without violating the privacy of individual records.

One approach to anonymization ugesturbationtechniques in order to hide the exact
values of the data [AS00, AAOL, DNO3, EGS03, DN04b, ASTO05, Cioi]. However,
this may not be suitable if one wants to draw inferences with 100% confidence. Another
approach is teuppressome of the data values, while releasing the remaining data values
exactly. We note that suppressing just the identifying attributes is not sufficient to protect
privacy. For example, consider the following table which is part of a medical database,
with the identifying attributes such as name and social security number removed.

13
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Age | Race | Gender| Zip Code Diseases
47 | White Male 21004 | Common Cold
35 | White | Female| 21004 Flu

27 | Hispanic| Female| 92010 Flu

27 White | Female| 92010 | Hypertension

By joining this table with public databases (such as a voter list), non-identifying at-
tributes, such as Age, Race, Gender and Zip Code in the above table, can together be used
to identify individuals. In fact, Sweeney [Swe00] observed that for 87% of the population
in the United States, the combination of Date of Birth, Gender and Zip Code corresponded
to a unique person.

In order to ensure the protection of privacy, we adopt Ah&nonymity model that
was proposed by Samarati and Sweeney [5S598, Sam01, Swe02]. Suppose we have a table
consisting ofn tuples each having: quasi-identifying attributes (Age, Race, Gender and
Zip Code in the above table), and let> 1 be an integer. Thé&-Anonymity framework
provides for generalization of entries (generalization entails replacing an entry value with
a less specific but semantically consistent value; a more formal description can be found
in Sectior] 2.]1) in addition to suppression. The idea is to suppress/generalize some of the
entries in the table so as to ensure floakach tuple in the modified table, there are at least
k — 1 other tuples in the modified table that are identical to it along the quasi-identifying
attributes.The objective is to minimize the extent of suppression and generalization. Note
that entries in the column corresponding to the sensitive attribute (“Diseases” in the above
example) are not altered. The following is an example bfamonymized table fok = 2.

Age | Race | Gender| Zip Code Diseases

* White * 21004 | Common Cold
* White * 21004 Flu
27 * Female| 92010 Flu

27 * Female| 92010 | Hypertension

A k-anonymized table protects individual privacy in the sense that, even if an adversary
has access to all the quasi-identifying attributes of all the individuals represented in the
table, he would not be able to track down an individual's record further than a set of at least
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k records, in the worst case. Thusanonymization of a table before its release prevents
definitiverecord linkageswith publicly available databases, and keeps each individual hid-
den in a crowd ok — 1 other people. The privacy parametemust be chosen according
to the application in order to ensure the required level of privacy.

2.1 Model and Results

We now formally define the problem df-Anonymity and state our results. The input
is a table having: rows each withm quasi-identifying attributes. We view the table as
consisting ofn m-dimensional vectorsxy, ..., x, € ¥™.

We first define a special case of the problem calleBinonymity with Suppressipn
where suppression is the only permitted operatio-Anonymous suppression function
maps eaclkk; to x; by replacing some componentssgfby x (which corresponds to hiding
those components af), so that every; is identical to at least — 1 otherx;s. This results
in a partition of then row vectors intoclustersof size at leask each. The cost of the
suppression;(t) is the total number of hidden entries, or equivalently, the total number of
xS in all thex;s.

k-Anonymity with SuppressionGivenxy, x,,...,x, € ™, and an Anonymit

<

parameterk, obtain ak-Anonymous suppression functioso thatc(t) is mini-

mized.

Next, we define the problem df-Anonymity with Generalizatigrwhere in addition
to suppressing entry values, we are also allowed to replace them with less specific but
semantically consistent values. For example, we can make a date less specific by omit-
ting the day and revealing just the month and year. We assume that for each attribute, a
generalization hierarchy is specified as part of the input [SS98, SamO01]. For an attribute,
each level of generalization corresponds to a partition of the attribute domain. A parti-
tion corresponding to any given level of the generalization hierarchy is a refinement of the
partition corresponding to the next higher level. Singleton sets correspond to absence of
generalization, while the partition consisting of a single set containing the whole domain
corresponds to the highest level of generalization. Consider the example shown in Fig-
ure[2.]. The attribute “Quality” has a domain consisting of valdes A, A—, B+, B and



16 CHAPTER 2. K-ANONYMITY

B— and has two levels of generalization. In the absence of generalization, the value of this
attribute is reported exactly. The first level of generalization corresponds to the partition
{{A+,A, A-},{B+, B, B—}}. In order to generalize an entry with value “A” to the first
level of generalization, it is replaced with the get+, A, A—}. The next higher level of
generalization (also the highest level in this case) corresponds to replacing the entry with
the set containing the whole domain, which is equivalent to suppressing the entry.

Level 2 {A+, A, A—, B+, B, B-)
Level 1 [A+, A, A-) {B+, B, B-)

A+ A A- B+ B B-
Figure 2.1: A possible generalization hierarchy for the attribute “Quality”.

Let the j attribute have domai’ and; levels of generalization. Let the parti-
tion corresponding to the level of generalization b@®? for 1 < h < I;, with D} =
DJ. Let avaluey € D7 when generalized to the level be denoted by, (y), e.g.,
g1(A) = {A+, A, A—}. A generalization functiort is a function that maps a pa(t, j),

i < n,j < mto alevel of generalization(i, j) < [;. Semantically,i(i,j) denotes
the level to whichj®* component of the'® vector (or the(i, j)* entry in the table) is
generalized. Leh(x;) denote thegeneralizedvector corresponding tg;, i.e. h(x;) =
(g (@i[1]), gne,2)(@3[2]) - - -, Gnem (i[m])). A generalization function is said to e
Anonymous if for every, h(x;) is identical toh(x;) for at leastc — 1 values ofj # i.

Consider a&-Anonymous generalization functidn It incurs a cost of-//; whenever
it generalizes a value for thg" attribute to the-’* level. The total cost incurred by the
generalization function is defined as the sum of the costs incurred over all the entries of
the table, i.e. cosb) = >, >, h(i, j)/l;. Now we are ready to give a formal definition of

the problem.
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k-Anonymity with GeneralizationGivenxy, x», ..., x, € ¥, and an Anonymit
parameterk, obtain ak-Anonymous generalization functiégnsuch that cost)
iS minimized.

Note that the problem df-Anonymity with Suppression is a special case of the problem
of k-Anonymity with Generalization, with only one level of generalization (corresponding
to hiding the entry completely) for every attribute.

Clearly the decision version of both of these problems is in NP, since we can verify in
polynomial time if the solution i&-Anonymous and the suppression cost less than a given
value. We show that-Anonymity with Suppression is NP-hard even when the alphabet
size|X| = 3. Note that this automatically implies NP-hardnesskefinonymity with
Generalization. This improves upon the NP-hardness result of [MWO04] which required an
alphabet size ofi. On the positive side, we provide &N k)-approximation algorithm for
k-Anonymity with Generalization for arbitrary and arbitrary alphabet size. For a binary
alphabet, we provide improved approximation algorithmsifoe 2 (an approximation
factor of1.5) andk = 3 (an approximation factor of 2).

The rest of the chapter is organized as follows. We establish the NP-hardnkess of
Anonymity with Suppression in Sectipn 2.2. We then presen® @) -approximation al-
gorithm fork-Anonymity with Generalization in Sectipn 2.3. Next, in Sectijpn$ 2.4 arld 2.5,
we provide a 1.5 approximation algorithm for the 2-Anonymity problem with binary alpha-
bet, and a 2-approximation algorithm for 3-Anonymity with binary alphabet.

2.2 NP-hardness of-Anonymity with Suppression

Theorem 2.2.1 k-Anonymity with Suppression is NP-hard even for a ternary alphabet, i.e.,
(3 ={0,1,2}).

Proof: In this proof, k-Anonymity refers to the problem df-Anonymity with Suppres-
sion. We give a reduction from the NP-hard problem ofdE PARTITION INTO TRIAN-
GLES [Kan94] which is defined as followssiven a graphG = (V, E) with |E| = 3m for
some integern, can the edges a¥ be partitioned intan edge-disjoint triangles?
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Given an instance of the above probleth~= (V, F) with 3m edges (since the above
problem is NP-hard even for simple graphs, we will assume that the graph G is simple),
we create a preliminary tablg with 3m rows — one row for each edge. For each of the
n vertices ofGG, we create an attribute (column). The row corresponding to édge,
referred to as,;, has ones in the positions corresponding Bmdb and zeros everywhere
else. Let a star with four vertices (having one vertex of degree 3) be referred to as a 4-star.

Equivalence to edge partition into triangles and 4-stars. We first show that the cost

of the optimal 3-Anonymity solution for the tablé is at mostm if and only if £ can be
partitioned into a collection of disjoint triangles and 4-stars. First suppose that such a
partition of edges is given. Consider any triangle (with, c as its vertices). By suppress-
ing the positions:, b andc in the rowsr,,, r,. andr.,, we get a cluster containing three
rows, with threexs in each modified row. Now consider a 4-star with vertieels c, d,
whered is the center vertex. By suppressing the positions andc in the rowsr,q, 14
andr.4, we get a cluster containing three rows with thxgen each modified row. Thus we
obtain a solution to 3-Anonymity of coSin.

On the other hand, suppose that there is a 3-Anonymity solution of cost atOmost
Since( is simple, any three rows are distinct and differ in at least 3 positions. Hence
there should be at least three in each modified row, so that the cost of the solution is
at least9m. This implies that the solution cost is exacthy, and each modified row has
exactly threexs. Since any cluster of size more than three will have at leastur each
modified row, it follows that each cluster has exactly three rows. There are exactly two
possibilities: the corresponding edges form either a triangle or a 4-star, and each modified
row in a triangle has threes and zeros elsewhere while each modified row in a 4-star has
threexs, single 1 and zeros elsewhere. Thus, the solution corresponds to a partition of the
edges of the graph into triangles and 4-stars.

Equivalence to edge partition into triangles. Since we want a reduction fromD&E
PARTITION INTO TRIANGLES, we create a tabl2” by “replicating” the columns of" so
as to force the 4-stars to pay moi®e Lett = [log,(3m + 1)]. In the new tabl&”, every
row hast blocks each of which has columns. Consider an arbitrary ordering of the edges
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in £ and express the rank of an edge= (a,b), in this ordering, in binary notation as
eires ... e Inthe row corresponding to edgeeach block has zeros in all positions except
a andb. A block can be in one of two configurationson f, has al in positiona and
a2 in positionb while conf, has a2 in positiona and al in positionb. The " block

in the row corresponding te has configuratioron f.,. For example, consider the graph
shown in Figur¢ 2]2. Suppose the edggsl), (1,4), (1,2), (1,3), (2, 3) are ranked 1 (i.e.
(001),) through 5 (i.e.(101),) respectively. Then, the table in Figlire]2.2 representgthe
Anonymity instance corresponding to the graph, with#fieow in the table representing
the vector corresponding to the edge ranked

! 2 GHloloj1|2flo]o]1|2[0]0]2]1
Ay 1/10/o0/2]l2/0/0]1|1]0]0 2
A2 {11270/ 0|2/1/0/0[2]1]0 0
A3 {210/ 1]0]l1]0/2/0[1]0]2 0
4 3 @3)lol2/1/0]oj1]2/0f0/2 1|0

Figure 2.2: The table shows tl3eanonymity instance corresponding to the graph on the
left when the edge&3, 4), (1,4), (1,2), (1, 3), (2, 3) are ranked 1 through 5 respectively.

We will now show that the cost of the optimal 3-Anonymity solution@nis at most
9mt if and only if E can be partitioned inte: disjoint triangles.

Suppose thall can be partitioned intan disjoint triangles. As earlier, every triangle
in such a partition corresponds to a cluster viiths in each modified row. Thus we get a
3-Anonymity solution of cosbmi.

For the converse, suppose that we are given a 3-Anonymity solution of cost at most
9mt. Again, any three rows differ in at lea%t positions so that the cost of any solution is
at leastmt. Hence the solution cost is exactlynt and each modified row has exacsy
xS. Thus, each cluster has exactly three rows. We claim that the corresponding edges should
form a triangle. We can see this as follows: suppose to the contrary the three rows form a
4-star. Let the common vertex e Consider the ternary digi {1,2} assigned by each
of the three edges toin con fy — two of the three edges must have assigned the same digit
to v. Since these two edges differ in rank, they must have a different configuration (and
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therefore, a different digit in the column corresponding}tan at least one of the blocks.
Thus, the rows corresponding to the three edges contain an additicoalesponding to
vertexv in addition to thest xs corresponding to the remaining three vertices, contradicting
the fact that each row has exacBly«s. O

The above proof shows that k-Anonymity is NP-hard even with a ternary alphabet for
k = 3. By reduction from BGE PARTITION INTO r-CLIQUES [Kan94], we can extend
the above proof fok = (g) forr > 3. By replicating the graph in the above reduction, we
can further extend the proof far= a(g) for any integeiry andr > 3.

2.3 Algorithm for General k-Anonymity

In this section, we study the problem bfAnonymity with Generalization for general
and arbitrary alphabet size, and give@(k)-approximation algorithm for the problem. In
this sectionk-Anonymity refers to the problem égFAnonymity with Generalization.

Construction of Graph. Given an instance of the-Anonymity problem, we create an
edge-weighted complete graph= (V, F). The vertex seV’ contains a vertex correspond-
ing to each vector in thé-Anonymity problem. For two rowa andb, let the unscaled
generalization cost for thg" componentj, ,(;), refer to the lowest level of generaliza-
tion for attribute; for which the;j** components of both andb are in the same partition,
i.e. the lowest level for which both have the same generalized value. The weight,
of an edge: = (a,b) is the sum over all componenjsof the scaled generalization cost,
i.e.w(e) = > hap(5)/1; (recall that the scaling factdy corresponds to the total number
of levels of generalizations for thg" attribute). Thej*" attribute is said to contribute a
weight of h, () /1, to the edge:.

Limitations of the Graph Representation. As mentioned in the introduction, with this
representation, we lose some information about the structure of the problem, and cannot
achieve a better tha@ (k) approximation factor for thé-Anonymity problem. We show

this by giving two instances (on binary alphabet) whés&nonymity cost differs by a
factor of ©(k), but the corresponding graphs for both the instances are identical. L et
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2+=2_ For the first instance, takle vectors withkl/-dimensions each. The bit positions
(i — 1)l + 1 to il are referred to as thé&" block of a vector. The!" vector has ones in
the i*" block and zeros everywhere else. Thénonymity cost for this instance is?l.

For the second instance, takevectors with4/ = 2% dimensions each. Th&" vector
breaks up it2* dimensions int@’ equal-sized blocks and has ones in the odd blocks and
zeros in the even blocks. This instance incufsAnonymity cost of4kl. Note that the
graph corresponding to both the instanceskscéique with all the pairwise distances being
20 = 2k-1,

Definition 2.1 (Charge of a vertex) For any givenk-Anonymity solution, define tisharge
of a vertex to be the total generalization cost of the vector it represents.

Idea Behind the Algorithm. Let OPT denote the cost of an optimatAnonymity so-
lution, i.e.,OPT is the sum of the charges of all the vertices in an optifAnonymity
solution. LetF = {T1,T5,...,Ts}, a spanning forest (i.e. a forest containing all the ver-
tices) in which each tre€ has at least vertices, be a subgraph 6f This forest describes

a feasible partition for thé-Anonymity problem. In the:-Anonymity solution as per this
partition, the charge of each vertex is no more than the weight of the tree containing the
vertex; recall that the weight of a tr@e is given byW (T;) = Xccprw(e), whereE(T;)
denotes the set of edges in tr€e We can see this as follows: if attribufehas to be
generalized to levet for the vertices in tred; (note that an attribute is generalized to the
same level for all rows in a cluster), there must exist a pair of vertieds in the cluster
which have an unscaled generalization dggsf(;j) equal tor. Thus, attributg contributes

a weight of at least//; to the length of all paths (in G) betweenandb. In particular,
attributej contributes a weight of at leasf!; to the weight of tre€;. Next, we sum the
charges of all the vertices to get that thé\nonymity cost of the partition corresponding

to the forestF’ is at mosty; |V (T;)|W (T;). We will refer to this as thé-Anonymity cost

of the forest. Note that the weight of a forest is simply the sum of the weights of its trees.
Hence, the ratio of thé-Anonymity cost to the weight of a forest is at most the number
of vertices in the largest tree in the forest. This implies that if we can find a forest with
the size of the largest component at masand weight at mos© P7’, then we have an
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L-approximation algorithm. Next, we present an algorithm that finds such a forest with
L < max{2k — 1,3k — 5}.

The algorithm has the following overall structure, which is explained in more detail in
the next two subsections.

Outline of the Algorithm:

1. Create a forest! with cost at mostOPT. The number of vertices in each tree is at
leastk.

2. Compute a decomposition of this forest (deleting edges is allowed) such that each
component has betweérandmax{2k — 1,3k — 5} vertices. The decomposition is
done in a way that does not increase the sum of the costs of the edges.

2.3.1 Algorithm for Producing a Forest with Trees of Size at leask

The key observation is that since each partition irAnonymity solution groups a vertex

with at leastc — 1 other vertices, the charge of a vertex is at least equal to its distance to its
(k — 1)* nearest neighbor. The idea is to construct a directed forest such that each vertex
has at most one outgoing edge &adv) is an edge only if) is one of thek — 1 nearest
neighbors ofu.

Algorithm FOREST
Invariant:

e The chosen edges do not create any cycle.
e The out-degree of each vertex is at most one.

1. Start with an empty edge set so that each vertex is in its own connected component.

2. Repeat until all components are of size at ldast

Pick any componentt having size smaller than Letwu be a vertex ir{” without
any outgoing edges. Since there are at mkes® other vertices if¥’, one of the
k — 1 nearest neighbors af, sayv, must lie outsidg’. We add the edgéu, 1)
to the forestObserve that this step does not violate any of the invariants.
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Lemma 2.3.1 The forest produced by algorithFORESThas minimum tree size at ledst
and has cost at mos PT'.

Proof: It is evident from the algorithm description that each component of the forest it
produces has at leakstvertices.

Let the cost of an edg@:, ©) be paid by vertex.. Note that each vertex pays for at
most one edge to one of iks— 1 nearest neighbors. As noted earlier, this is less than the
charge of this vertex in any-Anonymity solution. Thus, the sum of costs of all edges in
the forest is less thaf PT', the total charge of all vertices in an optimal solution. O

2.3.2 Algorithm to Decompose Large Components into Smaller Ones

We next show how to break any component with size greaterihad 2k — 1,3k — 5}
into two components each of size at lelst et the size of the component we are breaking
bes > max{2k — 1,3k — 5}.

Algorithm DECoOMPOSECOMPONENT
1. Pick any vertex: as the candidate vertex.

2. Root the tree at the candidate vertex Let U be the set of subtrees rooted at the
children ofu. Let the size of the largest subtreewbe ¢, rooted at vertex. If
s—¢ > k—1, then we do one of the following partition and terminate (see Figufe 2.3).

A. If ¢ > kands — ¢ > k, then partition the tree into the largest subtree and the
rest.

B. If s — ¢ = k — 1, partition the tree into a component containing the subtrees
rooted at the children of and the rest. To connect the childrenwotreate a
dummy vertexy’ to replacev. Note thatv’ is only a Steiner vertex (see Fig-
ure[2.4) and does not contribute to the size of the first component. Clearly, the
sizes of both the components are at ldast

C. If ¢ = k — 1, then partition into a component containing the subtree rooted at
along with the vertex: and the rest. In order to connect the children af the
second component, we create a Steiner vartex
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Figure 2.3: The decompositions corresponding to the sub-cases of the algorithm
DECOMPOSECOMPONENT.

D. Otherwise, all subtrees have size at mbst 2. In this case, we create an

empty partition and keep adding subtrees:db it until the first time its size
becomes at leagt— 1. Clearly, at this point, its size is at mast — 4. Put the
remaining subtrees (containing at least 1 vertices, since there are at least
3k — 4 vertices in all) into the other partition. Observe that since 2k, at
most one of the partitions has size equatte 1. If such a partition exists, add
u to that partition, else add to the first partition. In order to keep the partition
not containingu connected, a Steiner vertekcorresponding ta is placed in

it.

3. Otherwise, pick the root of the largest subtieas the new candidate vertex and go

to Step 2.
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Steiner vertex

Figure 2.4: The decomposition corresponding to case B; the left partition contains a Steiner
vertexv’ that does not contribute to its size.

Lemma 2.3.2 The above algorithm terminates.

Proof: We will prove this by showing that the size of the largest compondim Step 2)
decreases in each iteration. Consider moving from candidate veitexne iteration to
candidate vertex in the next iteration. Since the algorithm did not terminate withf

we root the tree at, then the size of the subtree rooted.as less thark — 1. When we
consider the largest subtree undeeither it is rooted at;, in which case, it is smaller than
k—1 < s— (k— 1) and the algorithm terminates in this step; otherwise, the new largest
subtree is a subtree of the previous largest subtree. O

Theorem 2.3.3 There is a polynomial-time algorithm for the Anonymity problem, that
achieves an approximation ratio afax{2k — 1, 3k — 5}.

Proof: First, use Algorithm BRESTto create a forest with cost at mastP7" and min-
imum tree size at leagt. Then repeatedly apply Algorithm EZoMPOSECOMPONENT
to any component that has size larger thamx{2k — 1,3k — 5}. Note that both these
algorithms terminate i (kn?) time. O

The above algorithm can also be used when the attributes are assigned weights and
the goal is to minimize the weighted generalization cost. In this case, the cost contributed
by an attribute to an edge in the graphis multiplied by its weight. The rest of the
algorithm proceeds as before. It is also easy to extend the above analysis to the version
of the problem where we allow an entire row to be deleted from the published database,
instead of forcing it to pair with at leagt— 1 other rows. The deletion of an entire row is
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modeled as suppressing all the entries of that row (or generalizing all the entries of that row
to the highest level). The objective function is the same as before: minimize the overall
generalization cost. We first note that the distance between any two vertices is no more than
the cost of deleting a vertex. Thus, if we run the same algorithm as above, the total cost
of the forestF’ produced by Algorithm BRESTIS no more than the optimatAnonymity

cost (this is because the charge of any vertex in the optirAghionymity solution is still

no less than its distance to its — 1)* nearest neighbor). The analysis for the rest of the
algorithm remains the same.

2.4 Improved Algorithm for 2-Anonymity

In this section, we study the special casé:of 2. The algorithm of the previous section
gives a 3-approximation algorithm for this case. We improve upon this result for binary
alphabet, and provide a polynomial-times-approximation algorithm fo2-Anonymity

(note that for binary alphabet, generalization is equivalent to suppression). This algorithm
uses a technique that is completely different from the previous algorithm, and could po-
tentially be extended to get an improved approximation factor for the general case. For
this algorithm, we use the minimum-weight 2|-factor of a graph constructed from the
2-Anonymity instance. Al, 2|-factor of an edge-weighted graphis defined to be a span-
ning (i.e., containing all the vertices) subgraplof G such that each vertex ifi has degree

1 or 2. The weight ofF' is the sum of the weights of the edgesfin Cornuejols/[Cor88]
showed that a minimum-weight, 2|-factor of a graph can be computed in polynomial
time.

Given an instance of the 2-Anonymity problem on binary alphabet, we create an edge-
weighted complete grapty¥ = (V, E) as follows. The vertex sét’ contains a vertex
corresponding to each vector in the 2-Anonymity problem. The weight of an @edgge
is the Hamming distance between the vectors representedabgs (i.e., the number of
positions at which they differ). First we obtain a minimum-weight2|-factor £ of G.

By optimality, F' is a vertex-disjoint collection of edges and pairs of adjacent edges (if a
[1, 2]-factor has a component which is either a cycle or a path of lergthwe can obtain
a[l, 2]-factor of smaller weight by removing edge(s)). We treat each compondnasfa
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cluster, i.e., retain the bits on which all the vectors in the cluster agree and replace all other
bits by xs. Clearly, this results in 2zanonymized table.

Theorem 2.4.1 The number oks introduced by the above algorithm is at most times
the number oks in an optimal 2-Anonymity solution.

Before we prove this theorem, consider thredit vectorsz,, x5 andx; with pairwise
Hamming distances;, 3 and~ as shown in Figurg 2.5. Without loss of generality, let
v > o, 3. Letz,,. denote themedianvector whose* bit is the majority of thei” bits
of z1, x5 andxs and letp, ¢ andr be the Hamming distances ig,.; from z;, x5 andx;
respectively. Let:, be thestar vector obtained by minimal suppressionagf z, andzxs,

i.e., it has the common bits where the three vectors agreeaptbewhere. Observe that
a=q+r,3=r+pandy =p+ q. The other relevant distances are shown in the figure.

Figure 2.5: Three vectors and their corresponding “median” and “star” vectors

Observation 2.4.2 If verticesz, z» andz; (as shown in Figurg 2]5) form a cluster inka
Anonymity solution, the numbere$ in each modified vector is exactly equaptoq+r =
+(a+ 8+ 7). If the cluster contains additional vertices, then the numbersdb at least

sla+B+7).
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To see this, first note that sinee,., is the median vertex, the attributes that contribute
to p, ¢ andr are distinct. Therefore, the number & in each modified vector is at least
p + q + r. Moreover, whene,, zo andzs are the only three vertices in the cluster, each
attribute corresponding to-ain the modified vector contributes to exactly oneppf; and
T.

Let corac denote the weight of an optimél, 2|-factor, letc; ¢ be the cost of the
2-Anonymity solution obtained from it and €2 PT" denote the cost of the optimal 2-
Anonymity solution respectively. The optimal 2-Anonymity solution can be assumed to
consist only of disjoint clusters of sizeor 3 (as bigger clusters can be broken into such
clusters without increasing the cost). We can deriJe, a]-factor from this solution as
follows: for each cluster of size 2, include the edge between the two vertices; for a cluster
of size 3, include the two lighter edges of the triangle formed by the three vertices. Denote
the weight of thid1, 2]-factor bycp ac.

Lemma2.4.3carc < 3-corac

Proof: Consider the optimd]l, 2]-factor and thek-Anonymity solution corresponding to

it. For a cluster of size 2, we have to suppress all the bits at which the two vectors differ so
that the total number ofs in the two rows is twice the Hamming distance (which is equal

to the edge weight). For a cluster of size 3, say the one in the figure, by Obsefvation 2.4.2,
the number ofs in each row is exactlya + 3 + )/2. So, the total number of stars is
S(a+ B+ 7) < 3(a + B) (using triangle inequality). The optimél, 2]-factor would

have contained the two lighter edges of the triangle, incurring a cogt ef ) for this
cluster. Summing over all the clusters formed by the optimal]-factor algorithm, we get

carg < 3 corac- O
Lemma 2.4.4 cpac < 30PT

Proof: Consider the optimat-Anonymity solution and thél, 2]-factor corresponding to

it. For a cluster of size 2, cost incurred by the2]-factor F’AC' is equal to half the cost
incurred inOPT. For a cluster of size 3, say the one in Figurg 2.5, cost incurréd4o’

is equal toc + 8 < 2(av + 6+ ) = 3(p + ¢ + r), where the inequality is obtained by
using the facty > «, 8. Since the cost incurred @ PT is 3(p + ¢ + r), cost incurred in
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FAC is at most half the cost incurred ®MP7'. By summing over all the clusters, we get
crac < OPT)2. 0

Sincecopac < crac, it follows from the above lemmas thati,; < 20PT, which
proves Theorem 2.4.1. For an arbitrary alphabet sizg; is no longer defined. However,
it can be shown thabPT > (o + 3+ ) > %(Oz + (), provingcpac < %OPT. Since
carg < 3 - corac holds as before, we gety,¢ < 2- OPT. Thus, the same algorithm
achieves a factadr approximation foR-Anonymity with Suppression for arbitrary alphabet
size.

2.5 Improved Algorithm for 3-Anonymity

We now present a 2-approximation algorithm for 3-Anonymity with a binary alphabet
(again generalization is equivalent to suppression in this case). The idea is similar to the al-
gorithm for 2-Anonymity. We construct the graphcorresponding to the 3-Anonymity in-
stance as in the previous algorithm. A 2-factor of a graph is a spanning subgraph with each
vertex having degree 2 (in other words, a collection of vertex-disjoint cycles spanning all
the vertices). We first run the polynomial-time algorithm to find a minimum-weight 2-factor

F of the graphG [Cor88]. We show that the cost of this 2-factor, s@y-4c, iS at most

2/3 times the cost of the optimal 3-Anonymity solution, say’7". Then, we show how

to transform this 2-factoF’ into a 3-Anonymity solutiom LG of costcar.g < 3 - corac,

giving us a factor-2 approximation algorithm for 3-Anonymity.

Lemma 2.5.1 The cost of the optimal 2-factafor4c on graphG corresponding to the
vectors in the 3-Anonymity instance is at m§)$irnes the cost of the optimal 3-Anonymity
solution,O PT.

Proof: Consider the optimal 3-Anonymity solution. Observe that it will cluster 3, 4 or 5
vertices together (any larger groups can be broken up into smaller groups of size at least 3,
without increasing the cost of the solution). Given an optimal solution to the 3-Anonymity
problem, we construct a 2-factor solution as follows: for every cluster of the 3-Anonymity
solution, pick the minimum-weight cycle involving the vertices of the cluster. Next, we
analyze the costr 4 of this 2-factor. Define thehargeof a vertex to be the number of
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xS in the vector corresponding to this vertex in the 3-Anonymity solution. We consider the
following three cases:

(a) Ifaclusteri is of size 3, the 2-factor contains a triangle on the corresponding vertices.
Let a, b andc be the lengths of the edges of the triangle. By Observation|2.4.2, we
getthat(a + b+ ¢) is twice the charge of each vertex in this cluster. THuB,I" pays
atotal cost oD PT; = 3(a + b+ c) while FAC payscpac,; = a+ b+ ¢ = 20PT,.

(b) If a clusteri is of size 4, the 2-factor corresponds to the cheapest 4-cycle on the four
vertices. Letr be the sum of the weights of all tr@) = 6 edges on these four
vertices. Consider the three 4-cycles on these vertices. As each edge appears in two
4-cycles, the average cost of a 4-cyc|e§-1'fs By choosing the minimum weight 4-
cycle, we ensure that the cost paid BylC' for these verticespac,; < %r. Also,
by Observatioii 2.4]2, the charge of any of these 4 vertices is at least half the cost
of any triangle on (three of) these four vertices. The cost of the most expensive
triangle is at least equal to the average cost over al(ime: 4 triangles, which is
equal toﬁr (since each edge appears in two triangles). Hence the cost paiéby
OPT;>4-L.2. 7 = 7. Thus,crac, < %OPTZ-.

(c) Ifaclusteriis of size 5, let be the sum of weights of a@) = 10 edges on these five
vertices. By an argument similar argument to (BUC payscrac,; < +57. Also,
the charge of any of these vertices is at least half the cost of any triangle on (three of)
these vertices. Since the average cost of a triang%ﬂ'sthe number oks in each
vertex is at leas}->7. Thus, cost paid by PT for clusteri, OPT; > 5-3-2.7 = 37.
Thus,cpac; < 2OPT,.

Thus, adding up over all clusters, we getic < %OPT. Thus,corac < %OPT. O

Lemma 2.5.2 Given a 2-factorF’ with costcy, we can get a solution for 3-Anonymity of
costcarg < 3 - cp.

Proof: To get a solution for 3-Anonymity, we make every cycleinvith size 3, 4 or 5 into
a cluster. Leten(C') denote the length of a cyclé in the 2-factor. For each cycle larger
C, if len(C) = 3z for x an integer, then we decompose it intelusters, each containing
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3 adjacent vertices af'. Similarly, if len(C') = 3z + 1, = an integer, we decompose it into

x clusters:x — 1 of size 3, and one of size 4. ¥n(C') = 3z + 2, x an integer, then we
decompose it inta: — 2 clusters of size 3, and two clusters of sizdn all these cases, of

all the possible decompositions, we choose the one in which the total cost of edges of the
cycle within the clusters is minimized. Depending on the size of the ¢yatethe 2-factor,

we can show that the 3-Anonymity solutiet.GG pays as follows:

(a) For atriangle ALG pays3 - slen(C) < 3 -len(C).
(b) For a4-cycle ALG pays at most - %len(C) < 3-len(C).

(c) For a5-cycle ALG pays at moss - Slen(C) < 3 -len(C).

The above inequalities follow from an observation similar to Observation]2.4.2,
namely that the vertices of a cyalécan differ in at mostlen(C') attributes.

(e) Fora(3z + 1)-cycle,z > 1, ALG pays at mosf(’”?);liﬂr12 -len(C') < 3-len(C). This
is obtained by considering the minimum 3-Anonymity cost over(#et 1) possible
decompositions into clusters. Each edgd the cycleC appears in a cluster of size 4
in three decompositions and contributes a cost of at moét) to the k-Anonymity
cost of the decomposition. In addition, each edge appears in a cluster of size 3 in
(2(x — 1)) decompositions contributing a cost of at mdst(¢) to thek-Anonymity
cost of these decompositions. Summing over all edges, thektdtabnymity cost
of all the3z + 1 decompositions is at mo§? - 2(x — 1) +4 - 3) - len(C) andALG
pays no more than the average cost of a decomposition.

(f) Fora(3z +2)-cycle,z > 1, ALG pays at mosf(‘””g_gc#j;r24 -len(C') < 3-len(C'). This
is obtained by an analysis similar to (e) above. Note that we get a better bound on
the cost by splitting inta: — 2 clusters of size 3 and two clusters of sizenstead of
x — 1 clusters of size 3 and one clusters of size

Thus, summing over all clusterd,LG pays no more than three times the total cost of
all cycles, i.e.carq <3 - cp. O
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Note that the above analysis is tight, since equality can hold in case (f),when) e.g.
for vectors{0000,0001,0011,0111,1111,1110, 1100, 1000}, where the optima-factor is
a cycle through all the vertices in the given order.

Combining the above lemmas, we obtain a factor 2 approximation for 3-Anonymity.



Chapter 3

Secure Computation of thek!"-ranked
Element

In this chapter, we consider the problem of computing statistical functions over the union
of large, confidential datasets held by different parties. In particular, we are interested in
the problem of computing thie”-ranked elementf an ordered sef split between two or
more parties in a privacy-preserving mannetr.

For an ordered sef C R, thek'-ranked element is the valuec S that is ranked:
when the sef is sorted in increasing order. Of particular interest is the median, which is
the element with rank = [|.S|/2]. Given two partiesA and B with dataset® 4, Dp C F,
respectively, we consider the problem of privately computingittieranked element of
D4 U Dg. We also consider this problem in the multi-party case.

We are interested in scenarios where the dataSgtand Dz contain proprietary in-
formation, and neither party is willing to share its data with the other. Furthermore, the
datasets involved are very large. For example, consider two health insurance companies
wishing to compute the median life expectancy of the smokers insured by them. In such
a setting, both the number of insured smokers as well as their life expectancies are private
information, but the median life expectancy is of combined mutual interest. Another exam-
ple is the annual Taulbee survey which collects salary and demographic data for faculty in
computer science and computer engineering departments in North America. Typically, aca-
demic departments report only a small number of statistics like the minimum, maximum,

33
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average and median salary for assistant, associate and full professor positions. The Taulbee
survey is thus able to publish only limited aggregate information. A privacy-preserving,
multi-party solution for thek*"-ranked element would enable universities to quickly com-
pute the combined salary statistics without trusting individual salaries to Taulbee. Such a
protocol would also facilitate the computation of histograms [GMP97, PG99, 34d{iin

a privacy-preserving manner.

Prior Work

The problem we discuss is referred to%escure Function Evaluation (SFH) the cryp-
tography literature. It involves several parties with private inputs that wish to compute a
function of their joint inputs, and require that the process of computing the function does
not reveal to an adversarial party (or a coalition of such parties) any information that cannot
be computed using the input of the adversary and the output of the function.

There exist well-known solutions that enable two or more parties to perform secure
computation of any function [Yao86, GMW87]. The general method employed by these
solutions is to construct a combinatorial circuit that computes the required function, and
then run a distributed protocol that securely evaluates the circuit. We provide a brief sketch
of a two-party protocol due to Yao in Secti.Ihe communication overhead of these
generic protocols is linear in the size of the circuit. The computation involves (at the least)
running an oblivious transfer protocol for every input gate, or for every gate of the circuit,
depending on the implementation. L&t be the size of the domaif from which the
datasetd) 4 and Dg are drawn, and let = |D4| + | Dg| be the total number of the input
elements. Then, the"-ranked element can be computed via a circuit of §lzelog M)

(since reading in the input requires at leasbg M gates), which implies that for large
values ofn, the overhead of a secure protocol obtained from generic constructions is too
large.

In another generic construction, Naor and Nissim [NNO1] show that any two-party
communication protocol can be translated into a secure computation protocol. Effectively,

1 The interested reader can find a detailed description of these protocols in the references above. Alter-
natively, descriptions of the two-party protocols are available at, £.g., [LP02, /Gol98], and descriptions of the
multi-party protocols can be found, for example,[in [BMR90, FN92, Gol98].
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a protocol with communication complexity ofbits is transformed into a secure protocol
which performs: invocations of oblivious transfer (or SPIR) from a database of le2gth
Since there is a protocol, due to Karchmer, for computing the mediaragithcommuni-
cation [KN97], the implication is that the size of the database for the OT/SPIR invocations
is polynomial inn, and the communication &g n times that of the OT/SPIR protocol.

If the protocol uses SPIR based on the PIR protocol of Cachin et al. [CMS99], it obtains
polylogarithmic communication overhead. The drawback, in addition to hidden constants,
is that it requires application of a public-key operation to each item in the database, which
implies that the number of public-key operations is polynomial.in

Contributions

The results in[Yao86, GMW87] and [NNO1] are quite powerful in that they enable general
transformations from known algorithms to secure protocols. Our interest, however, is to
determine how efficiently a specific function, namely #feranked element, can be com-
puted. We are motivated by applications where the total number of data pamatsed by

the parties is very large, and thus even a linear communication and computation overhead
might be prohibitive; even taking recent results on extending oblivious transfers [IKNPO03]
into account, the overhead(i¥n). We describe protocols with sub-linear communication
and computation overhead. Specifically, in the two-party case, we reduce the computation
of the k*"-ranked element t®(log k) secure comparisoﬁ:@f (log M)-bit inputs, where

log M is the number of bits needed to describe the elements in théset®z. We also

show how to obtain security against malicious adversaries. In the multi-party case, we re-
duce the computation of thg"-ranked element t@®(log M) simple secure computations

that involve additions and a comparison bfg(A/)-bit long numbers. Again, this protocol

can be made secure against malicious adversaries. Interestingly, the multi-party solution
can be applied to the two-party scenario if it uses secure two-party protocols as primitives.
This is in contrast to the typical case in secure computation where secure multi-party proto-
cols require the presence of an honest majority, which is not available in the two-party case.
While the two-party protocol requires inputs comprising of distinct values, the multi-party

2|f the two parties possess inputsandy, asecure comparisoreveals 0 ifz > y and 1 otherwise, and
nothing more.
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protocol can be applied directly even to inputs that contain duplicate items. The advantage
of our two-party solution is that the number of rounds is logarithmic in the number of input
items, whereas the number of rounds of the multi-party solution is logarithmic in the size
of the domain of possible input values.

The protocols given here are modifications of well known algorithms in the communica-
tion complexity literature [Rod82, KN97]. Our contribution is the modifications and proofs
of security that result in privacy-preserving solutions, for both semi-honest and malicious
adversaries. In addition, we show how the parties can computé‘thmnked element
while hiding the actual sizes of their databases from each other. We note that the commu-
nication complexity lower bound for computing the mediamisi{log n, log M} [KN97]
whereas our result entails a communication cos?@bg n - log M) for asecurecomputa-
tion.

Efficient Secure Computation via Reduction and Composition

We take the same approach as that of previous solutions for secure computation over large
inputs (e.g.[[LP0Z2, FIMO01,/CIKT01]), and reduce this task to many invocations of secure
computation of simpler functions of small inputs (but unlike these constructions, we also
design protocols which are secure against malicious adversaries). That is, we describe a
protocol for computing thé'*-ranked element that uses oracle queries to a few simple
functionalities and is secure if these functionalities are computed by a trusted oracle. A
composition theorem (see [Can00, Can01] and discussions below) shows that if the ora-
cle queries are replaced by secure protocols, then the resulting combined protocol is also
secure. In the semi-honest case, the oracle queries can be replaced by very simple invo-
cations of secure function evaluation. In the malicious adversary case, they are replaced
by a reactive secure computation of a simple function. The result of the reduction is a
distributed protocol whose overhead is sub-linear in the size of the inputs and is actually
feasible even for very large inputs. We also note that the protocol computesatimalue

of the k*"-ranked item, rather than computing an approximation.
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3.1 Security Definitions and a Composition Theorem

We describe protocols that are secure against malicious adversaries; we therefore use def-
initions that compare the actual execution of the protocol tddeal implementation,
rather than use definitions that use simulation. The definitions we use follow those of
Canetti [Can00] and Goldreich [Gol98]. We also state a composition theorem that is used
in proving the security of the protocols.

A semi-honest adversarg an adversary that follows the instructions of the protocol.

It might try, however, to use the information that it learns during the execution to learn
information about the inputs of the other parties.malicious adversarys an adversary

that can behave arbitrarily. In particular, there are several things that a malicious adversary
can do which we cannot hope to avoid: (1) it can refuse to participate in the protocol, (2) it
can substitute an arbitrary value for its input, and (3) it can abort the protocol prematurely.
Following [Can00| Gol98] we do not consider solutions to the early termination problem
(i.e. item (3) above), also known as the fairness issue, since there is no perfect solution for
this issue and existing solutions are quite complex. Furthermore, premature termination of
the protocol by one party is detected by the other parties which, in many scenarios, can
then take measures against the corrupt party. This is different than other types of malicious
activity which are not easily detected.

The security definition we use captures both the correctness and the privacy of the
protocol. We only provide definitions for the two-party case. For a detailed discussion
of security definitions, for the two-party and multi-party scenarios, we refer the reader
to [Can00/ Gol98]. The definition is based on a comparison to the ideal model in which
there is a trusted third party (TTP), and the corrupt parties can choose to give any arbitrary
input to the trusted party, and to terminate the protocol prematurely, even at a stage where
they have received their output and the other parties have not. We limit it to the case where
both parties compute the same functjpn{0, 1}* x {0,1}* — {0, 1}*.

Definition 3.1 (The Ideal Model) A strategy for partyA in the ideal model is a pair of
PPT (probabilistic polynomial time) algorithmsl; (X, r) that uses the inpuk” and a se-
quence of coin flipsto generate an input that sends to the trusted party, ang, (X, r, Z)
which takes as an additional input the valdethat A receives from the TTP, and outputs
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A’s final output. IfA is honest them;(X,r) = X and Ap(X,r, Z) = Z. A strategy for
party B is similarly defined using functions; (Y, r) and Bo(Y, r, Z).

The definition is limited to the case where at least one of the parties is honest. We
call an adversary that corrupts only one of the partiesaimissible adversarylhe joint
execution ofA and B in the ideal model, denoted BYEAL 4 5(X,Y"), is defined to be

e If Bis honest,

— IDEAL4 5(X,Y) equals(Ao (X, r, f(X',Y)), f(X',Y)), whereX’' = A;(X,r)
(in the case that A did not abort the protocol),

— or, IDEAL,4 5(X,Y) equals(Ap (X, r, f(X',Y)), —), whereX’ = A;(X,r) (if
A terminated the protocol prematurely).

e If Ais honest

— IDEAL,4 5(X,Y) equals(f(X,Y"), Bo(Y,r, f(X,Y"))), whereY’ = B;(Y,r),
— or, IDEAL,4 5(X,Y) equals(—, Bo(Y, r, f(X,Y"))), whereY' = B/ (Y, r).

In the real execution, a malicious party could follow any strategy that can be imple-
mented by a PPT algorithm. The strategy is an algorithm mapping a partial execution
history to the next message sent by the party in the protocol.

Definition 3.2 (The Real Model (for semi-honest and malicious adversaries))et f be
as in Definitior] 3.]L, andI be a two-party protocol for computingy Let(A’, B') be a pair
of PPT algorithms representing the parties’ strategies. This pair is admissible W.ift.
at least one of A’, B’) is the strategy specified Hy for the corresponding party. In the
semi-honest casénhe other party could have an arbitrary output function. In thalicious
case, the other party can behave arbitrarily throughout that protocol.

The joint execution dfl in the real model, denoteREALy; 4 (X, Y) is defined as the
output pair resulting from the interaction betwedn( X') and B'(Y).

The definition of security states that an execution of a secure real model protocol under
any admissible adversary can be simulated by an admissible adversary in the ideal model.
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Definition 3.3 (Security (for both the semi-honest case and the malicious casd)gt f
andII be as in Definitiorj 3]2. Protocdl securely computesf if for every PPT pair
(A, B') that is admissible in the real model (of Definition|3.2) there is a PPT pairB)
that is admissible in the ideal model (of Definiti3.1), such RBALy 4 5 (X,Y) is
computationally indistinguishable froPEAL 4 5(X,Y).

3.2 Cryptographic Tools

In the section, we briefly describe some of the tools from the cryptography literature that
we will be using in our protocols. We will base our description on the one given in [Pin03].
Good sources for further details are Ronald Cramer’s lecture notes that provide an ele-
mentary introduction to the methods of secure computation [Cra00], and Oded Goldreich’s
manuscript detailing a rigorous introduction to secure multi-party computation [Gol98].

3.2.1 Oblivious Transfer

Oblivious transfer is a basic protocol, that is the main building block of secure computation.
In fact, Kilian [Kil88] showed that oblivious transfer is sufficient for secure computation in
the sense that given an implementation of oblivious transfer, one can construct any secure
computation protocol without using any other cryptographic primitive.

The notion of 1-out-of-2 oblivious transfer was suggested by Even, Goldreich and Lem-
pel [EGL85] as a variant of a different but equivalent type of oblivious transfer that has been
suggested by Rabin [Rab81]. The protocol involves two parties sehderand there-
ceiver. The sender’s input is a pdit,, ;) and the receiver’s inputis a hitc 0, 1. At the
end of the protocol, the receiver leamns(and nothing else), and the sender learns nothing.
In other words, if we use the notatidinput 4, inputg) — (output 4, outputg) to define
the outcome of the function, then oblivious transfer is the fundtien, z,), o) — (A, z,,),
where) is the empty output.

It is known how to design oblivious transfer protocols based on virtually all known
constructions of trapdoor functions, i.e. public key cryptosystems. For the case of semi-
honest adversaries, there exist simple and efficient protocols for oblivious transfer [EGL85,
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Gol98]. One straightforward approach is for the receiver to generate two random public
keys — a keyP, whose decryption key he knows, and a k&y , whose decryption key

he does not know. The receiver then sends these two keys to the sender, who encrypts
with the keyF, and encrypts; with the keyP;, and sends the two encrypted values to the
receiver. The receiver can then decryptbut notz;_,. Itis easy to show that the sender
does not learn anything about since the only message that she receives contains two
random public keys, and there is no way for her to deduce the one for which the receiver
has a private key. As for the sender’s privacy, if the receiver follows the protocol, he knows
the private key corresponding to only one of the public keys and can therefore decrypt
only one of the inputs, and if the encryption scheme is secure he cannot gain information
about the other input. To be secure against malicious adversaries, the oblivious transfer
protocol must also ensure that the receiver chooses the public keys appropriately, i.e. the
receiver knows the private key corresponding to only one of the public keys. This can be
done by using zero-knowledge proofs by which the receiver proves that he has chosen the
keys correctly. Fortunately, there are very efficient zero-knowledge proofs for this case,
see e.g.[INP0O1]. Oblivious transfer is often the most computationally intensive operation
of secure protocols, and is repeated many times. Each invocation of oblivious transfer
typically requires a constant number of invocations of trapdoor permutations (i.e. public-
key operations, or exponentiations). It is possible to reduce the amortized overhead of
oblivious transfers to one exponentiation peyn oblivious transfers, even for the case of
malicious adversaries [NPO1].

3.2.2 Yao’s Protocol for Two-party Secure Computation

In [Yao86], Yao presented a constant-round protocol for privately computing any prob-
abilistic polynomial-time function. Denote the parties as Alice (A) and Bob (B), and
denote their respective inputs byandy. Let f be the function that they wish to com-
pute (for simplicity, we assume that we want only Bob to learn the valug(ofy) at

the end of the protocol). The protocol is based on expressiag a combinatorial circuit
with gates defined over some fixed base For example(= can include all the functions

g :{0,1} x {0,1} — {0,1}. The bits of the input are entered into input wires and are
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propagated through the gates. Note that it is known that any polynomial-time function can
be expressed as a combinatorial circuit of polynomial size (see| e.g. [Sav72]).

Encoding the Circuit. Informally, Yao’s protocol works by having one of the parties
(say Alice) first generate aencryptedor garbled circuit for computingf and send its
representation to Bob. The encrypted circuit is generated in the following way: first, Alice
hardwiresher input into the circuit, generating a circuit computjfg;, -). She then assigns

to each wire of the circuit two random “garbled” valué$V; 1V;) corresponding to values

0 and1 of the wire (the random values should be long enough to be used as keys to a pseudo-
random function, e.g. 80-128 bits long). Consider a gatéhich computes the value of

the wirek as a function of wiresand;. Alice prepares a tablg, that encrypts the garbled
value of the output wire using the output of a pseudo-random funditikeyed by the
garbled values of the input wirésndj. The table therefore has four entries, one entry for
every combination of input values. (Note that pseudo-random functions are usually realized
using private-key primitives such as block ciphers or hash functions, and are therefore very
efficient.) The table enables computation of the garbled outpytfodm the garbled inputs

to g. Moreover, given the two garbled inputs gpthe table does not disclose information
about the output of for any other inputs, nor does it reveal the values of the actual input
or output bits. The representation of the circuit includes the wiring of the original circuit
(namely, a mapping from inputs or gate outputs to gate inputs), the tahlesd tables

that translate the garbled values of the output wires of the circuit to actual 0/1 values. In
this form, the representation reveals nothing but the wiring of the circuit, and therefore Bob
learns nothing from this stage. (We assume that the fungtisrpublic and the wiring of

the circuit is not secret).

Encoding Bob’s Input. The tables described above enable the computation of the gar-
bled output of every gate from its garbled inputs. Therefore, if Bob is given the garbled
values of the input wires of the circuit in addition to these tables, he can compute the gar-
bled values of its output wires and then translate them to actual values. In order for Bob
to obtain the garbled values of the input wires, Alice and Bob engage, for each input wire,
in a 1-out-of-2 oblivious transfer. In this protocol, Alice is the sender, and her input pair
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consists of the two garbled values of this wire, and Bob is the receiver, and his input is his
input bit. As a result of the oblivious transfer protocol Bob learns the garbled value of his
input bit and nothing about the garbled value of the other bit, and Alice learns nothing.

Computing the Circuit. At the end of the oblivious transfer stage, Bob has sufficient
information to compute the output of the circuit on his own. After compufifig y), he
can send this value to Alice if she requires it.

Security of the Protocol. To show that the protocol is secure, it must be shown that none

of the two parties learns anything that it cannot compute from the input and output only.
To see that the protocol is secure against Alice, we note that Alice receives messages only
during the oblivious transfer protocol, and being the sender, she does not learn anything
from that protocol. As for security against Bob, we observe that every masking value
(e.g. the output of the pseudo-random functionis used only once, and that the pseudo-
randomness of’ ensures that without knowledge of the correct keys, i.e. garbled values of
the input wires of a gate, the output values of the gate look random. Therefore, knowledge
of one garbled value of each of the input wires of a gate discloses only a single garbled
output value of the gate and Bob cannot distinguish the other garbled value from random.
Now, the oblivious transfer protocol ensures that Bob learns only a single garbled value for
each input wire. Therefore, inductively, Bob can compute only a single garbled value of
each gate, and in particular of the output of the circuit. Moreover, the method by which the
tables were constructed hides the values of intermediate results (i.e. of gate outputs inside
the circuit).

Overhead. The protocol involves: (1) Alice and Bob engaging in an oblivious transfer
protocol for every input wire of the circuit, (2) Alice sending to Bob tables of size lin-
ear in the size of the circuit, and (3) Bob computing a pseudo-random function a constant
number of times for every gate (this is the cost incurred in evaluating the gates). The num-
ber of rounds of the protocol is constant (namely, two rounds using the oblivious transfer
of [EGL85,/Gol98, NPO1]). The computation overhead is dominated by the oblivious trans-
fer stage, since the evaluation of the gates uses pseudo-random functions which are very
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efficient compared to the oblivious transfer protocol. Itis roughly linear in the size of Bob’s
input. The communication overhead, on the other hand, is linear in the size of the circuit.
Thus, Yao's protocol is efficient if and only if the circuit representatiorf @ind the input

of one of the parties are not very large.

3.2.3 Secure Comparison

The main primitive that we use in our two-party protocol is a protocol for secure compar-
ison. The protocol involves two parties — party A having an inpatnd party B having

an inputy. The output is O ifz > y and 1 otherwise. We can implement the protocol

by encoding the comparison function as a binary circuit and then using Yao’s protocol for
secure computation. The overheadhisoblivious transfers, an@(|x| + |y|) applications

of a pseudo-random function, as well@§z| + |y|) communication. More efficient, non-
interactive comparison protocols also exist (see €.g. [FisO1]). Among other specialized
protocols for this problem is a protocol suggested by Cachin that ensures fairness given a
semi-trusted third party [ACCKO01].

3.2.4 Reactive Computation

A reactive computation consists of a series of steps in which parties provide inputs and
receive outputs. Each step generatstagewhich is used by the following step. The input

that a party provides at stégan depend on the outputs that it received in previous steps.
(We limit ourselves to synchronous communication, and to an environment in which there
are secure channels between the parties.) The protocols that we design for the malicious
case implement reactive computation. We refer the reader to [Can01, CL.OS02] for a
discussion of the security definitions and constructions for reactive computation.

3.2.5 A Composition Theorem

Our protocols implement the computation of té-ranked element by running many in-
vocations of secure computation of simpler functionalities. Such constructions are covered
by theorems of secure composition [Can00, Can01]. Loosely speaking, consiglenich
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modelwhere the protocol uses a trusted party that computes the functiondlities, f,.

The secure composition theorem states that if we consider security in terms of comparing
the real computation to the ideal model, then if a protocol is secure in the hybrid model, and
we replace the calls to the trusted party by calls to secure protocols comguting, f,

then the resulting protocol is secure. A secure composition theorem applies to reactive
computation, tod [Can01, CLOS02].

3.3 Two-party Computation of the k*-ranked Element

This section describes protocols for secure two-party computation df‘thenked ele-
ment of the union of two databases. The protocols are based on the observation that a
natural algorithm for computing the’"-ranked element discloses very little information
that cannot be computed from the value of tferanked element itself. Some modifica-
tion to that protocol can limit the information that is leaked by the execution to information
that can be computed from the output alone.

To simplify the description of the basic insecure protocol, we describe it for the case
of two parties, A and B, each having an input of size2, that wish to compute the value
of the median, i.e.(n/2)"-ranked element, of the union of their two inputs sorted in
increasing order of their values. This protocol is a modification of the algorithm given
in [Rod82, KN9?].E] Assume for simplicity that all input values are different. The protocol
operates in rounds. In each round, each party computes the median value of his or her
remaining input, and then the two parties compare their two median values. If As median
value is smaller than B’s then A adjusts her input by removing the values which are less
than or equal to her median, and B removes from his input items which are greater than
his median. Otherwise, A removes from her input items which are greater than her median
and B removes from his input items which are less than or equal to his median. The
protocol continues until the remaining input sets are of length 1 (thus the number of rounds
is logarithmic in the number of input items). The protocol is correct since when A's median

3Another variant of the algorithm that is presented there, and is due to Karchmer, reduces the communi-
cation overhead t®(log n) bits (instead of)(log® n)). Our protocols do not use this improvement. In any
case, the communication associated with the secure computation overshadows the communication overhead
of the basic protocol.
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is smaller than B’s median, each of the items that A removes is smaller than A's median,
which is smaller than at leasy/4 inputs of A andn/4 + 1 inputs of B. Therefore, the items
removed by A are all smaller than the median. Similarly, all the items removed by B are
larger than the median. Moreover, the protocol remaygisitems smaller than the median
andn/4 items greater than it; therefore, the median of the new data is the same as that of
the original input. The other case follows similarly.

Suppose now that the comparison is done privately, i.e. the parties only learn which
party’s median value is greater, and do not learn any other information about each other’s
median value. We show below that, in this case, the protocol is secure. Intuitively, this is
true because each party can deduce the result of the comparison from the value of the over-
all median and its own input. For example, if party A knows the median value of her input
and the median of the union of the two inputs, and observes that her median is smaller than
the median of the union, then she can deduce that her median value is smaller than that of
B. This means that given the final output of the protocol, both parties can simulate the re-
sults of the comparisons. Consequently, we have a reduction from the problem of securely
computing the median of the union to the problem of securely computing comparisons.

3.3.1 Protocol for Semi-Honest and Malicious Parties

Following is a description of a protocol that finds thé-ranked element in the union of

two databases and is secure against semi-honest parties. The computation of the median is
a specific case whereis set to be the sum of the sizes of the two inputs divided by two.
The protocol reduces the general problem of computingtheanked element of arbitrary

size inputs, to the problem of computing the median of two inputs of equal size, which is
also a power of 2. For now, we will assume that all the inputsdeéstnct This issue is

further discussed later.

Security Against a Malicious Adversary. The protocol for the semi-honest case can be
amended to be secure against malicious adversaries. The main change is that the protocol
must now verify that the parties provide consistent inputs to the different invocations of the
secure computation of the comparisons. For example, if party A gave an input ofl¢alue
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to a secure comparison computation, and the result was that A must delete all its input items
which are smaller tham00, then A cannot provide an input which is smaller thaw) to

any subsequent comparison. We provide a proof that given this enforcement, the protocol
is secure against malicious behavior. For this protocol, we do not force the input elements
to be integers. However, if such an enforcement is required (e.g. if the input consists of
rounded salary data), then the protocol for the malicious case also verifies that there is room
for sufficiently many distinct integers between the reported values of different elements of
the input. This is made more precise later.

In protocol AND-RANKED-ELEMENT that we describe here, we also specify #te
ditional functionalitythat is required in order to ensure security against malicious parties.
Then in Section 3.3]3 we describe how to implement this functionality, and show that given
this functionality, the protocol is secure against malicious adversaries. Of course, to ob-
tain a protocol which is secure only against semi-honest adversaries, one should ignore the
additional highlighted steps that provide security in the malicious case.

Protocol FIND-RANKED-ELEMENT

Input: D4 known to A, andD g known to B. Public parametér (for now, we assume that
the numerical value of the rank of the element is known). All itemB iU D g are distinct.
Output: Thek!-ranked element i 4 U Dp.

1. Party A (resp., B) initializes 4 (resp.,Sg) to be the sorted sequence of
its £ smallest elements il 4 (resp.,Dp).

2. If |S4| < k then Party A padék — |S4|) values of “+0” to its sequence
S4. Party B does the same:|if 5| < k then it padgk — |Sp|) values of
“+00” to its sequencep.

3. Let 2/ be the smallest power of 2 greater than or equat.taParty A
pre-padsS, with (29 — k) values of “oc0” and Party B padsSp with
(27 — k) values of “t00”. (The result is two input sets of siz& each,
whose median is the'-ranked element i, U Dp .)

In the malicious case:The protocol sets boundg = Iz = —oc and

UgQ = U = 00.
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4. Fori=(j—1),...,0: [Roundi]

A. A computes the2!)'" element ofS 4, denotedn 4, and B computes
the (29)"" element ofSp, mp. (l.e., they compute the respective
medians of their sets.)

B. A and B engage in aecure computatiowhich outputs 0 ifm 4 >
mp, and 1 ifmy < mp.
In the malicious caseThe secure computation first checks thak
ma < ug andlp < mp < upg. If we want to force the input to be
integral, then we also check that + 2 < my < uy — 2¢ and
I+ 2 <mp < ug — 2% If these conditions are not satisfied, then
the protocol is aborted. Otherwiseif, > mp, the protocol sets
us = my andip = mp. Otherwise it updates, to m, andug to
mp. Note that the lower and upper bounds are not revealed to either
party.

C. If m4 < mp, then A removes all elements rank&dr less fromS 4,
while B removes all elements ranked greater t?igdnom Sz. On the
other hand, itn4, > mp, then A removes all elements ranked higher
than?2’ from S,4, while B removes all elements rankétor lower
from Sp.

5. (By now, bothS 4 andSg are of size 1.) Partyt and B output the result of
a secure computatiowhich computes the smaller of the two remaining
elements.

In the malicious case:The secure computation checks that the inputs
given in this step are consistent with the inputs given earlier. Specifically,
for any item other than iter®’ of the original set of A (respectively B),
this means that the value must be equal fo(respectivelyu ). For the
item ranked’ in the original set of party A (respectively B), it is verified
that its value is greater thdp (respectively ).
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Overhead: Since the valug is at mostlog 2k and the number of rounds of communi-
cation is(j + 1), the total number of rounds of communication is at mogtk. In each

round, the protocol performs at most one secure computation, which requires a comparison
of (log M)-bit integers. Thus the total communication costidog M - log k) times the
security parameter.

Proof of Correctness

Regardless of security issues, we first have to show that the protocol indeed computes the
k*"-ranked item. We need to show that (a) The preprocessing performed in Steps 1-3 does
not eliminate the:*"-ranked element and (b) THe!*!)s* smallest value of%, U S& is the
k*-ranked element ilD, U Dp for eachi = j — 1,...,0 (whereS‘, S% are the sorted
sequences maintained by parti&€s3, respectively, during round. These two properties

are shown in Lemma 3.3.1.

Lemma 3.3.1 In Protocol FIND-RANKED-ELEMENT, the(2/!)**-ranked element (i.e., the
median) ofS, U S in round: of Step 4 is equal to the"-ranked element i 4, U D, for

i=@G-1),...,0.

Proof: Note that in the preprocessing (Step 1) we do not eliminatétheanked element

since thek'*-ranked element cannot appear in positiba 1) or higher in the sorted version

of D, or Dg. Step 2 ensures that both sequences have size exawsttitout affecting the
k*"-ranked element (since padding is performed at the end of the sequences). And, Step 3
not only ensures that the length of both sequences is a power of 2, but als§ paadS 5

so that theg(27)!" element of the union of the two sequences isifteranked element of

D4 U Dg. This establishes the lemma for the case whese(j — 1).

The remaining cases ofollow by induction. By induction hypothesis, at the beginning
of round i, the original problem is equivalent to the problem of computing the median
between two sets of siz&™!. We claim that, in round, neither party removes the median
of Sy, U Sg: if my < mp then there ar@ - 2° + 1 points inS, and Sy that are larger
thanm, and2 - 2! — 1 points inS, and Sp that are smaller tham z; thus all points in
S 4 that are less than or equalto, are smaller than the median, and all pointsxthat
are greater thampg are greater than the median. A similar argument follows in the case
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thatm, > mp. Furthermore, the modifications made4@ and Sz maintain the median
of S, U Sg since in each round, an equal number of elements smaller than and greater than
the median are removed. The lemma follows. O

3.3.2 Security for the Semi-honest Case

In the semi-honest case, the security definition in the ideal model is identical to the defi-
nition which is based on simulation. Thus, it is sufficient to show that, assuming that the
number of elements held by each party is public information, party A (and similarly party
B), given its own input and the value of thé&-ranked element, can simulate the execution

of the protocol in the hybrid model, where the comparisons are done by a trusted party;
then the security of the protocol follows from the composition theorem. We describe the
proof details for the case of party A simulating the execution in the hybrid model: het

the k'"-ranked element which the protocol is supposed to find. Then, party A simulates the
protocol as follows:

Algorithm SIMULATE -FIND-RANK
Input: D4 andx known to A. Public parametér. All items in D4 U Dg are distinct.
Output: Simulation of running the protocol for finding ti#é:-ranked element ity , U D .

1. Party AinitializesS 4 to be the sorted sequence ofitsmallest elements
in Dy.

2. If |Sa| < k then Party A padsk — |S4|) values of “+0” to its sequence
Sa.

3. Let2/ be the smallest power of 2 larger thanParty A pre-pads 4 with

(27 — k) values of “o0”.
4. Fori=(j—1),...,0: [Round:]

A. A computesn,, the(29)" element ofS 4.

B. If ms < z, then the secure comparison is made to output 1, i.e.,
ma < mp, else it outputs 0.
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C. If m4 < z, then A removes all elements rank&dor less fromsS 4.
On the other hand, if < m4, then A removes all elements ranked
higher thare® from S 4.

5. The final secure computation outputs

Lemma 3.3.2 The transcript generated by AlgorithBIMULATE -FIND-RANK is the same

as the transcript generated by ProtodéiIND-RANKED-ELEMENT. In addition, the state

information that Party A has after each round, nameiy; (k), correctly reflects the state
of ProtocolFIND-RANKED-ELEMENT after the same round.

Proof: We prove the lemma by induction on the number of rounds. Assume that the
lemma is true at the beginning of a round, i.e. AlgorithmiSLATE -FIND-RANK has been
correctly simulating ProtocolIND-RANKED-ELEMENT and its state correctly reflects the
state of Protocol ND-RANKED-ELEMENT at the beginning of the round. We show that
ma < zifand only if my < mp. If ma < z, then the number of points i, smaller
thanz is at least’. If, by way of contradictionyng < my,, thenmp < z, implying that
the number of points ir% smaller thanz is at least’. Thus the total number of points
in S% U S% smaller than: would be at leasg’™!, contradicting that: is the median. So,
my < mg. On the other hand, if»4 < mpg, and by way of contradictionn, > x, then

r < ma < mg, implying that the number of points ifii, greater tham is strictly more
than2’. Also, at least’ points in S% are greater tham. Thus, the number of points in
S U S greater tham is strictly more thar2*?, again contradicting that is the median.
So,m4 < z. Therefore, the secure comparisons in Step 4 of AlgorithmuSATE -FIND -
RANK return the same outputs as in Protocol 5-RANKED-ELEMENT, thereby ensuring
that the set5 4 is also updated correctly. O

Duplicate Items. Protocol RND-RANKED-ELEMENT preserves privacy as long as no
two input elements are identical (this restriction must be met for each party’s input, and
also for the union of the two inputs). The reason for this restriction is that the execution of
the protocol reveals to each party the exact number of elements in the other party’s input
which are smaller than the*-ranked item of the union of the two inputs. If all elements
are distinct then, given the value of thé&-ranked element, each party can compute the
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number of elements in its own input that are smaller than it, and therefore each party can
also compute the number of such elements in the other party’s input. This information
is sufficient for simulating the execution of the protocol. However, if the input contains
identical elements then, given the value of tferanked element, it is impossible to com-
pute the exact number of elements in the other party’s input which are smaller than it, thus
preventing one from simulating the protocol. For example, if several items in As input
are equal to thé'"-ranked element then the protocol could have ended with a comparison
involving any one of them. Therefore A does not know which of the possible executions
took place.

Handling Duplicate Items. Protocol FND-RANKED-ELEMENT-MULTIPARTY in Sec-

tion can securely compute thé&-ranked item even if the inputs contain duplicate
elements, and can be applied to the two-party case (the downside is that it inwglvés
rounds, instead dbg k). Also, protocol FND-RANKED-ELEMENT can be applied to in-
puts that might contain identical elements, if they are transformed into inputs containing
distinct elements. This can be done, for example, in the following way: Let the total num-
ber of elements in each party’s inputheAdd [log n|+1 bits to every input element, in the
least significant positions. For every element in A's input, let these bits be a “0” followed
by the rank of the element in a sorted list of A's input values. Apply the same procedure to
B’s inputs using a “1” instead of a “0”. Now run the original protocol using the new inputs,
but ensure that the output does not include the new least significant bits iof trenked

item. The protocol is privacy-preserving with regard to the new inputs (which are all dis-
tinct). Also, this protocol does not reveal to party A more information than running the
original protocol with the original inputs and providing A with the additional information
of the number of items in B’s input which are smaller than teranked element (the
same holds of course w.r.t. B as well). This property can be verified by observing that if
A is given thek!"-ranked element of the union of the two inputs, as well as the number of
elements inB’s input which are smaller than this value, it can simulate the operation of the
new protocol with the transformed input elements.
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Hiding the Size of the Inputs. We now consider the case where the parties wish to hide
the size of their inputs from each other. Note that i6 public then the protocol that we
described already hides the sizes of the inputs, since each party transforms its input to one
of sizek. This solution in insufficient, though, # discloses information about the input
sizes. For example, if the protocol computes the median, themqual to half the sum of

the sizes of the two inputs. We next show how to hide the size of the inputs when the two
parties wish to compute the value of the element with rigfk| .

Let o = ¢,/pq, Where bothy, and¢, are integers. We assunig a multiple of¢,,
is known to be an upper bound on the number of elements held by each party. K both
andSg divide ¢4, then party A pads its input with(U — |S,4|) elements with value-oo,
and (1 — ¢)(U — |S4|) elements with valuerco; similarly, party B pads its input with
»(U — |Sp|) elements with value-oo, and(1 — ¢)(U — |Sg|) elements with value-cc.
Otherwise, partyX, for X € {A, B}, needs to reveal the value [¢fx| mod ¢, to the other
party. We note that for small values @f, such a revelation is usually acceptable even in
cases where the two parties want to hide the size of their respective data sets from each
other. Letry = ¢4 — (]Sa] mod¢,) and letrg = ¢4 — (|Sp| mode,). First, party A
addsp(U — (|Sa| +r4)) elements with value-oco and(1 — ¢)(U — (|Sa| +r4)) elements
with value+oo; similarly party B addss(U — (|Sg| + r5)) elements with value-oo and
(1—9¢)(U—(|Sp|+1rr)) elements with valug-co. Next, assume without loss of generality
thatr, > rg (otherwise, interchange the role of A and B in the following)y £ 0.5 then
party A adds|¢(r4 + )| more elements with valueoco and adds 4 — [¢(ra + 75)]
more elements with value oo, while party B adds g more elements with valugoco. If
¢ > 0.5, then party A adds(1 — ¢)(r4 + rg)| more elements with valuso and adds
ra— | (1 —¢)(ra+ rg)| more elements with value co, while party B addsz more
elements with value-co. Then the parties engage in a secure computation qRihe)*"-
ranked element of the new inputs, using the protocol we described above.
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3.3.3 Security for the Malicious Case

We assume that the comparison protocol is secure against malicious parties. We then show
that although the malicious party can choose its input values adaptively during the execu-
tion of the protocol, it could as well have constructed an input a priori and given it to a
trusted third party to get the same output. In other words, although the adversary can define
the values of its input points depending on whether that input point needs to be compared
or not in our protocol, this does not give it any more power. The proof is composed of two
parts. First, we show that the functionality provided by the protocol definition provides the
required security. Then, we show how to implement this functionality.

Lemma 3.3.3 For every adversary!’ in the real model there is an adversad/' in the
ideal model, such that the outputs generated4dsyand A” are computationally indistin-
guishable.

Proof: Based on the composition theorem, we can consider a protocol in the hybrid model
where we assume that the comparisons are done securely by a trusted party. (We actually
need a composition theorem for a reactive scenario here. We refer the regder td [Can01,
CLOSO02] for a treatment of this issue.)

Visualize the operation od’ as a binary tree. The root is its input to the first comparison
performed in the protocol. The left child of the root is its input to the second comparison
if the answer to the first comparison is 0, and the right child is its input to the second com-
parison if the first answer is 1. The tree is constructed recursively following this structure,
where every node corresponds to the input providedibto a comparison done at Step
4(B). We add leaves corresponding to the input providedtp the secure computation in
Step 5 of the protocol; note that for each possible outcome of the sequence of comparisons
in Step 4(B), there is a unique leaf corresponding to it.

Fix the random input used by adversafy. We also limit ourselves to adversaries
that provide inputs within the bounds maintained by the protocol (otherwise the protocol
aborts, and since early termination is legitimate in the ideal model, we are done). We must
generate an input that can be given to the trusted party in the ideal model in order to generate
a computationally-indistinguishable transcript. For this, weAliby providing it with the
output of the comparisons. We go over all execution paths (i.e. paths in the tree) by stopping
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and rewinding the operation. (This is possible since the tree is of logarithmic depth.) Note
that each of thenternal nodes corresponds to a comparison involvirgjfeerentlocation

in the sorted list that!’ is supposed to have as its input. Associate with each node the value
that A’ provides to the corresponding comparison. Observe the following facts:

e For any three internal nodds A, R where L and R are the left and right children
of A, the bounds checked by the protocol enforce that the valdei®smaller than
that of A, which is smaller than that k. Furthermore, an inorder traversal of the
internal nodes of the tree results in a list of distinct values appearing in ascending
order.

e When the computation reaches a leaf (Step&)provides a single value to a com-
parison. For the rightmost leaf, the value is larger than any value seen till now, while
for each of the remaining leaves, the value is the same as the value on the rightmost
internal node on the path from the root to the leaf (this is enforced by checking that
the value is the same ag or ug respectively).

e Each itemin the input ofl’ is used in at most a single internal node and exactly one
leaf of the tree.

Consequently, the values associated with the leaves are sorted, and agree with all the values
that A’ provides to comparisons in the protocol. We therefore use these values as the input
to the trusted third party in the ideal model. When we receive the output from the trusted
party we simulate the route that the execution takes in the tree, provide outpditanal

B, and perform any additional operation thitmight apply to its view in the protocl:l

Implementing the Functionality of the Malicious-Case Protocol

The functionality that is required for the malicious case consists of using the results of the
first  comparisons to impose bounds on the possible inputs to the following comparison.
This is areactive secure computatipmvhich consists of several steps, where each step

“Note that we are assuming that the inputs can be arbitrary real numbers. If, on the other hand, there
is some restriction on the form of the inputs, the protocol must verify fHaprovides values which are
consistent with this restriction. For example, if the inputs are integers then the protocol must verify that the
distance between the reported median and the bounds is at least half the number of items in the party’s input
(otherwise the input items cannot be distinct).
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operates based on inputs from the parties and state information that is delivered from the
previous step. This scenario, as well as appropriate security definitions, was described
in [Can01/ CLOS02].

Reactive computation can be implemented using the generic constructions provided
in [Can01, CLOS02], which are secure against malicious parties. The main idea there is
to construct a separate circuit for evaluating each step, where part of the output of every
circuit is the state information which is input to the next circuit. This state information is
output in an encrypted and authenticated form, to prevent the party evaluating the circuit
from learning or changing it. It must be verified and decrypted by the secure computation
of the following step. We can use efficient encryption and authentication schemes, like
one-time pads and universal hashing, for this purpose.

3.4 Multi-party Computation of the k'*-ranked Element

We now describe a protocol that outputs the value ofitfieranked element of the union

of multiple databases. For this protocol we assume that the elements of the sets are integer-
valued, but they need not be distinct. Let 3] be the (publicly-known) range of input
values, and let\/ = § — a + 1. The protocol runs a series of rounds in which it (1)
suggests a value for thé”"-ranked element, (2) performs a secure computation to which
each party reports the number of its inputs which are smaller than this suggested value,
adds these numbers and compares the resultamd (3) updates the guess. The number

of rounds of the protocol is logarithmic it/ .

Malicious Adversaries. We describe a protocol which is secure against semi-honest ad-
versaries. The protocol can be amended to be secure against malicious adversaries by
verifying that the parties are providing it with consistent inputs. We specify in the proto-
col the additional functionality that needs to be implemented in order to provide security
against malicious adversaries.

Protocol FIND-RANKED-ELEMENT-MULTIPARTY
Input: PartyP;, 1 < i < s, has databasP,. The sizes of the databases are public, as is
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the valuek. The rangda, ] is also public.
Output: Thek!-ranked element i, U --- U D,.

1. Each party ranks its elements in ascending order. Initialize the current
range[a, b] to [«, 5] and seth = > | D;|.
In the malicious case:Set for each party bounds(l)’ = 0, (g)" =
0. These values are used to bound the inputs that padports in the
protocol. (1) reflects the number of inputs of partystrictly smaller
than the current range, whil@)’ reflects the number of inputs of party
strictly greater than the current range.

2. Repeat until “done”

(a) Setm = [(a + b)/2] and announce it.

(b) Each party computes the number of elements in its database which
are strictly smaller tham, and the number of elements strictly greater
thanm. Let/; andg; be these values for party

(c) The parties engage in the following secure computation:

In the malicious case:Verify for every party: thatl; + g; < |D;|,
l; > ()", and g; > (g)". In addition, ifm = a, then we check that
l; = (1)%; orif m = b, we verify thatg; = (¢)°.
e Output“done”if -I; < k—1and Y ¢g; < n— k. (This means
thatm is thek!"-ranked item.)
e Output“0”if > I; > k. Inthis case, sét= m —1. (This means
that thek!"-ranked element is smaller than)
In the malicious case:Set(g)’ = |D;|—I;. (Note that as the right
end-point of the range decreasésg)’ is non-decreasing. This
can be seen by noting thidd;| — ; > ¢;, which is enforced to be
atleast as much as the previous valuépf. (Since the left end-
point of the range remains the sani®! remains unchanged.)
e Output “1”if > ¢g; > n — k + 1. In this case sei = m + 1.
(This means that the'"-ranked element is larger tham.)
In the malicious case:Set (1)’ = | D;| — g;.
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Correctness: The correctness of this algorithm follows from observing thatifs the
kt"-ranked element then the first condition will be met and the algorithm will output it.
In the other two cases, thé"-ranked element is in the reduced range that the algorithm
retains.

Overhead: The number of rounds i®g M. Each round requires a secure multi-party
computation that computes two summations and performs two comparisons. The size of
the circuit implementing this computationdX s log /), which is also the number of input

bits. The secure evaluation can be implemented using the protocols of [GMW87, BMR9O0,
FY92].

3.4.1 Security for the Semi-honest Case

We provide a sketch of the proof of the security of the protocol. Assume that the multi-
party computation in step 2(c) is done by a trusted party. Denote this scenario as the hybrid
model. We show that in this case the protocol is secure against an adversary that controls
up tos — 1 of the parties. Now, if we implement the multi-party computation by a protocol
which is secure against an adversary that controls upparties, e.g. using [GMW87,
BMR9Q, [FY92], it follows from the composition theorem that the resulting protocol is
secure against this adversary. Of course, s — 1 in the actual implementation, since the
protocols computing the “simple” functionalities used in the hybrid model are not secure
againsts — 1 parties, but rather against, say, any coalition of less tfiarcorrupt parties.

In the hybrid model, the adversary can simulate its view of the execution of the protocol,
given the output of the protocol (and without even using its input). Indeed, knowing the
rangela, b] that is used at the beginning of a round, the adversary can compute the target
valuem used in that round. lin is the same as the output, it concludes that the protocol
must have ended in this round with as the output (if the real execution did not output
at this stagein would have been removed from the range and could not have been output).
Otherwise, it simply updates the range to that side:oivhich contains the output (if the
real execution had not done the same, the output would have gone out of the active range
and could not have been the output). Along with the knowledge of the initial range, this



58 CHAPTER 3. SECURE COMPUTATION OF THE KT# -RANKED ELEMENT

shows that the adversary can simulate the execution of the protocol.

3.4.2 Security for the Malicious Case

We show that the protocol is secure given a secure implementation of the functionality that
is described in Step 3 of algorithmNb -RANKED-ELEMENT-MULTIPARTY. Since this is

a multi-party reactive system we refer the reader to [Can01, CLOSO02] for a description of
such a secure implementation. The idea is that the parties run a secure computation of each
step using, e.g., the protocol 0f [BMR90]. The output contains encrypted and authenticated
sharesof the current state, which are then input to the computation of the following step,
and checked by it.

For every adversary that corrupts upste- 1 parties in the computation in the hybrid
model, there is an adversary with the same power in the ideal model. We limit the analysis
to adversaries that provide inputs that agree with all the boundary checks in the algorithm
(otherwise the protocol aborts, and this is a legitimate outcome in the ideal model).

Imagine a tree of sizé/ with each node in the tree corresponding to a guegs the
protocol) for the value of the median. The root corresponds to the initial guessn, =
[(8 — «)/2] with the initial range beindp, 3]. Its left child corresponds to the next guess
for m if the first guess is incorrect and the median is discovered to be smallenthand
is associated with the range, b], with « = o andb = my — 1. Similarly, the right child
corresponds to the next guess forif the median is discovered to be larger thap, and
is associated with the range., + 1, 3]. The whole tree is constructed recursively in this
manner. The leaves are associated with ranges containing a single integer. Note that each
integer in the intervala, 3] is associated with the single noden the tree at which the
guessn is set to the value of this integer.

Fix the random values (coin flips) used by the adversary in its operation. Run the
adversary, with rewinding, checking the values that are given by each of the parties it
controls to each of the comparisons. Let the guebe associated with the node Then,
the two valued,, andg, that partyp provides to the comparison of nodeare supposed
to be the number of items in the input of paptywhich are smaller than and larger than
u respectively. Alsog, = |D;| — I, — g, denotes the number of items that are specified
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by the adversary to be equal 40 Assume that we first examine the adversary’s behavior
for the root node, then for the two children of the root, and continue layer by layer in
the tree. The boundary checks ensure that if node is a descendant of node then

lis1 = D; — g; = l; + ¢;, and if nodei is a descendant of noder- 1, theng; = D; 1 — l; 41,

or equivalently that;+e; = [, 1. We next observe that by construction, for any consecutive
nodesi andi + 1, eitheri is a descendant of+ 1 or i + 1 is a descendant of This is so
because only a node with value betweeandv can put two nodes andv into different
subtrees. Thus, far= «, ..., — 1, we havel; + e; = [;;1. Moreover, our checks make
sure thar,, = 0 andgsz = 0 implying ls + eg = D;. Summing over all these equalities, we
get>” e, =D,

Thus, we can use the result of this examination to define the input that a corrupp party
provides to the trusted party in the ideal model. Specifically, we set the input to ceptain
items of valueu, for everyu € [a, 3]. The trusted party computes thé-ranked element,
say using the same algorithms as in the protocol. Since in the protocol itself, the values
provided by each party depend only on the results of previous comparisons (i.e. path in the
tree), the output of the trusted party is the same as in the protocol.
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Chapter 4
Introduction to Auction Design

In the second part of the thesis, we will study profit-maximization problems related to sell-
ing advertisement space on Internet web sites. Clearly, the optimal selling price depends
on the benefit derived by the advertisers from the display of their advertisements. In most
cases, the web site owner does not have a good estimate of the value of this benefit, as the
advertisers’ needs often change with time. This is unlike classical optimization problems
where the optimizer (the advertisement seller in our case) knows the values of all the vari-
ables over which the optimization is to be carried out. In the online advertising market,
the web site owners often take recourse to asking the advertisers themselves for their val-
uations of the benefit they will receive. The value reported by the advertiser is called her
bid. However, the advertisers, being selfish agents, need not reveal their valuations truth-
fully if it is in their self-interest to do so. The goal of the web site owner is to set up a
selling mechanism that uses these reported values to determine the price(s) to be offered to
the advertisers, in such a way that maximizes profit when each agent bids according to her
best interest. At the same time, as discussed in Ch@pter 1, the web site owner would like
to keep the process of finding the optimal bidding strategy simple in order to attract more
advertisers to the online advertising market. In general, the optimal strategy of an agent
depends on how the outcome varies with the bids of various agents as well as on the bids
of the other agents. One approach to simplifying the bidding process is to use a dominant
strategy mechanism which we discuss in the next section.
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4.1 Mathematical Framework

Game Theorys a branch of mathematics that attempts to understand how rational agents
behave in strategic situations. One area of game theory, qaksthanism desigrdeals

with the construction of mechanisms, or games which are designed to get the agents to
behave in a certain way so as to achieve some desired outcome. In this thesis, we adopt
the algorithmic mechanism design framework set forth by Nisan and Ronen [NR99]. The
mechanism deals with a set of agehfsand wishes to choose from a collection of outcomes

O. Each agent is assumed to havewaluation functiorw; : O — R. We will sometimes

refer to the valuation function as titpe of the agent. Intuitively, the valuation function
describes agenits intrinsic preference for each outcome. An agent’s valuation function

is known only to that agent. Let = |N| be the number of agents and {Etdenote the

set of all possible valuation functiof@ — R. Letv € 7™ denote the vector of types of

all agents. The mechanism works by asking each agent to report her type and computing
an outcome and a set of payments based on the reported types. We resaefmorted

type as hebid b;, and letb € 7" denote the vector of bids. Ldt, : 7" — R be the
payment made by ageitand P = (P;);cn be the paymergcheme Thus, a mechanism

M consists of a pai(O, P), whereO : 7" — O is the outputfunction andP is the
payment scheme. A mechanism is deterministic if the output function and the payment
scheme are a deterministic function of the bid vector. A mechanism is randomized if the
procedure by which the auctioneer computes the output and the payments is randomized.

Each agent’s goal is to maximize hdiflity function, which is assumed to be of the form
u; (0O, P;) = v;(O) — P;. In the literature, this form of utility function is calleguasi-lineat
Since the mechanism determines the outcome and the payments based on the bls] vector
we will often abbreviate:;(O(b), P;(b)) andv;(O(b)) to u;(b) andv;(b) respectively.

Clearly, an agent’s utility depends not only on her valuation function, but also on the
bid vector. Letb_; = (by,...,b;_1,7,b;11,b,) denote the vector of bids with ageii
bid hidden by a question mark. We will sometimes refer to this asrthgked bid vector
Similarly, let v_; denote the vector of all other agents types, and/let= 7"~! be the
space of those type vectors. For convenience, we will wsits (b_;, b;). A strategy
S; + T — 7T is said to be alominant strategyor agent: if u;(b_;, S;(v;)) > u;(b_;, ;)
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forall b_; € 7_; andb;,v; € T in other words, agents best strategy is to report her
type asS;(v;) whenever her true type is. A mechanism is said to bedominant strategy
mechanisnif every agent has a dominant strategy.

Definition 4.1 (Truthful Mechanism) A truthful mechanism is a dominant strategy mech-
anism in which truth-telling is a dominant strategy for every agent, i.e.

ui(b_i, Ui) > Ui(b_i, bz) V b_; € T—i andbi, v; € I];

Theorem 4.1.1 (Bid-independence principle)lf the mechanism{O, P) is truthful, and
O(b_i7 b1> = O(b_z‘, bl), thenPi(b_i, bz) = Pi(b—i7 b/)

(2 (3

Proof: Suppose the contrary, i.&;(b_;,b;) > F;(b_;,b}) while O(b_;,b;) = O(b_;,b}).
Whenv; = b; and all other agents bib_;, agent: is better off lying and bidding;,
contradicting truthfulness. O

This principle asserts that in a truthful mechanism, the bid of an agent affects the pay-

ment made by the agent only through its effect on the outcome of the mechanism.

4.2 Truthfulness as a Means to Simplified Bidding

As mentioned earlier, we would like to construct mechanisms for selling advertising space
on Internet web sites under which it is easy for the advertisers to determine their optimal
bidding strategies. Unless an advertiser has a dominant strategy, she would be forced to
speculate (or hire someone to speculate for her) on how the other advertisers are going
to bid in order to determine her optimal strategy. Thus, in order to get rid of speculation
and keep the process of bidding simple, we would like each advertiser to have a dominant
strategy, i.e. we would like to use a dominant strategy mechanism. Now, we invoke the
Revelation principlestated below to conclude that we can restrict our attention to truthful
mechanisms without missing any possible combination of outcome and payment functions
(when we view the outcome and payment as a function of valuation rather than bids).
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Theorem 4.2.1 (Revelation principle[Mye79, DHM79]) Every dominant strategy mech-
anism can be converted to a truthful mechanism without changing the outcome or the pay-
ments on any type vector (i.e., vector of valuation functions of all agents).

Proof: Given a dominant strategy mechanidhy construct a truthful mechanisim’ that
simulates each bidder’'s dominant strategyMih Let S; be agent’s dominant strategy
under M. Then, M’ produces the same outcome and payments on bid vects the
mechanism\/ produces on the bid vecto6;(b;));cn- Clearly, agent’s dominant strategy
under)/’ is to bidb; = v;, because this is equivalent to playing the dominant strate@y)
in M. O

4.3 The Vickrey Auction

We next give an example of a classical truthful mechanism due to Vickrey [Vic61]. Given
the nature of its payment scheme, it is also calledsmond-price auctianit is used for
selling a single item; so the outcome consists of the item being given to one of the agents.
The valuation functions of the agents take a very simple form: if an agent gets the item,
her valuation of the outcome is (here we are slightly abusing notation by using the term

v; to refer to a single number); otherwise her valuation of the outcorfie The auction
consists of inviting bids for the item, and giving the item to the highest bidder and charging
her an amount equal to the second-highest bid. If two bidders tie for the highest bid, the
item goes to the bidder with the lower index. The proof of the following theorem is simple,
but instructive.

Theorem 4.3.1 The Vickrey auction is truthful.

Proof: In order to prove truthfulness, we have to show that none of the bidders can benefit
by not revealing her true valuation function. Fix an ageand leth be the highest bid
among the other agents.df > h, then the agent gets the item for an amolumthenever

she bids an amount higher thar{which includes bidding her true valuation function). In
this case, her utility i3; — h. The only possible way she can change the outcome is by
bidding no more thar in which case her utility i$. On the other hand, if; < h, she
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makes a profit of as long as she bidsor less (which includes bidding her true valuation).
She can possibly change the outcome by raising her bid aawewhich case her utility
becomes negative. This shows that biddsannot benefit by not bidding her true valuation.

O

In fact, it can be shown that bidding one’s true valuation is the only dominant strategy

under the Vickrey auction. This is so because for every bid valtfev;, there exists &_;
for which this bid value is sub-optimal. In particular, bid vahjés sub-optimal whenever
max ., b; lies strictly betweerd; andv;.

4.4 The Vickrey-Clarke-Groves Mechanism

The most celebrated result in truthful mechanism design is the Vickrey-Clarke-Groves
(VCG) mechanism([Vic61, Cla71, Gro73] (also see Chapter 23 of [MCWG95]). Itis a
generalization of the Vickrey auction and can be used when the goal of a mechanism is to
maximize the total valuation of all the agents. The VCG mechaf3n®) is given by:

O(b) = 0" whereo® € argmax., » _ bi(o)
ieN
Pi(b) = —=>2,:b5(0%) + hi(b—y)

where the functiong,; are arbitrary. That is, VCG selects the outcome that maximizes the
total reported valuation, and charges agesmt amount?; that depends ob; only through

its influence on the outcoms, just as required by bid-independence principle. Since the
h; terms in the payment are completely independent of aggebtd, they are irrelevant to
truthfulness. Th({:j# b;(o) term in the payment is quite special though — it aligns the
utility function of agent with the utilitarian objective function. This makes the mechanism
truthful, as asserted by the following theorem.

Theorem 4.4.1 The VCG mechanism is truthful.

The basic VCG mechanism can be augmented by weighting the agents differently and
adding a bias to the outcome function, while preserving truthfulihess [GL77, Rob79]. More
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formally, letw € Rﬁf be a set of non-negative weights. LEt: O — R be a “bias”
function. The resultingveighted biased VCG mechanisimdefined by:

O(b) = 0* whereo™ € argmax., (Z w;b;(0) + H(o))
ieN

P(b) = =k (3 wibi(0)) + hi(b_) whenw; > 0

Pi(b) = hi(b;) whenw; = 0

where the functiong; are arbitrary.

Theorem 4.4.2 For every choice of weights and bias function, the weighted, biased VCG
mechanism is truthful.

4.5 Analysis Framework

Our goal is to design truthful auctions that maximize the auctioneer’s profit. ldeally, we
would like to design optimal auctions — auctions that, on any given input, perform bet-
ter (or at least no worse) than any other truthful auction. In fact, we do precisely that
for the problem of selling multiple advertisement slots on a single web page when there
are no budget constraints and the outcome function comes from a certain natural class of
functions. If we are unable to provide an auction that is optimal for all inputs, our next
goal would be to design auctions that perform well compared to a meaningful benchmark.
In this case, we will analyze them in the competitive analysis framework of Goldberg et
al. [GHWO1] for profit-maximizing auctions. Prior to [GHWO1], profit maximization in
mechanism design was considered in a Bayesian framework. In such a framework, it is
assumed that the agents’ valuations are drawn from some probability distribution and that
the mechanism designer has knowledge of this prior distribution. The goal is to design
the Bayesian optimal mechanism for the given prior distribution. The obvious drawback
of this approach is that the mechanism designer must know the prior distribution, which is
exactly the pre-requisite that we are trying to eliminate. Therefore, we would like to design
a truthful auction mechanism that performs well without knowing anything about the input,
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i.e., a single mechanism that works well for all inputs and does not need to have any prior
knowledge about the preferences of various agents.

We will look to design an auction that obtains a profit that is comparable to the profit
of some natural benchmark. The competitive ratio of an auction will be defined as the
supremum over all possible input bid vectors, of the ratio of the benchmark revenue to the
revenue of the auction. Let(b) be the revenue of an auctiof on the bid vectob and
let ropr(b) be the benchmark revenue bn Then the competitive ratio of auctiod is
defined as:

sup ropr(b)
b 1a(b)
A key part of setting up a competitive framework for analyzing solutions to a problem is
coming up with the right metric for comparison. As a starting point, we could try com-
peting with the strongest possible benchmark, namely the profit of an auctioneer who is
omniscienti.e., knows the valuations of all the agents, and can use them to compute the
outcome and the payments. However, in most interesting auction design problems, it can
be shown that it is not possible for a truthful auction to achieve any finite competitive ratio
against such a powerful benchmark. The next step is to constrain the benchmark auctioneer
in some reasonable manner. Consider the problem of selling multiple identical units of an
item to a set of indistinguishable agents each of whom desires one unit of the item. In this
case, we can specify the outcome of the auction and the payments by specifying an offer
price for each agent — an agent gets a unit if and only if her bid is no less than the price
offered to her. If the same prigeis offered to all the agents, the revenue is:(p), where
n(p) denotes the number of agents whose valuation (and bid in a truthful auction) is at least
p. One possible benchmark is the revenue earned by the ex post (or omniscient) optimal
single price that can be offered to all the agents. We denote this reventi@bg (b).

Theorem 4.5.1 (IGHK"02]) For any truthful auction4, and anys > 1, there is a bid
vectorb such that the expected profitdfonb is less thanF(b)/g.

The intuition behind this result is that if one agent has a bid much higher than the rest,
then offering the optimal single price will result in a revenue equal to this bid. However, in
the absence of competition, there is no truthful way to extract this high bid value from the
agent. This benchmark can be generalized as follows.
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Definition 4.2 Let P, be the set of all pricepg such that at least agents have bids or
higher. ThenF® denotes the maximum possible revenue from offering the same price
p € P; to all the agents.

Goldberg et al.[[GHWO01] us¢® as the benchmark for their competitive analysis.
(Note thatF® is identical toF whenever the optimal single price can be afforded by at
least two agents.) This benchmark seems reasonable when the agents are indistinguishable
and [GHK"02] shows that indeed no truthful mechanism in a large natural class of auction
mechanisms can outperform this benchmark. To make this more precise, let an auction
mechanism be callethonotonidf an agent’s chances of getting an item do not decrease as
her bid increases. Then, [GHK?2] prove the following theorem.

Theorem 4.5.2 For any set of bidd, the revenue of a monotonic, truthful auction is no
more thanZ (b).

We note here that the auctions that compete with a given benchmark need not satisfy
the constraints that the benchmark pricing function has to meet. For example, for the above
problem, we do not require the auction to offer the same price to all the agents. In fact,
Goldberg and Hartline [GHO3b] show the following.

Theorem 4.5.3 Let F,,,, denote the revenue of the optimal single price at which at least
of the agents get a unit. If a truthful auction always offers the same price to all bidders, it
cannot beO(log ™ /log log - )-competitive withF,.

Next, consider thattribute auction problemor the problem of selling identical copies
of an item to agents who can be distinguished on the basis of some known attribute, like the
postal zip code of the agent. In this case, the benchmark auctioneer can be allowed to divide
the agents into, say,sets (based on their attributes), and offer different prices to different
sets (but the same price to all agents in the same set). Blum and Hartlinel|[BHO5] use the
optimal revenue from such a pricing function as the benchmark. When we are trying to
sell a divisible good, e.g. network bandwidth, and the attribute represents the demand of
the agent, e.g. the amount of bandwidth the agent needs, it seems reasonable to constrain
the auctioneer to offer higher prices (or at least not lower prices) to agents with higher
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attributes. We call such a pricing functiomonotoneas the offer prices are monotone in
attribute, and we will use the profit of the optimal such pricing function as the benchmark
for analyzing the auctions presented in Chalpter 5.

4.5.1 Some Competitive Auction Results

The problem of designing a truthful auction for selling multiple identical units of an item
that performs well in the worst-case has received considerable attention recently [GHWO01,
FGHKO0Z,[GH03a, GHKS04, HMO05]. The current best truthful auction [HMO05] achieves a
competitive ratio oB.25 with respect to the revenue of the optimal single price that sells to
at least two agents.

The attribute auction problem was introduced by Blum et al. [EHO5] who investigated
whether it was possible to get a revenue higher than the revenue of the optimal single price
when the auctioneer is able to distinguish between agents based on a known attribute of the
agents. LeO PT'(r) be the profit of an omniscient auctioneer who is allowed to divide the
agents into- sets (based on their attributes), and offer different prices to different sets, and
let » be an upper bound on the value of the highest bid. Then, [BHO5] presents a truthful
auction that achieves a revenue of at |€aBfTl'(r) /16 — rh/2 simultaneously for alt.



Chapter 5

Auctions for a Single Advertisement
Slot: The Knapsack Auction Problem

Consider a web page with a single slot where an advertisement can be displayed. Whenever
an Internet user accesses the web page, the web site owner can choose to show her an adver-
tisement. The process of displaying an advertisement is calléd@ession Depending

on the content of the web page, a variety of advertisers might be interested in displaying
advertisements on the web page. Each of these advertisers will invoke a different level
of interest from the Internet users visiting the web page. Thus, each advertiser will have
a different click-through rate (CTR) associated with her advertisement (the click-through
rate of an advertisement is the fraction of its impressions that result in a click by an Inter-
net user). We assume that the web site owner has (or can collect) statistical information
about the CTRs of various advertisers. Moreover, each advertiser might have a limit on
the number of clicks on her advertisement that she can handle in a single day. We assume
that this limit is known to the web site owner. One scenario in which this assumption is
justified is when the web site owner interacts with the advertisers repeatedly. Thus, the
web site owner knows the maximum number of impressigresired by an advertisey

which can be computed as the product of the maximum number of clicks desired and the
average number of impressions needed to generate a click (the reciprocal of the CTR). This
is called thedemandor sizg of the advertiser. In addition, the web site owner has an esti-
mate of the total number of impressions available during the course of the day. He would

12
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like to allocate the available impressions among the interested advertisers with the goal of
maximizing profit. To make an informed decision, he needs to know the benefit that each
advertiser derives from a click on her advertisement. However, an advertiser’s valuation
of a click or an impression is known only to the advertiser. WeyJetenote advertisei's
valuation ofc; impressions. The fact that the valuations are private implies that the web
site owner has to resort to soliciting bids from the advertisers and running an auction to
sell the advertisement space. As discussed in the previous chapter, unless the seller uses
a dominant strategy mechanism, the optimal bidding strategy of an advertiser will depend
on the bids of other agents, making the process of bidding complex. Also, by the revela-
tion principle, every dominant strategy mechanism has an equivalent truthful mechanism.
Thus, motivated by the desire to keep bidding simple, we would like to desigrirdul
mechanism for selling advertisement space with the goal of maximizing profit.

Outline of the Chapter. The rest of the chapter is organized as follows. We define the
problem formally in Sectioh 5]1. We discuss the analysis framework and state our results in
Sectior{ 5.P. Related work is discussed Sedtioh 5.3. In S€ctidn 5.4, we present a compari-
son of the different pricing rules that we consider in this chapter. In Sgctibn 5.5, we discuss
the algorithmic complexity of computing the optimal pricing function without any consid-
eration of the game-theoretic issues. We present competitive auctions for our problem in
Sectiorj 5.p. For this, we first show (in Sectjon 5.6.1) how to reduce the limited-supply auc-
tion problem to the unlimited-supply auction problem with a small loss in approximation
factor. Then in Section 5.6.2, we give an unlimited-supply auction that achieves a constant
fraction of the benchmark revenue (with a small additive loss).

5.1 Problem Definition

We model our problem as the following abstracivate-valueversion of the (fractional)
knapsack problemWe will refer to it as theknapsack auction problemThere is a set

of n agents\' = {1,...,n}, each of whom has an object. Letrepresent the publicly-
known size of agents object. Each of these agents desires to have her object placed in a
knapsack with total capacity. Our goal is to design a single-round, sealed-bid auction for
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this setting. In this auction, an outcome is characterized by a set of agentsvealiesis

The winning agents have their items placed into the knapsack and losing agents do not
(although our auction will only accept whole items, it will be shown to perform well with
respect to benchmarks that are allowed to accept fractional items). A set of agents forms a
feasible outcome if and only if the total demand of all the winning agents does not exceed
the capacity of the knapsack. Lgtdenote agents valuationfor having their item placed

in the knapsack. This valuation represents the benefit received by the agent from winning.
(Note that we are again abusing notation by usingo refer to a single number rather
than a function as in Sectipn 4.1). We can also define a fractional version of the knapsack
auction problem, where the auctioneer can accept a fraction of each object and:bidder
values the acceptance of fraction of its object at;v;. We assume that all the agents
attempt to maximize themtility, measured as the difference between their valuation and
their payment.

We will assume that the all the agents’ valuations fall within a known rdmgh.

We denote byb = (by,...,b,) the vector of bids submitted by the agents andchy-
(c1,...,c,) the vector of publicly-known object sizes. We assume for convenience that the
agents are indexed by decreasing size, ¢€> ¢ > --- > ¢,. Following [BHO5], we
sometimes refer to these object sizega#isbutes An auction’sprofit, A(b, c), is the sum

of the payments of the winning agents.

Our goal is to design a profit-maximizing truthful mechanism. Recall that in a truthful
mechanism, each advertiser's optimal strategy, irrespective of others’ bids, is to bid her
true valuation. In auction problems like the current one, truthful mechanisms are known
to have the following algorithmic characterization [GHWO1]. Related formulations to the
one below have appeared in numerous places in recent literature| e.q.| [ATO1, FGHKO02,
LOS99]. Recall that the masked bid vector; denotes the vectds with b, replaced with
a'‘?,ie,b_;=(by,....bi—1,7,biy1,...,bp).

Definition 5.1 (Bid-Independent Auction) Let f be a function that maps any masked bid
vector (with a “?’) and attribute vector pair to a price (non-negative real number). The
deterministic bid-independent auction definedfpyI,, works as follows. For each agent

i
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1. Sett; = f(b_;, c).

2. If t; < b;, agenti wins at pricet;.

3. If t; > b;, agenti loses.

4. Otherwise {; = b;), the auction can either accept the bid at priger reject it.

A randomized bid-independent auction is a distribution over deterministic bid-independent
auctions.

The proof of the following theorem can be found, for examplel, in [FGHKO2].

Theorem 5.1.1 An auction is truthful if and only if it is equivalent to a bid-independent
auction.

Prior-free Optimization. Through the study of the knapsack auction problem, we wish

to develop a better understanding of how to do prior-free optimization (i.e. optimization
without assuming any prior knowledge of the distribution of the valuations) when there are
non-trivial constraints on the allocation. In our case, items selected for the knapsack must
all fit in the available space. A similar direction was attempted by Fiat et &l. in [FGHKO02]
for the multicast pricingproblem in which an obvious market segmentation could be ex-
ploited to reduce the problem frompaivate-valueoptimization problem to @ublic-value
optimization problem. In the knapsack auction problem, however, there is no obvious mar-
ket segmentation and indeed, figuring out how to segment the agents into markets in a
truthful manner constitutes a key portion of the solution. To the best of our knowledge, this
work represents the first solution to a non-trivial private-value optimization problem when
market segments are not given in advance.

5.2 Analysis Framework and Results

As discussed in Chaptef 4, we analyze the performance of our auctionsdartipetitive
analysisframework of Goldberg et al. [GHWO01] for profit-maximizing auctions. We are
looking to design an auction that obtains a profit that is comparable to the profit of a natural
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optimalomniscientwction. As in the bid-independent auction (see Definftioh 5.1), we will
specify the allocation and payments through a pricing function that maps agents to offer
prices — each agents with a bid above her offer price gets her item placed in the knapsack,
while the items of all the agents with bids below their offer price get rejected. For any agent
whose bid is equal to her offer price, the auctioneer has the discretion to either accept her
item or reject it.

For the case that the agents are indistinguishable, [GHWO01] uses the profit of the ex post
optimal single price that can be offered to all agents as the benchmark. For this benchmark,
the offer price can not depend on the agent at all and the pricing function is constant. We
refer to such pricing schemes asiform pricing While this benchmark is reasonable
for indistinguishable agents (see Theorem 4.5.2), it might be too weak when the seller
knows the value of some attribute of the agents (their demand in our case) which can
be used as a basis to distinguish between them. In this case, it is more reasonable to
let the pricing function vary with the attribute value (but remain constant for any given
attribute value). One natural candidate pricing strategy is to charge the same price per unit
demand. Thus, agents demanding more of the capacity pay proportionally more. We refer
to such pricing schemes &sear pricing, since the only valid pricing functions are linear
in demand. The most general pricing strategy we will consider follows the least restrictive
natural assumption we can place on prices: that agents desiring more capacity not pay less
than those desiring less. We refer to thigyvasnotone pricingsince the only valid pricing
functions for this class are monotone non-decreasing in demand. Clearly, both uniform
pricing and linear pricing are special cases of monotone pricing. As such, we will use
the revenue of the optimal omniscient monotone pricing scheme as the benchmark revenue
throughout the chapter. We note that an auction that achieves a constant fraction of the
revenue of the optimal monotone pricing function also achieves a constant fraction of the
revenue of optimal uniform and linear pricing functions.

We would like to note here that our auctions will not produce a monotone pricing func-
tion — in fact, it can be shown that any truthful auction that always produces a monotone
pricing function cannot perform well with respect to any of the above benchmarks. To see
this, recall Theorem 4.5.3 which shows that for the case of indistinguishable agents, no
truthful auction that offers the same price to all the agents can perform well with respect to
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the revenue of the ex post optimal single price for all agents. Next, note that for the special
case of our problem where all the agents have the same attribute value, producing a mono-
tone pricing function is equivalent to offering the same price to all the agents; in addition,
all the above benchmarks reduce to the revenue of the ex post optimal single price. Thus,
we get the following corollary of Theorein 4.5.3.

Corollary 5.2.1 LetF,,, denote the revenue of the optimal single price at which at least
of the agents get a unit. If a truthful auction always produces a monotone pricing function,
it cannot beO(log ~*/ log log I )-competitive WithF,,,.

Our Contributions

Let OPT be the revenue obtained by the best monotone pricing function. We can apply
Theoren] 4.5]1 to the case when all the agents have the same attribute value to conclude
that it is not possible to obtain a constant fractionOdfT in the worst case. We design
auctions that obtain at least a constant fractio®®8fl' minus a small additive loss term,
i.e., « OPT —\h (whereh is an upper bound on the highest bidder’s valuation). Ideally
both« and\ should be constants. Here, we achieve a constamd) € O(logloglogn).

We first consider a special case of the knapsack auction problem, namahithéed-
supplycase where the capacity of the knaps&ckexceeds the total demard,, c;. This is
an interesting special case of the original problem that is much less constrained. We present
a truthful auction that achieves a revenuexddPT —O(log log log n)h. We then use this
auction to solve the limited-supply case. In doing so, we outline a general approach for
dealing with non-trivial optimization problems. The first step of this approach is to solve
theunlimited-supplyersion of the problem. The second step is to reducbrtiied-supply
(or general) version of the problem to the unlimited-supply version. This approach works
in general for “monotone” optimization problems, where the feasibility of an allocation
implies the feasibility of all subsets of the allocation as well. The reduction works by

(a) selecting a set of agents that can all be allocated together,

(b) running the unlimited-supply solution on this selected set, and
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(c) deciding offer prices based on the prices determined in step (b) and some other crite-
ria discovered in step (a). Step (a) and (c) must be done rather carefully to preserve
incentive-compatibility and the competitive ratio.

In order to preserve a constant competitive ratio, the optimal unlimited-supply monotone
pricing on the selected agents must be within a constant factor of the optimal limited-supply
monotone pricing on the original set of agents. To preserve incentive compatibility, step
(a) and (c) must be performed to meet additional conditions discussed later.

5.3 Related Work

The private-value knapsack problem has earlier been studied by Mu'alam (et al. [MNOZ2]
with the objective of maximizing social welfare, rather than profit. The problem of design-
ing profit-maximizing auctions for selling advertisements on Internet web sites has been
the subject of some recent work [MSVV05, BA5]. Mehta et al.[[MSVV05] ignore the
game-theoretic issues and instead focus on the algorithmic problem of matching advertis-
ers to web pages when their valuations and budgets are known to the auctioneer. Borgs et
al. |BCI™05] study the problem of selling multiple identical units when the agents are inter-
ested in getting multiple units as long as their payment does not exceed their budget. Both
the valuation and the budget of an advertiser are considered private values. As such, unlike
our setting, they are unable to distinguish between bidders and are only able to compete
with the revenue of the optimal single price at which at least two agents get a unit.

A problem closely related to ours is tlatribute auction problemIt was introduced
by Blum et al. [BHO5], who investigated whether it was possible to get a higher profit
when the auctioneer is able to distinguish between agents based on a known attribute of the
agents. They presented a solution for the unlimited-supply, single-dimensional-attribute
auction problem, and analyzed its performance by comparing its profit to that of the optimal
piecewise-constant (not necessarily monotone) pricing rule. We will henceforth refer to
this attribute auction as tlgeeneral attribute auctionWe will be make use of the following
result.

Theorem 5.3.1 [BHOS5] Let OPT(r) be the profit of an omniscient auctioneer who is
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allowed to divide the agents intosets (based on their attributes), and offer different prices
to different sets. Also, |t be an upper bound on the value of the highest bid. Then, the
general attribute auctioobtains a profit of at leasDPT(r)/16 — rh/2 simultaneously for

all r.

5.4 Pricing Rules

For a given instance of the knapsack problem, we consider a pricing rule and selection of
items to be contained in the knapsack tov/aéd if

1. the valuation of each item in the knapsack is at least equal to the price set for items
of that size, and

2. the valuation of each item not in the knapsack is no more than the price set for items
of that size.

Thepayoffof a particular pricing rule is simply the number of items in the knapsack at each
size times the price for items of that size summed over all item sizes. The goal of a pricing
algorithm, then, is to find a valid pricing rule that maximizes the total payoff. We note that
the validity conditions can be viewed as a requirement for the pricing rule and assignment
to beenvy-fredGHK " 05] in the sense that each agent prefers her outcome to the outcome
of every other agent, or equivalently that none of the agents is envious of the outcome of
another agent.

As mentioned in the introduction, we will be primarily interested in three classes of
pricing functions:uniform pricing linear pricing andmonotone pricingIn uniform pric-
ing, we will assume that there is a single price for all item sizes. In linear pricing, we will
assume that there is a single price per unit size. Finally, our most general class of pricing
functions will be monotone pricing where the price has to be a non-decreasing function of
the item sizes. One can view the restriction to monotone prices as an additional require-
ment for envy-freedom, since without monotone prices, a small object would be envious of
a larger object being placed into the knapsack at a smaller price than it.

We now consider the worst case relationship between optimal uniform pricing, optimal
linear pricing, and optimal monotone pricing. As uniform and linear pricing are a special
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case of monotone pricing, it is clear that the profit of the optimal monotone pricing is better
than that of both the optimal uniform and the optimal linear pricing. We now get bounds
on how much worse uniform and linear pricing can be.

Lemma 5.4.1 Uniform pricing can be a logarithmic factor worse than monotone and lin-
ear pricing and this is tight.

Proof: Considern items withv; = ¢; = 1/i andC' = oo. Optimal monotone and linear
pricing use the pricing rule(c) = c for a total payoff ofy . 1/i = ©(logn). Uniform
pricing on the other hand must choose a single pricg = p. Since the number of items
with value at leasp is at mostl /p, the total payoff of uniform pricing is at most 1. This
provides the desired logarithmic factor separation. Tightness follows from the following
observation: for any;,...,v, reordered such that < v;,;, the payoff of the optimal
uniform price is given bymax;iv;. Sincev; < M for all 7, the maximum possible
payoff > v; <logn - max; iv;. O

Lemma 5.4.2 Linear pricing can be a linear factor worse than monotone and uniform
pricing and this is tight.

Proof: TakeC = oo, v; = 1, and¢; = n~C~Y for all i. Optimal monotone and uniform

pricing setr(c) = 1 and obtain a payoff ofi. The optimal linear pricing function uses the

pricing functionr(c) = c. This gives a payoffof_, n=(=Y = O(1). To see tightness, note

that linear pricing can always obtain a payoff of at leask; v;, which is at least1/n)"

of the optimal monotone and uniform pricing payoffs. a
These results imply that asymptotically, monotone pricing is more powerful than uni-

form or linear pricing.

5.5 Pricing Algorithms

In this section, we explore the non-game-theoretic problem of designing kgeqaback
pricing algorithms As in the mechanism design problem, we assume that the knapsack
has size” and that item has size:; and valuey;. These knapsack pricing algorithms differ
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from conventional knapsack algorithms in that the payoff earned by the seller from placing
an item in the knapsack is not the item’s value, but instead a price that is a function of the
size of the item.

First note that if we were allowed to accept objects fractionally, then a greedy pricing
strategy would yield an optimal algorithm for each of the three pricing policies. However,
when the objects are indivisible, we show the following lemmas.

Lemma 5.5.1 Optimal uniform pricing is in P.
Lemma 5.5.2 Optimal linear pricing is NP-hard.
Lemma 5.5.3 Optimal monotone pricing is NP-hard.

Lemmd5.5.]1 follows from the following simple procedure for computing the profit for
any offer pricep. First add all items with value strictly greater tharthese must be in any
knapsack when pricgis offered. If this exceeds the capacity of the knapsack, theran
infeasible offer price. Otherwise, add the items with value equalttothe knapsack from
smallest to largest. This maximizes the number of items in the knapsack given the offer
price ofp. Given this procedure, we can find the optimal uniform offer price by searching
through then item valuesy, ..., v,, as possible offer prices.

Lemmag 5.5]2 ar{d 5.5.3 follow from the hardness of the subset-sum problem by the fol-
lowing simple reduction. Given an instance of the subset-sum problem with it@wing
size¢;, create an instance of the knapsack problem with the same number of items, and set
v; = ¢; = ¢; for all i. Set the knapsack capacity $0 the desired subset sum. The optimal
pricing function is simplyr(z) = = (which is linear and therefore monotone); however,
the algorithm still has the discretion to “break ties” by choosing which subset of the items
to put in the knapsack (the validity conditions are satisfied for any subset of the items). The
reduction is complete when we observe that there exists a subset of items withi um
and only if the optimal profit for this knapsack problem instancg.is

5.5.1 Pricing Algorithms for Unlimited Supply

An interesting special case of the knapsack pricing problem, referred to asltheted-
supplyproblem, is the case whefeis effectively infinite, i.e.C' > ). ¢;. We first note that
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with unlimited supply, an optimal algorithm would either accept an object in its entirety or
reject it completely. Thus, the optimal fractional pricing rule is identical to the optimal
integral pricing rule. It turns out that the unlimited-supply cases of the knapsack pricing
problem are relatively easy to solve in polynomial time. Contrast this with the envy-free
pricing problems from [GHK 05], where even simple special cases of the unlimited-supply
pricing problems considered are APX-hard, i.e., unless N P, there is no polynomial
time approximation scheme (PTAS).

Lemma 5.5.4 Optimal unlimited-supply linear pricing is in P.

Proof: To compute the optimal linear pricing for items. . . , n, item with valuev; and
size ¢;, we compute each item’s value per unit side,= v;/c;. For each price raté,,
the payoff of the algorithm ig; x >° jidy>d; G Payoffs for all values ofl; can easily be
computed inD(n log n) time by first sorting the items hy;. O

Lemma 5.5.5 Optimal unlimited-supply monotone pricing is in P.

Proof: The optimal monotone pricing rule can be computed by using the following dy-
namic programming algorithm. Intuitively, the table enfr}i, p| corresponds to the opti-
mal payoff from the smallesgtitems using monotone prices, when the highest price offered

is p.
1. Order the items by increasing size, ig¢.< ¢ - - - < ¢,,.
2. Solve the following dynamic program for alle {v4, ..., v, }.

T[0,p] =0
T[i,p] = profit(vi,p) + ~ max  T[i—1,q]
qE{v1 ----- Un}? qu

with profit(v;, p) = p if v; > p and 0 otherwise.

3. Outputmax,c(y, .. v,y T'[n, p].
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5.5.2 Limited-Supply Approximation via Reduction to Unlimited Sup-
ply

We now show how to approximate the optimal monotone knapsack pricing in the general
case by using an optimal or approximate pricing algorithm for the unlimited-supply case.
A similar technique can be applied to the linear pricing variant of the problem. We consider
the following technique for composing two pricing algorithrs, and.A,:

Definition 5.2 (Pricing Algorithm Composition) Given two pricing algorithms4; and
As, we define the composite algorithiy o A, as:

1. Run.A; to obtain pricing functionr (-) and letH be the set of winners.
2. Run.A; on H to obtain pricing functionr,(+).

3. Outputr(x) = max(m (x), m(x)) for the agents inf. For an agent not i, let &
be the smallest-sized agentfihwhose size is no smaller than Offerz a price of

m(x) = 7(T).

If algorithm A; produces a set of winners that is feasible (for our knapsack problem,
feasibility means that all items iff can fit in the knapsack simultaneously), then we can
chooseA, as the optimal unlimited-supply monotone pricing algorithm. Since the feasible
solutions to the knapsack problem @&tesed under inclusignmeaning that any subset of
a feasible set is also feasibld, will always produce a feasible set. All we need to argue
then is that the composite pricing algorithm yields a monotone pricing and that it performs
well.

Lemma5.5.6 If A; and .4, are monotone pricing algorithms, the#, o A, also yields
monotone pricing.

Let Winners 4(X') denote the winners of algorithpd applied to the agent séx.

Definition 5.3 (Performance Preservation)Consider a performance benchmatkPT,
with OPT(Y') denoting the value of the benchmark on the agentYsetAn algorithm



84 CHAPTER 5. THE KNAPSACK AUCTION PROBLEM

A approximately preserveake performance benchmam®PT, if for all inputs with agent
setX,
OPT(Winners4(X)) > a« OPT(X) — ~vh

for some constanis and~, whereh is the maximum value of any item.

Note that if algorithmA, approximately preserves the performance of optimal mono-
tone pricing, an4, is optimal (or constant-competitive), then their composition achieves a
payoff of at leasty’ OPT(N)—+'h for some constants’ andy’. We next discuss monotone
pricing algorithms that approximately preserve the performance of the optimal monotone
pricing and produce a feasible winner set. Recall the standard weighted knapsack problem:
given item values., ..., v,, item sizes, ..., ¢,, and knapsack capacity, find the set of
items, H, with maximum total value that simultaneously fit in the knapsack. We present a
pricing algorithm based on a natural approximation algorithm for the knapsack prﬁblem.

Algorithm APPROXKNAPSACK
Input: Items with values, ..., v, and sizes;, ..., ¢, and a knapsack of sizg.
Output: A monotone pricing functiom.

1. Ignore large items witl; > C'/2.
2. List the remaining items in the order of decreasing value-per-unit-éize,v; /c;.
3. Select the largest prefix of the item list that fits in the knapsack as the winnAr. set

4. Offer n(x) = d*x, whered* is the largest value-per-unit-size among the losers, for
x < C/2 and offeroo otherwise.

Lemma 5.5.7 Algorithm APPROXKNAPSACK approximately preserves the optimal frac-
tional monotone pricingDPT, with OPT(H) > OPT(N)/3 — h.

Proof: Let N/ C N be the items with size at moét/2. At most one item from the set
N — N’ can fit in the knapsack. Thus, the algorithm can restrict its attention to thé’set
without losing more than an additive term/of

We add SteE]4 to output a monotone pricing in addition to dk#tat approximates the optimal knap-
sack.
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If all of N\ fits into the knapsack then the theorem follows. Otherwise, the items in the
winner setH fill at least half of the knapsack. This is because there is some itekfi in
that could not fit into the remaining space of the knapsack, and the ite/fs lirave size
at mostC'/2. Therefore,r(z) is a monotone (in fact, a linear) pricing rule that obtains a
payoff of at leasti*(C'/2; this is because the value-per-unit-size of agentH iis at least
d*. Thus,OPT(H) > d*C/2.

Let L = N\ H be the items not included in the knapsack (which all have value-per-
unit-size at most/*). Clearly, OPT(L) < d*C < 20PT(H). Therefore3 OPT(H) >
OPT(H) 4+ OPT(L) > OPT(N"). O

Note that the lemma above holds for the optifinattional monotone pricing. As noted
before, for unlimited supply, the optimal fractional pricing rule is identical to the optimal
integral pricing rule. Thus, we get the following theorem.

Theorem 5.5.8 The composite algorithm obtained from Algoriti®PROXKNAPSACK
and the optimal unlimited-supply monotone pricing algorithm achieves a payoff of at least
OPT /3 — h, whereOPT is payoff of the optimal fractional monotone pricing rule.

We can similarly define a composition method for linear pricing. The only change that
we need to make is in Step 3 of the composition method (see Defifitipn 5.2). Let the two
algorithms.4; and.A, output a linear pricing rule. Let the pricing rule output |y be
m1(x) = mx and the pricing rule output byl; be my(z) = 2. ThenA; o A, uses the
pricing rulew(x) = max{m, 7, 7}z, wherer is the maximum value-to-size ratio among
items with size greater thafi/2. A theorem similar to Theorem 5.5.8 above holds for this
composition method.

5.6 Approximately Optimal Knapsack Auctions

In this section, we extend the technique of composing pricing algorithms to mechanism de-
sign problems. These techniques suggest a general procedure for reducing limited-supply
(or, constrained) problems to unlimited-supply (or, unconstrained) mechanism design prob-
lems.
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5.6.1 Reduction via Composition

Consider any constrained profit maximization problem in a private-value setting, e.g., the
single-parameter agent settings iof [FGHK02, GHO5]. One can think of the unlimited-
supply case as that where all outcomes are feasible; whereas the limited-supply case is
constrained to produce some outcome in a restricted feasible set. In the case where the set
of feasible outcomes (sets of agentsglizssed under inclusigrmeaning that all subsets of

a feasible set are also feasible, the following general approach can be attempted: first find
a good feasible set, then run an unlimited-supply auction on it. Below we formalize the
game-theoretic issues that arise with this approach.

Definition 5.4 (Mechanism Composition) Given two mechanismé1; and M5, we de-
fine the composite mechanisi; o M, as:

1. SimulateM; and letH be the set of winners.
2. SimulateM, on the setf.

3. For each agent in, offer a price equal to the maximum of the prices offered to her
by M; and M. An agent not inf{ is declared a loser.

We will be looking to use this composition technique with a mechaunignthat always
outputs a set of winners for which all subsets are feasible, and a mechasrismhich
takes such a set of agents (i.e., a set with respect to which the mechanism effectively has
unlimited supply) and computes offer prices with the goal of maximizing profit.

There are three potential issues when using this approach: correctness, truthfulness,
and performance.

Correctness. The technique is correct if it produces a feasible outcome. A mechanism
for the unlimited-supply caséy1,, could output any subset éf as its final outcome; this
immediately imposes the constraint that the set of feasible outcomes must be closed under
inclusion. This condition, which is satisfied by the knapsack problem, is also sufficient as
asserted by the following lemma.

Lemma 5.6.1 If the set of feasible outcomes are closed under inclusionfefigoroduces
a feasible outcome theM1; o M, produces a feasible outcome.
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Truthfulness. We would also like the construction to yield a truthful mechanism. Un-
fortunately, the condition thaM; and M, be truthful is not enough to guarantee the
truthfulness of the composite mechanism. In this discussion, we refer to the agents in
H (Definition[5.4) as theurvivorsand the prices offered by Step 1 as twevival prices

Note that if M is truthful, the survival price of an agent does not depend on her bid. How-
ever, even for a truthful mechanismt,, the winner setd could be a function of some
survivor’'s bid value. In this case, that agent can manipulate her bid to change tHe set
which may affect the price she is offered ;. Thus, we must require tha¥!; satisfy a
stronger property than truthfulness.

Definition 5.5 (Composability) A mechanism isomposablef it is truthful and the sur-
vivor set produced does not change as a winning agent’s bid varies above her survival
price.

Lemma 5.6.2 Algorithm APPROXKNAPSACK is composable.

Proof: First we show truthfulness, then we show composability. For truthfulness, note that
Algorithm APPROXKNAPSACK specifies anonotone allocation rulewhich means that

with all other agents’ bids fixed, if a winning agent raises her bid, she continues to be in
the winning set. For such a monotone allocation rule, the truthful payment rule is to have
each agent pay the minimum value that they could bid to be selected. For winning,agent
this value is precisely*c; as set by the algorithm.

For composability, we need to show that when the bids of all the agents except one are
fixed arbitrarily, the set of selected items as a function of this one agent’s bid is unchanged
for all the winning bid values of this agent. Whenever the AlgorithrPROXKNAPSACK
selects agent, the other agents selected are exactly those that would have been selected
had we run the algorithm without agermn a knapsack of siz€’ = C' — ¢; (after ignoring
agents with size greater thafy2). Since agent cannot affect the outcome of this process,
the algorithm is composable. O

The rationale for the term “composable” comes from the following leffima.

°Note that composability plays a role similar¢ancellabilityin Fiat et al. [FGHKO2]. In a cancellable
auction, the auction’s profit is not a function of the value of any winning bid. This allows the auction to be
canceled as a function of its profit.
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Lemma 5.6.3 If mechanismM; is composable and mechanisi, is truthful then the
composite mechanismyt; o M, is truthful.

Performance. The final issue in using this composition technique to reduce a limited-
supply optimization problem to an unlimited-supply optimization problem is to ensure that
it has good performance. Given some benchmark for gauging performance on the full input,
the feasible outcome produced By, must not limit the possible solutions to ones that are
substantially worse, in terms of the chosen benchmark, than the optimal solution on the full
input. If this is the case, then with an approximately-optimal unlimited-supply mechanism,
M, the composite mechanism approximates the chosen benchmark on the full input.

Recall the definition operformance preservatioDefinition[5.3), and Lemmp 5.5.7
which asserts that Algorithm BPROXKNAPSACK approximates preserves the revenue
of the optimal fractional monotone pricing. This makes AlgorithrPROXKNAPSACK
a good candidate faM;. The missing ingredient thus far is an approximately-optimal
unlimited-supply knapsack auction that can be used s We present such an auction
in the next section. We combine Lemima 5|5.7 with Thedrem 5.6.10, which shows that the
unlimited-supply knapsack auction that we present in the next section approximates the
optimal monotone pricing, to get the following theorem.

Theorem 5.6.4Let OPT be the payoff the optimal fractional limited-supply monotone
pricing function. Then the payoff of the composite mechanism obtained from Auction
APPROXKNAPSACK and AuctionUNLIMITED -SUPPLY-KNAPSACK is at least

a OPT —~hlglglgn

for some constants and-y.

Our auction can be modified slightly to get a payoff of at lee® 7, — yhlglglgn/,
whereO PT,, is the optimal monotone payoff from at mestwinners for any choice of’.
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5.6.2 Unlimited-Supply Knapsack Auction

In this section, we consider the knapsack auction problem when oco. We first at-
tempt to use the general attribute auction of Blum et(al. [BHO5] to solve this problem.
Since the optimal monotone pricing rule might offer a different price to every agent, the
number of piecewise-constant pieces needed to emulate this rule could be as high as the
number of agents.. Thus, a direct application of the attribute auction result (Theo-
rem[5.3.1) to the knapsack auction problem would only guarantee a minimum profit of
OPT /16 — nh/2 < 0, whereOPT < nh is the payoff of the optimal monotone pricing
rule. Sitill, the unlimited-supply knapsack auction problem remains closely related to the
attribute auction problem, and we will be making use of Theqrem|5.3.1 in this section.

Letn’ be the number of winners for the optimal monotone pricing function. Our results
come from observing Lemnja 5.6.5 below, which implies that there is a monotone pricing
function with close to optimal payoff that

(a) divides the size range infg »n’ intervals and for each interval, offers the same price
to all agents whose size lies in the interval, and

(b) most (all butO(1glglgn)) of the intervals have many (at lea3tlg lgn)) winners.

Simply using part (a) of this fact and applying the result of Blum and Hartline [BHO5], we
can obtain an auction that@PT /32 — hlgn’/2. The main result of this section will be
to use part (b) of this fact to improve the additive loss terr{a Iglglgn).

We obtain this result by analyzing two possible cases. In the first case, most of the
payoff of the optimal monotone rule with exponential intervals (see Defirfitign 5.6 below)
comes from the large intervals with at le&flg lg n) winners. For these large intervals,
we can apply random sampling techniques and the Chernoff bound to show that a general-
ization of the random sampling auction [GHWO1] that uses the optimal pricing rule with
exponential intervals will obtain a constant fraction of the optimal monotone payoff.

On the other hand, if most of the payoff of the optimal monotone rule with these prop-
erties comes from th®(lglglgn) small intervals, then the result of Blum and Hartline
can be applied to get an auction that obtains a constant fractio®af less an additive
term that is linear in the number of relevant intervals. This gives an additive loss term of
O(hlglglgn).
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A convex combination of these two techniques gives the auction below. We start with a
definition and a lemma.

Definition 5.6 A monotone pricing rule with exponential intervadsa monotone pricing
rule in which the winners can be partitioned into equal-priced intervals over the attributes
such that thei* interval (in decreasing order of attribute value) contains at lezst
winners, unlessis the last interval.

Lemma 5.6.5 Given any monotone pricing rules(-), that obtains total payoff on in-
stance(vy, ..., v,; ¢, ..., ¢y C = 00), there is a monotone pricing rule with exponential
intervals,7’(-) with payoff at leasP/2.

Proof: Order the winners ofr(-) on the instance by decreasing size (breaking ties arbi-
trarily). Divide the attribute range into intervals such that iieinterval has at least'~*
winners but strictly fewer tha®~! winners with size strictly bigger than the smallest win-
ner ini. This can be done by considering the attributes in decreasing order and adding them
to the current interval until the first time the number of winners in the interval becomes at
least2’~!. At this point, we move on to the next interval. L€t) be the size of this smallest
item in intervali. Considerr’(-) defined such that all items in intervahre offered price
m(c(i)).

Now we show that the payoff of(-) is no more than twice that of’(-). The loss
for intervali is the difference in payoff betweeri(-) andx(-) over the attribute interval
[c(i), e(i — 1)). There is no loss from items with size exactly) and the loss from other
items in intervali is bounded byr(c(: — 1)) — w(c(i)). Since interval contains fewer
than2~! items with size strictly more tha(:), the total loss is no more thg@~! — 1) x
(m(c(i — 1)) — m(c(d))). We charge this loss to the winners in all the previous intervals.
There are at leasf”'~; 2/~! = 2'~! — 1 such winners; so each winner is charged at most
m(e(i — 1) — w(e(i)). Now consider the total amount charged to a winner in intens
subsequent intervals. The charges made to any given winner in intetelglscope and
sum to at mostr(c(7)); thus the total loss can be accounted for by the total payaff (©f.
Therefore the payoff of'(-) is at least half that of (-). O

Now, we are ready to define the random-sampling part of the unlimited-supply auction.
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Auction RANDOM-SAMPLING-KNAPSACK or RSK
1. Partition the agents into two setisand B uniformly at random.

2. Compute the optimal ‘monotone pricing rule with exponential intervals (restricting
prices to powers of two) for each partition. Let the pricing rulesAcand B be 74
andrp respectively.

3. Usemy,, the pricing rule forA, to offer prices to seB and vice versa.
Lemma 5.6.6 AuctionRANDOM-SAMPLING-KNAPSACK or RSK is truthful.

Proof: Recall the definition of a bid-independent auction (Definifior} 5.1). Thefrem|5.1.1
implies that if the price offered to each agent is independent of her bid, then the auction is
truthful. Now note that the price offered by RSK to an agefsay in set A) depends only

the bids of the agents in set B, and does not depend on her bid at all. a

Let 74 on A haven, winners. Letn, be the largest power of 2 that is no larger than
n4. Then, the winners are divided up into at mst 4 + 1 equal-priced markets. A market
is said to bdargefor A if it has at leasR56 Ig 1g 2. 4 winners whenr 4 is applied to A. Note
that all markets other than the fitgtlg Ig n 4 +8 markets and the last market (by decreasing
attribute value) are large. Markets that are not large are caiteadl We wish to analyze
the performance of RSK on the large markets. Defifye¢o be a the pricing rule that is the
same asr4, except that it offers a price @b to the small markets. Le®(w, A) denote the
total profit of pricing functionr applied to setd. Let £ be an ordering of the agents in the
decreasing order of attribute value (breaking ties arbitrarily).4,edenote the ordering
restricted to agents having bidor higher. We first prove a few useful lemmas.

Definition 5.7 (Bad Event, Bad Set, Potential Bad SetA Bad Events said to have oc-
curred in RSK if there exists ap= 2* for integerk > 4, a pricep = 2 for integerr s.t.
lgh/n? < r <lgh, and a subseX of agents, satisfying the following properties:

(i) All'the agents inX have bidg or higher, and appear consecutively 4.

(i) |X| > 2max {6@7, 2561glg n}, wherem,, is the total number of agents with bid

or higher.
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(iii) One of the two sets created by RSK has more than/3 of the agents inX.

A setX that satisfies the first two properties is calle®atential Bad Setvhile any setX
that satisfies all the above properties is calleBad Set

Lemma 5.6.7 The probability of a Bad Event occurring in AUCtI®®ANDOM-SAMPLING -
KNAPSACK is no more thart).01.

Proof: We will prove that the probability of the existence of a Bad Sefor which setA
gets more thag|X|/3 of the agents is no more thar05. By symmetry, the probability
of the existence of a Bad Sat w.r.t. B is also no more thaf.005. Then, we can take the
union bound to get the lemma. We first prove the following statement:
Claim: Consider a sek of 3x agents. The probability that sdtgets more tha@x agents
is no more tham /12,
Proof: The expected number of agents froxhthat fall into setA is 1.5z. By Cher-
noff bounds[[MR95], the probability that fewer thanagents fall into it is no more than
6—(1.5z2)<1/3>2 _ /12

We now use this claim along with a series of union bounds to prove the lemma. Fix a
numberm = 2* for some integek > 4 and a price» = 2" for somer s.t.1gh/n < r < lgh.
Let m, be the total number of agents with pripeor higher. Arrange these agents by
decreasing order of attribute value. Lif = max{

_Mp_
6lgn’

X of 3z consecutive agents wheke > L,. By the above claim, the probability that this

2561glgn}. Consider a subset

subset splits such that séthas more thadz of these agents is no more thart/2. Taking
the union bound, the probability of such a subset existing for these fixed valuesnofp
is no more than

Mp
m, Z o~ 1X1/36
| X|=3Ly/2
< mye /(1 — e71/36)
< 220Ln2L"/256271'44Ln/24
= (220L, 2 Ln/30) 1 4Ly /24t Ly /256 L /30
S 6_L7]/44
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To get the last inequality, we used the fact thgt > 2561glgn > 512 whenn > 2%,
Taking the union bound over all possible values ¢there are at mostlg n of them), we
get that the probability of such a subset existing for a given valug®ho more than

2(1g n)2~ Fn/4
2(275 1g1)
2(1gn) !

< 2(lgn) "

<
<

Taking the union bound over ajl = 2* for k = 4,5, - - -, we get that the probability is no
more than

) $% s
k=4

1 1 1
= 2 m—i—%—*—%—F"'

< 0.005

The inequality is obtained by using an integral to approximate the summation. O
We now prove the following lemma about the revenue of AuctieamnBROM-SAMPLING-
KNAPSACK. A similar lemma holds when the roles dfand B are interchanged.

Lemma 5.6.8 For AuctionRANDOM-SAMPLING-KNAPSACK,

E [P(7)y, B)] > max {O,ﬁ (E [P()y, A)] = %E [P(ma, A)] = g)}

for 5 = 0.99/2.

Proof: If ny < 16, E[P(7/y, A)] = 0, making the claim trivially true. Thus, we will
assume that, > 16. We will also assume thdt [P(74, A)] > h; otherwise the claim is
trivially true.

Recall that a market ikarge for A if it has at leas561glgn4 winners whenr 4 is
applied to A. Ifr4 applied to a large market has a profit greater tﬁ%’ég;:’TA”, then that
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market is calledignificantfor A. Since the number of large markets is at migst 4, the
total profit on applyingr’, to the significant markets of is at leasinax{0, E [P(7/,, A)] —

E [P(m4,A)] /2}. Thus, we can prove the lemma by showing that with constant probability,
E [P(7',, B)] is at least a constant fraction of the profit from applyitigto the significant
markets ofA.

Let n;(m4, A) denote the number of winners in tié market whenr, is applied to
A, while n;(r4, B) denote the number of winners in tiié market whenr 4 is applied to
B. We will show that assuming nBad Event(see Definitiorj 5]7) has occurred, there is
no significant market of A, s.t.n;(wa, A) > 2n,;(m4, B). Since no Bad Event occurs with
probability at leas0.99, it would immediately imply that

B[P(ry, B)] > max{0, *" (B [P(x), A)] ~ S E[P(rs, A))}

Assume that no Bad Event has occurred. For a contradiction, suppose that there is a
significant large marketof A that hasi; (w4, A) > 2n,(m4, B). Leta, b] be the attribute
range corresponding to this market. Also let price offered ta'thmarket byr 4 bep = 2%
for some integek andm, be the total number of agents with hidor higher. We claim
thatp > % Suppose to the contrary, the prige< % Then thei* market has a payoff

of at most
h - h
na 2lgna
E[P(r4,A)]
2lgna

This would imply that marketis not a significant market, a contradiction to the supposition
above.

Recall that’, is an ordering of all the agents with bigor higher in decreasing order
of attribute value. Consider a s&tof %ni(ﬁA, A) agents with bide or higher who appear
consecutively inl,, such thatX includes all agents in the attribute rangeb|. Then,
by assumption, more thaﬁX\ agents from this set are in sdt We show thatX is a
Potential Bad Setvith = n4. We already know thatX| > 3(2561glgn4). Thus,

all we need to show is thdfX| > ;=2 or alternatively, that;(ra, A) > 2. To




5.6. KNAPSACK AUCTIONS 95

P(ﬂ—A »A)

Sena In other

see this, note that since markeis significant for A,n;(m4, A)p >

words, (2n;(ma, A)lgna)p > P(ma, A). If more tharen,; (74, A) lgn4 agents in sel had

bids of p or higher, then offering a price ¢f to everybody would yield a profit of more

than P(m4, A), contradicting the optimality of, for setA. Thus, the number of agents

in set A with bid p or higher is no more tha@n;(m4, A)lgns. Consider the set of all

agents with bidg or higher. This is a Potential Bad Set. Since the Bad Event has not

occurred, the third condition for a Bad Event is not satisfied. Thus, ifideas no more

than2n;(m4, A) lg n4 agents with big or higher, then the total number of agents with bid

por higherm,, < 3(2n;(ma, A)lgna), Orni(ma, A) = g2~
Thus, the setX is a Potential Bad Set. Since the Bad Event has not occurred, set

, as required.

X does not satisfy the third condition of being a Bad Set, implying that the number of
agents from seK in setA is no more thar| X|, thus contradicting the supposition that
ni(ma, A) > 2n;(ma, B). O

Now consider the following combination of the two auctions.
Auction UNLIMITED -SUPPLY-KNAPSACK
1. Perform Step 1 of Auction RNDOM-SAMPLING-KNAPSACK.

2. With probability p, run the general attribute auction on the sdt@nd B sepa-
rately. With the remaining probability, run the remaining steps of AuctianRoM-
SAMPLING-KNAPSACK.

It is easy to see that since RSK and the general attribute auction are truthful (and thus
bid-independent), the above auction is also bid-independent. Then, using Tteorém 5.1.1,
we get the following lemma.

Lemma 5.6.9 AuctionUNLIMITED -SUPPLY-KNAPSACK is truthful.
Theorem 5.6.10The revenue generated by AuctiomLIMITED -SUPPLY-KNAPSACK isS

a OPT —vyh(lglglgna +1glglgng + 19), whereOPT is the payoff of the optimal mono-
tone pricing andx and~ are constants.
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Proof: Recall thatO PT is the payoff of the optimal monotone pricing scheme. Using
Lemma 5.6.b and losing another factor2oflue to restriction to prices that are powers of
2,0PT < 4E[P(ma,A)) +E[P(np, B))].

Recall that any market with fewer th&a6 1glg n4 winners is small forA. There are
at mostlg lglg n4 + 9 small markets of A with respect to,. Similarly, there are at most
lglglgna + 9 small markets of B with respect to;. Note that markets that are not small
are large for their respective sets. Le&®(m4, As) be the payoff of applyingrs to the
small markets ofA. Define P(ng, Bg) similarly. Then,E [P(r4,A)] + E[P(np, B)] =
E[P(ma, As)| + E[P(np, Bs)| + E[P(7y, A)] + E[P(n, B)].

With probability p, we use the general attribute auction, in which case, by Theo-
rem[5.3.1, we get an expected revenue of at least

h
(E[P(ma, As)| + E[P(7p, Bs)])/16 — 5(18; lglgna +1glglgng + 18).

On the other hand, when we use AuctioaANDOM-SAMPLING-KNAPSACK (which
we do with probability(1 — p)), we can apply Lemmfa 5.6.8 and the same lemma with
and B interchanged, to show that we get an expected revenue of at least

5 (E [P(w A)] - SE[P(r1, 4)) + B[P(y. B)] - \B[P(rp. B)] - h)

for 3 = 0.99/2. Thus, the overall expected revenue is at least

1£6 (E[P(7a, As)] + E [P(1p, Bs)))

o

2
+(1-p)p (E [P(r), A)] + E[P(ry, B)] — E [P(;u, A)] E [P(ZB, B) h)

lglglgna +lglglgng + 18)
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243

Settingp = TTESE

we get an expected revenue of at least

30
SAETT) (E [P(m4,As)] + E[P(np, Bs)])

1206h
248+ 1
B
248 + 1
- ﬁﬂ ~(B[P(rs, A) + B[P(rs, B))
126h
248+ 1 <

(Iglglgna +1glglgng + 18)

. (E [P(y, A)] + E[P(xl, B)] - -

v

1
lglglgng +1glglgng + 18 + E)

To get the inequality, we have used the fact tRAtP (74, A)] + E[P(7p, B)] <
E [P(7a, As)] + E[P(7p, Bs)] + E[P(7y, A)] + E[P(r};, B)]. Putting in the value
B = 0.99/2, and using the fact thadPT < 4(E[P(w4,A)] + E[P(7p, B))], we get
the theorem withy = 0.009 and~y = 0.47. a

Noting thatn 4 andn are no more than, we get Theorerpt 5.6.4. AuctionARDOM-
SAMPLING-KNAPSACK can be modified in order to achieve a revenue of at le@sT'(n')—
vh(21glglgn’ + 19), whereOPT(n') is the payoff of the optimal monotone pricing with
no more tham’ winners andv and~ are the same constants as above. For this, we change
Step 2 of Auction RNDOM-SAMPLING-KNAPSACK and for each of the two sets, com-
pute the optimal monotone pricing rule with exponential intervals (with prices restricted to
powers of 2) that has at mostwinners. The rest of the auction proceeds as before.



Chapter 6
The Search Engine Problem

Targeted advertising is an indispensable part of the business model of modern web search
engines and is responsible for a significant share of their revenue. For every keyword,
several advertisements are displayed beside the search results, and the visibility of an ad-
vertisement depends on its location (slot) on the web page. Typically, a number of mer-
chants are interested in advertising alongside each keyword and they naturally prefer slots
with higher visibility. Even if the number of merchants interested in a keyword is no more
than the number of available slots, the search engine has to match merchants to display
locations. However, if the number of merchants is more than the number of advertisement
slots available, the search engine also has to pick a subset of advertisements relevant to
the keyword. In addition, the search engine has to decide on a price to be charged to each
merchant. Due to the dynamic nature of the advertising market, most search engines are us-
ing auctions to solve the problem of selling advertisement space alongside keyword search
results. In a keyword auction, merchants are invited to submit bids on the keyword, i.e. the
maximum amount they are willing to pay for an Internet user clicking on their advertise-
ment. Typically, the search engines charge a merchant only when a user actually clicks on
the advertisement. Based on the bids submitted for the keyword, the search engine (which
we will sometimes refer to as the auctioneer) picks a subset of advertisements along with
the display order. The price charged also depends on the set of submitted bids.

In the auctions currently being used, the search engine first picks the subset of advertise-
ments to be displayed and matches them to slots based on the submitted bids; the matching

98
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criteria is referred to as thenking functionand is an integral component of the existing
keyword auctions. Then, the auctioneer decides on a price for each merchant based on the
bids and the allocation. There are two popular ranking methods:

1. TheOverture(or Yahoo!) method: Merchants are ranked in the decreasing order of
the submitted bids. We will call thidirect ranking

2. The Googlemethod: Merchants are ranked in the decreasing order afatileng
scores where the ranking score of a merchant is defined as the product of the mer-
chant’s bid and estimated click-through rate. We will refer to thigeasnue ranking

These ranking functions are an inherent part of the advertisement philosophies of Over-
ture and Google respectively. Accordingly, we will assume that these ranking functions
are fixed. Hence the only degree of freedom in running the auction is the price charged per
click-through to each merchant. Both Overture and Google currently charge a merchant the
minimum amount she would need to bid to retain its current rank in the aficlibis price
can never be larger than the submitted bid, since clearly, the submitted bid was enough to
guarantee the merchant her current rank. The utility of a merchant is her expected gain,
i.e., the difference between the benefit she receives and the price she pays for it; it is de-
fined more formally in Sectign 6.1. We will refer to this auction asribgt-priceauction.
Despite superficial similarity to the truthful second-price auction [Vic61] described in Sec-
tion [4.3, the next-price auction is not truthful — in Sectjon §.2.1, we present examples
where a merchant has an incentive to bid less than her true valuation under the above auc-
tions. We observe that in the current auctions run by Google and Overture, there is an
asymmetric incentive for merchants — there may be an incentive for a merchant to bid less
than her true valuation for each click on her advertisement, but there is never an incentive
for her to bid more than her true valuation.

Since truth-telling is not a dominant strategy in the current auctions, there is no clear
prescription for merchants to determine their optimum bid. The optimum bid depends in a
complicated and dynamic manner on externalities such as the bids of the other merchants,
and it is often necessary for merchants to hire expensive consultants or intermediaries to

1Plus a fixed small increment, but we will ignore this minor detail.



100 CHAPTER 6. AUCTIONS FOR SEARCH ENGINES

formulate their bidding strategies. As mentioned in the introduction, the lack of clear bid-
ding strategies is slowing the growth of online advertising. A truthful mechanism would
simplify the bidding process significantly, since it would require a merchant to only deter-
mine her valuation for the keyword, a quantity that is intrinsic to the merchant. A truthful
mechanism would also remove the incentive for a merchant to under-bid. Furthermore, in
the case of revenue ranking and with an additional separability assumption (defined in Sec-
tion[6.1), a truthful mechanism &ficientin the sense that it maximizes the total (weighted)
utility obtained by the auctioneer and the merchants together. This motivates us to study
the problem of designing truthful keyword auctions.

One might be tempted to suggest that the famous VCG mechahism [Vic61, Cla71,
Gro73] (see Chaptér 4 for a description) or a weighted and biased variant of it would yield
a solution to this problem. However, we give an example (Seftion|6.2.2) where there does
not exist any set of weights and biases for which the VCG mechanism always outputs the
same merchant ordering as the given ranking function. Hence, the VCG mechanism is
not generally applicable to our problem. We further discuss the applicability of VCG in
Sectior 6.P.

Our Contribution.  We design a simple truthful auction for a general class of ranking
functions that includes direct ranking and revenue ranking. A ranking function in this class
assigns an a priori weight to each merchant that is independent of her bid and then ranks
the merchants in the decreasing order of their weighted bids — this is defined formally in
Sectior{ 6.]L. In particular, setting all the weights to 1 results in the direct ranking used by
Overture, and setting the weights equal to the estimated click-through rates results in the
revenue-ranking scheme used by Google.

We call our auction théaddered auctionsince the price charged to a merchant builds
on the price charged to merchants ranked below it. We show that this auction is truthful.
Further, we show that the laddered auction is the unique truthful auction, and hence is
trivially revenue-maximal for the auctioneer among all truthful auctions. The auction is
presented in Sectign 6.3 and the analysis is in Seftign 6.4.
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Revenue Equivalence. We then ask the next natural question: how will the auctioneer’s
revenue change as a result of implementing our truthful auction rather than the next-price
auction currently in use? Since the next-price auction is not truthful, its revenue should
be computed assuming that the bids of the merchants are in a Nash equilibrium, i.e., the
bids are such that no merchant can increase her profit by a unilateral change in her bid.
For arbitrary click-through rates, we have not been able to answer this question, primarily
because we can not obtain a simple characterization of the Nash equilibria imposed by the
next-price auction in this case. However, when the click-through rates are separable (i.e. the
click-through rates can be separated into a merchant-specific factor and a position-specific
factor; see Sectidn §.1 for a formal definition), we prove the following revenue-equivalence
theorem:

There exists pure-strategyNash equilibrium for the next-price auction which
yields exactly the same revenue for the auctioneer as our laddered auction.

We give an explicit characterization of this Nash equilibrium. These results are pre-
sented in Sectign 6.5. Interestingly, we show that there may exist other pure-strategy Nash
equilibria under which the next-price auction achieves a smaller revenue than the truthful
auction, and yet others under which the next-price auction achieves a higher revenue; these
examples are presented in Secfion 6.5.1. In fact, starting from the truthful bids, there may
be sequences of self-interested moves (i.e. bid changes) that can lead to a Nash equilib-
rium for the next-price auction of higher or lower revenue than the truthful auction. This
suggests that while the revenue of the current auctions could be better or worse than the
truthful auction depending on which equilibrium the bids settle into, the revenue of our
truthful auction is more predictable.

Discussion and Related Work. We assume throughout that the number of slatsthat

the auctioneer sells for a given keyword does not depend on the submitted bids (although
it may depend on the number of merchants taking part in the auction). Our auction is not

truthful if the auctioneer computes the optimum number of slots (in terms of the revenue

generated by our laddered pricing scheme) to be displayed. Extending our auctions to this
case appears to be a non-trivial and interesting research direction.
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Since the submitted bids are typically used for more than one impression, in addition
to a merchant’s valuation, her budget may also be a parameter of relevance [MSVVO05,
BCIT05]. However, in many cases, merchants want users to go to their web sites to pur-
chase merchandise which results in immediate profit; in this case, a merchant’s true valua-
tion for a keyword is simply her expected immediate profit per click. If the merchant bids
in accordance with the truth-telling strategy that is dominant for our laddered auction, she
would bid an amount equal to her valuation of the keyword. Since the price charged by the
auctioneer is never larger than the bid, each click results in an immediate net profit. Hence,
ignoring budgets would be the right thing to do under this scenario.

Some recent work [MSVV05, BCD5] studies the web advertisement problem with
budget constraints. Mehta et al. [MSVVO05] ignore the game-theoretic issues and instead
focus on the algorithmic problem of matching merchants to web pages when their valua-
tions and budgets are known to the auctioneer. Borgs et al. [@&}Istudy the problem of
selling multiple identical units when the agents are interested in getting multiple units as
long as their payment does not exceed their budget. While a model with multiple identical
units might be applicable to the case of web pages with a single advertisement slot, it is not
suitable for web pages with multiple advertisement slots, as it does not take into account
the inherent differences in visibility between various positions (slots) on the same page.

6.1 Model and Notation

There areV merchants bidding foK < N slots on a specific keyword (KX > N, reduce

the number of slotg to NV and add a dummy merchant with all relevant parameters set to
0). The slots are numbered in the order of decreasing visibility, i.e. the visibility of the slot
numbered: is no less than that of the slot numberied 1 for all i. Let CTR ; denote the
click-through rate of thé'” merchant if placed at slgt < K. We assume that CTRis
arbitrary, but known to the auctioneer. Also, we assume that,CTEhon-increasing inj.

Set CTR, =0 forj > K. Letv; denote the true valuation of a click-through to merchant
. (This is again an abuse of notation: we are usintp refer to the valuation of a single
click-through for merchant, rather than the valuation function of merchaptWe assume
thatv; is known to merchant, but not to the auctioneer.
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As outlined in the introduction, we will assume that the ranking function is externally
specified. We will consider the class of ranking functions where mercharmssigned an
a priori weightw; that is independent of her bid. Letdenote the bid of thé”" merchant
for each click-through. The merchants are ranked in the order of decreagindgsetting
w; = 1 for all 7 is equivalent to the direct ranking function (the Overture model), while
settingw; = CTR; ; reduces to the revenue-ranking function (the Google model). Merchant
i is charged a price-per-click; < b;, which is determined by the auction. We assume the
merchants to be risk-neutral. As such, if merchaigt placed at position, it obtains a
utility of CTR;; - (v; — p;) per impression. Recall that an auction is truthful if bidding
her true valuation (i.eb; = v;) is a dominant strategy for every agent (see Chdagpter 4 for
more background on truthful auctions). Now, we formally define the next-price auctions
currently being used.

Definition 6.1 (Next-price Auction) Given the ranking functionR = (wy,ws, ..., wy,)
and the bid vectob = (by,...,b,), the next-price auction ranks the merchants in the
decreasing order ofv;b; and charges the merchant rankédn amount-per-click equal to
the minimum bid she needs to have submitted in order to retainitdrét w, andw, refer

to the weights of the merchants rankeaind: + 1 respectively. And lgf, refer to the bid

submitted by the merchant rankéd- 1. Then the price charged to the merchant ranked
is el

wq

We will now describe the separability assumption, which we will use (only) for our
results on revenue-equivalence. Informally, this assumption states that the click-through
rates can be separated into a merchant-specific factor and a position-specific factor.

Definition 6.2 (Separable Click-through Rates) The click-through rates are said to be
separable if there existy, po, ... u, > 0andf, > 6, > ...0x > 0 such that the click-
through rate CTR; of thei*” merchant at the'” slot is given byu,0;.

There is evidence to believe that this is a reasonable assumption that holds (approxi-
mately) in many real-world cases.
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6.2 Need for a New Auction

In this section, we begin by giving an example to show that the next-price auctions being
currently used by Google and Overture are not truthful. In order to construct a truthful
auction, the first logical step is to see whether the famous VCG mechanism (see [Setion 4.4)
applies to the problem. However, this is not the case, and we give instances of ranking
functions for which there does not exist any set of weights and biases for which the ranking
output by the VCG mechanism is always the same as the one output by the given ranking
function.

6.2.1 Next-price Auction is not Truthful

Consider three merchants B andC' bidding for two slots. Let all three of them have a
click-through rate 06.5 at the top slot and.4 at the bottom slot. Let the true valuations per
click of the three merchants be 200, 180, and 100 respectively. Then, if all the merchants
bid truthfully, merchant4 ends up paying a price d0 per click, making an expected
profit of (200 — 180) x 0.5 = 10 per impression. In this case, she has an incentive to
undercutB by lowering her bid tal 10, and make a net profit @200 — 100) x 0.4 = 40.

We note that there is no incentive to bid higher than one’s true valuation under the next-
price auction. This is because the price-per-click charged is the minimum bid required to
retain one’s rank; therefore, in cases where bidding higher improves one’s rank, the price-
per-click charged is higher than one’s true valuation.

6.2.2 Weighted VCG may not Always Apply

In this section, we show by means of a counter-example that even for the simple case of
direct ranking, there does not exist any set of (bid-independent) weights and biases for
which the VCG solution achieves the same allocation as direct ranking. This will show
that, in general, VCG does not apply to our problem. Consider two merchaatsl B
bidding for two slots on a web page. Let both the merchants have a click-through rate
(CTR) of 0.4 at the first slot. For the second slot, merchanhas a CTR 0.4 while
merchantB has a CTR 0f).2. Since any of the merchants can bid the highest and get
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the top slot in direct ranking, both the merchants must have non-zero weight in order for
weighted VCG to achieve the same allocation as direct rankingo ket 0 andwg > 0 be

the weights assigned by the VCG mechanism to merchériisd B respectively. Denote

the bias assigned to ranking merchantollowed by y by H(z,y) for z,y € {A, B},

x # y. Then, the VCG mechanism will rank before A if w(0.4b4) + wp(0.4bg) +
H(B,A) > ws(0.4b4) +wp(0.2bp) + H(A, B), which is true whenevérz > (H (A, B) —
H(B,A))/(0.2wg), irrespective of merchant’s bid. On the other hand, the direct ranking
scheme will rankA before B wheneverA’s bid is higher thanB’s bid. Thus, the VCG
mechanism does not apply to this instance. In fact, we show the following general theorem.

Theorem 6.2.1 Let the number of merchants with non-zero click-through rates he

K. If the click-through rates are not separable, then there exists a ranking fungtien
(wy,wy, ..., w,) for which there does not exist any set of weights for which unbiased,
weighted VCG always yields the same ranking as the ranking fungtion

Proof: Let CTR;; be the click-through rate of merchant with indeat the j* position.
First note that if CTR;/CTR; ;11 = CTR;;/CTRy ;4 for all values ofi,i' < n and
Jj < K — 1, then the click-through rates are separable: jusiuset CTR,; x andf; =
CTR,;/CTR, k.

We will show that if for every ranking functio® = (wq,ws, ..., w,), there exists a
set of VCG weights which always yield the same rankingzashen CTR;/CTR; ;11 =
CTRy;j/CTR; ;41 for all values ofi,7 < n andj < K — 1. We will prove this by
downward induction orj.

First consider the base case pf= K — 1. Consider any pair of merchants. Re-
index the merchants such that the two merchants are indgxedl j + 1. Leta =
CTR;1,,+1/CTR; ;11 and let¢p = CTR;;/CTR; ;1. Now, consider the ranking func-
tion R with w; = 1, wj1; = a. All the other merchants are assigned a weight .of
Suppose there exists a weighted VCG mechanism that always results in the same ranking
as this ranking function. Let; be the weight assigned by the VCG mechanism to mer-
chanti, normalized such that; = 1. Then, the VCG mechanism chooses that ranking
scheme that maximizes, - | Win(i) CTR(m(1), 1) by (i), Wherem(i) is the index of the mer-
chant placed in the ranking scheme. Letbe the ratio of the maximum click-through rate
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to the minimum click-through rate over all merchants and positions, amblethe ratio of
the maximum VCG weight to the minimum VCG weight. Also, [&t,, = max{1,1/«)
and let3,,;, = min{1,1/«). Consider the following set of bid$; = (2n)'~pv [, for
i=1,...,5—1,b;=1,bj11 = 1/a, andb; = Bnin/((2n)~ U+ pv) for the rest. Then, it
is easy to verify that merchants placed at positionfori = 1,2, ..., — 1 and merchants
j andj + 1 share the remaining two positions (i.e., positigrend; + 1) under both the
ranking functionk as well as the VCG mechanism. The ranking score uRdgfrmerchant
jandj + 1 is exactly the same, namely Therefore, the ranking functioR can be forced
to place them in any chosen order by an infinitesimal change in the bids. In order for the
VCG mechanism to produce the same rankingiater the change, VCG must rate both
possible orderings of and;j + 1 equally as well, i.e. the weighted sum of utilities (with
the above bids) must be the same for both possible orderings.

CTR 11,

Fwin=l+twiimems——
’ T CTRy1n1

(6.1)

We could also have set the bids of the other merchants such that they get rankg,
leaving merchantg andj + 1 to compete for rank + 1 = K. Then, a reasoning similar
to above would show that

1= Wji+1 (62)
Putting equations 6.1 and 6.1 together, we get

CTRs

This completes the proof of the base case.

By the induction hypothesis, CTR/CTR; ;.1 = CTR; ;/CTR; ;4 for all values of
i,i’ < nandj < j < K — 1. Next consider; = j. Consider the ranking functioR
with w; = 1 for all merchants. Letw, be the weight assigned by the corresponding VCG
mechanism to merchantAgain consider a pair of merchants and re-index merchants such
that the pair is indexeg andj + 1. Letb; = b;;; = 1. As before, we can set the bids of
other merchants such that merchaistranked: fori =1,...,7—1,j+2,..., K, whilej
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andj + 1 share rankg and; + 1. Since the ranking score given Iyis the same for both
j andj + 1, the VCG mechanism must also be ambivalent towards their order, i.e.

wjiCTR; ;b; + w;j1CTR 414110541 = wjCTR; j 1105 + w1 1CTR 11,0541

which implies that
(Uj+1 o CTRj,j — CTRjJ_H

= . 6.3
Wy CTRj+17j — CTRj+17j+1 ( )

We can also set the bids of the other merchants such that they getiranksj, j +
3,..., K, leaving rankg + 1 and;j + 2 for merchantg and;j + 1. Then, a reasoning similar
to above would show that

wjy1  CTR; 11 — CTR; ;40

= 6.4
wj  CTRjp1 11 = CTR 10 4
From Equationp 63 and 6.4, we get
CTR;; — CTR; ;11 _ CTR;j+1 — CTR; 12
CTRj11; —CTR 101 CTRip1 01 — CTR s

Also, by induction hypothesis, we have

CTRj,j+1 _ CTRj-i-l,j—f—l

CTRj7j+2 CTRj+17j+2
Using the above two equations and some elementary algebra, we get,

CTR;;  CTRj;u

CTR;+1,; CTRj11,j+1
This completes the proof by induction. O

Although we have presented the theorem above for unbiased VCG, a similar statement
holds for biased, weighted VCG is well. We can see this as follows. In each of the con-
straintg 6.]l, 67, 6|3 and 6.4 above, the two sides of the equation represent the rating given
by the VCG mechanism to two different outcomes. If the biased VCG mechanism adds an
unequal bias to the two outcomes, it can be viewed as adding a non-zero bid-independent
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constant term to the right-hand side. The key idea is that we can scale up the bids uni-

formly without changing the ordering output by the ranking functibnThus, the chosen

VCG weights need to satisfy the constraints both for the scaled and the unscaled bid vector,
which is impossible in the presence of a non-zero bid-independent constant term. Thus, the
VCG mechanism must have added the same bias to both sides of each of the constraints,
thereby leaving the constraints unchanged. We state the following theorem without proof.

Theorem 6.2.2 Let the number of merchants with non-zero click-through rates bekK.

If the click-through rates are not separable, then there exists a ranking funética

(w1, ws, ..., w,) for which there does not exist any set of weights for which biased, weighted
VCG always yields the same ranking as the

Interestingly, VCG is applicable under the separability assumption, with appropriately
chosen weights. It is easy to verify the following theorem.

Theorem 6.2.3 Let the click-through rates be separable. Then the VCG mechanism having
merchant:’s VCG weight set tav;/CTR;, always produces the same ordering as the
ranking function(wy, . .., w,).

The above theorem implies that with the separability assumption, the ranking func-
tions maximize a certain global utility function. In particular, the revenue-ranking scheme
maximizes the total utility obtained by the merchants and the auctioneer.

6.3 The Truthful Auction

In this section, we will assume without loss of generality thatithenerchant also has
thei*" rank in the auction. The truthful auction is quite simple: Fox i < K, set the
price-per-clickp; charged to mercharntas:

K

v,
CTR.pi = ) _(CTRy; = CTRyju1) by (6.5)
j=i ‘

In other words,
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1. For those clicks which merchantvould have received at positiar- 1, she pays the
same price as she would have paid at positienl.

2. For the additional clicks, merchanpays an amount equal to the bid value of mer-
chanti + 1.

Sincew;b; > w;b; for ;7 > 4, it follows thatp, < b,. Hence the price charged per
click-through can be no larger than the submitted bid. We will refer to this auction as
LadderedAuctionwy, ..., w,) or simply as thdaddered auctiorwhen thew;s are clear
from the context.

6.4 Analysis

Theorem 6.4.1 Given fixedw, . . ., w,, the laddered auction is truthful. Further, it is the
unique truthful auction that ranks according to decreasing;.

Proof: Consider a merchant/. Fix the bids of all the other merchants arbitrarily. With
these bids, lep(j) be the price charged by the laddered auction to merchéaifther rank
is j, with p(K + 1) = 0. Note that the price charged depends only on merchaist
rank and is independent of her exact bid value. kgtbe the true valuation of a single
click for merchantM/. If merchantM bidsv,,, let her be ranked. Also, without loss of
generality, assume that all the merchants are indexed such that merghant be ranked
J if merchantM bidsvy,. Then,w;b; > w,v, for all j < z andw,v, > w;b; for all
j > x. To show that the auction is truthful, we will show that merch&htannot benefit
by lying about her valuation. Among all ranks that give the merchant the highest profit (i.e.,
utility —price), letr be the rank closest ta i.e. the one with the leagt—z|. Now suppose
that the merchant can benefit by lying, i.e# z. For a contradiction, we will show that
there is a rank closer towhich gives at least the same profit. For this, observe thatitr,
then the change in profit by moving to rank 1is (CTR, ,_; —CTR, ;) (v, — g—:br), which
is non-negative. On the other handyik z, the change in profit in moving to rank+ 1
is (CTR,;+1 — CTR,,) (v, — ;“—z ), Which is again non-negative.

To show uniqueness, consider any truthful auctbtinat ranks the merchants in the de-
creasing order ob;b;. Consider any merchatt and fix the bids of all the other merchants
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arbitrarily. With these bids, lgi4(j) be the price charged by auctiohto merchant\/ if

she is ranked, with p4(K + 1) = 0. Note that in a truthful auctiom4(j) can depend on
the bids of other merchants, but is independent/oé bid (see Theorern 4.7.1). Assume,
without loss of generality, that the other merchants are indexed such that meraloard

be ranked if merchantM bidsoco. To prove uniqueness, it suffices to show that for any
truthful auction,

paj) —pa(j+1)=(CTR,; — CTRw,jH)%ij (6.6)

x

First suppose that merchahf has valuatiorv,, = “b;.; + e. Then, if she bids

Wg

truthfully, for sufficiently smalle > 0, she is ranked. The additional valuation per im-
pression of being rankedinstead ofj + 1 is given by(CTR, ; — CTR, j+1)v,. Thus, this is

the maximum amount that can be charged by a truthful auction for this additional valuation
(otherwise, the merchant can benefit by bidding lower to get yankl). Sincee can be
made arbitrarily small, this proves that

. . Wi
Pa(j) = pa(G +1) < (CTRy; = CTRe 1)~ bju (6.7)

T

Next, suppose that merchaif has valuatior,, = wqjilbjﬂ — ¢. Then, if she bids
truthfully, for sufficiently smalle > 0, she is ranked + 1. The additional valuation per
impression of being rankeflinstead ofj + 1 is given by(CTR, ; — CTR, j+1)v,. Thus,
this is the minimum amount that can be charged by a truthful auction for this additional
valuation (otherwise, the merchant can benefit by bidding higher to ggt'thenk). Since
e can be made arbitrarily small, this proves that

, , w;
Pa(j) = pa(i +1) > (CTRy; = CTRy 1) 2= bjn. (6.8)
Putting together 6|7 and 6.8, we §et]6.6, thereby completing the proof. O

Corollary 6.4.2 For any fixedws, ..., w,, the laddered auction is the profit-maximizing
truthful auction that ranks merchants by decreasing;.
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6.5 Revenue Equivalence

In this section, we compare the revenue of the laddered auction to the revenue achieved
by the next-price auctions currently being used. As mentioned earlier, truth-telling is not a
dominant strategy for the existing auctions. Thus, we consider the revenue of the existing
auctions under equilibrium conditions, i.e. a setting of bids for which no merchant can
increase her profit by a unilateral change in his bid.

For separable click-through rates (see Definifion 6.2), we show that there epists-a
strategyNash equilibrium under the next-price auction that yields the same revenue as
the laddered auction. Let the weights used by the next-price auctiombes, .. ., w,).
Re-index the merchants in the decreasing ordes;of so that

W;V; Z W;+1Vi+1 for i = 1, ..n—1 (69)

Let the click-through rates be separable with the click-through rate of merchgobsition
J given by u,0;. Also letfx., = 0. Then, the bid$; for this Nash equilibrium are
recursively defined by:

0; 0;
w;b; = (0 : )wi+1bi+1+ (1 — g ‘ )w,-vi for Z:K,,l (610)

i—1 i—1

with the initializationbg .1 = vk 1.

Theorem 6.5.1 (Revenue-Equivalence Theorem)he bids defined by the recursive for-
mula given in Equatiof 6.10 are in equilibrium. Moreover, the ranking induced by these
bids is the same as the ranking induced by truthful bidding.

Proof: To prove this, we unroll the recursion to get:

K
D (0= 051 )wyvin
=i—1

1
i1 o
Thus,w; 1b; 1, is a convex linear combination of;v; for j =74 1,..., K + 1. Since,
wv; > wvjforj=i+1,..., K+1, we getw;v; > w;1b41. We also know thaty;b; is a

convex linear combination ab,  1b;,, andw;v;. Hencew;b; > w;1b;,1. This shows that



112 CHAPTER 6. AUCTIONS FOR SEARCH ENGINES

the ranking induced by these bids is the same as that induced by truth-telling, i.e., merchant
1 is rankedi by the ranking function of the next-price auction.

Next, we will show that under the next-price auction, no merchant can gain by changing
her bid unilaterally. Consider the merchant ranked (and indexedlyith the above bids,
she is making a profit of:

U(l’) = Mxex(vx_bm+l)

K
W;410;
= Haz 2(9]' —0j41) (Ux - %)

j=z

If the merchant changes her bid in order to be rankdter profit becomes

Ulx) = paby(ve —byi1)

K
W;i41V;
30 (o )

If the merchant decreases her bid in order to be ragked. y > x, then the net change
in profit is:
y+1 Wos s
— Z(gj —0,41) (Uz _ M)

, Wy
=z

By equatiorj 6.9w,v, > wj v, for j =z, ...,y + 1, which in turn implies that this
change is non-positive. Similarly, if the merchant increases his bid in order to be rgnked
i.e.y < x, the net change in profit is:

z+1
Wj+1Vj+1
Ha Z(HJ- —0j11) (U:r - #)

=y
Again, equatiofi 6]9 implies that this change is non-positive. Thus, the bids are in equi-
librium and none of the merchants can improve her profit by changing her bid unilaterally.
O
Note that the merchants can achieve this equilibrium by solely using the knowledge of
their true valuation and the current price being charged to them. To do this, the merchants
start by bidding their true valuations, after which #ieé-ranked merchant changes her bid
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to the one indicated in the formula above in order to prevent anybody from under-cutting
her, followed by merchant — 1 changing her bid to th&,_; value defined above and so
on. For example, consider four merchartsB, C' and D bidding for three slots. Let all

four of them have a click-through rate 06 at the top slot).4 at the middle slot and.2

at the bottom slot. Let the true valuations per click of the three merchants be 200, 150, 100
and 40 respectively. Let the ranking function be Google’s revenue-ranking function. The
merchants start off by bidding their true valuations, ahdB andC' get the top, middle

and bottom slot respectively, and make a profi2®f20 and12 respectively. At this point,
merchantB has an incentive to undercat by bidding80, which will result in B making

a profit of 22, while C' makes a reduced profit 8f In order to remove any incentive for

B to undercut her(' can change her bid t@) as prescribed by the above formula. At this
point B is making a profit oB2. Now, B faces the problem ofl trying to undercut her by
bidding 100 (say) in order to make a profit 62, reducingB’s profit to 25. To removeA’s
incentive to undercut he? can change her bid &6 as prescribed by the above formula.

With suitable assumptions, including separability of click-through rates, one can also
use standard techniques such as the envelope theorem [SB94] to prove revenue equivalence.
We omit the details since our first-principles analysis gives a stronger result in the form of
a pure strategy Nash equilibrium under which the next-price auction is revenue-equivalent
to the laddered auction, while the envelope theorem would only guarantee a mixed-strategy
Nash equilibrium. Further, we obtain a simple and explicit characterization of the revenue-
equivalent Nash equilibrium. Admittedly, these results show revenue equivalence to the
next-price auction only. However, since the next-price auction is the auction currently in
deployment, it is arguably the most interesting auction to consider in terms of showing
revenue-equivalence.

6.5.1 Existence of Multiple Nash Equilibria

The foregoing discussion shows that there exists an equilibrium for the next-price auction
which achieves the same ranking and the same revenue as the laddered auction. It should
be pointed out that not all equilibria of the next-price auction have these properties. We
next give an example that shows that there may exist other pure-strategy Nash equilibria
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under which the next-price auction achieves a smaller revenue than the truthful auction,
and yet others under which the next-price auction achieves a higher revenue.

Consider three merchants B andC' having valuation-per-click 0500, 480 and 100
respectively bidding for two slots. Assume that the click-through rates are separable, and
that all the merchants have the samef 1, and that the position-specific factors are given
by 6, = 0.2 andf, = 0.15. Let the ranking function be revenue-ranking. Assuming
that everyone follows the dominant strategy of truth-telling, the laddered auction earns a
revenue ofl5 + (15 4+ 24) = 54. Moreover, if everyone bids truthfully, then the next-
price auction would earn a revenue ©f + 96 = 111, more than twice the revenue of
the laddered auction. However, truthful bidding is not an equilibrium for the next-price
auction. One way to achieve equilibrium is for merchant A to change his bidan
which case the revenue earnedlis+ 22 = 37. On the other hand, if equilibrium is
achieved by merchar® changing her bid from80 to 200 before merchantl changes his
bid, a different equilibrium is reached. In this case, the revenue earnédisio = 55.

In this particular example, unless merchahbids 200 or lower, merchantd will have an
incentive to undercut her. This indicates that among all possible equilibria for this instance
(excluding the ones where merchantbids more than her true valuation, as there is no
incentive for merchan’ to do so), the highest revenue earnedis In order to achieve

an equilibrium that achieves the same revenue as the laddered auction, mércuand
change her bid t@95, again preventing under-cutting by merchant

6.6 A Merchant with a Budget Constraint

In this section, we consider a merchant who is interested in advertising on multiple key-
words, and has a limited total budget Bfthat she can spend on advertising on those
keywords. For each of the keywords, we assume that the search engine publishes the cur-
rent ranking scorev,b, for each slotj corresponding to the keyword; hexg andb; refer

to the weight and bid respectively of the merchant placed aj‘thslot of the keyword.

Given this knowledge and her own weighj,, the merchant can compute how much she
needs to bid (and pay) in order to be placed at a certain slot for any given keyword, i.e.,
effectively she knows the prige;,. of the j slot of thek" keyword she is interested in.
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In addition, she knows her valuatiem, of a click she receives when placed on gHeslot

of the k' keyword (this valuation may or may not vary with slot). Now she is faced with
the optimization problem of deciding how much money to spend on advertising on each
keyword. If each keyword was searched for infinitely often during the course of a day, it
is in her best interest to spend all her budget on the slot-keyword pair with the maximum
valuation-per-unit-price. However, if the number of queries for a given keyword are finite,
the merchant might not be able to spend all her budget on a single keyword. Let us assume
that she knows the number of times a keyword is queried over the course of a day. Now the
problem is to find the optimal way to split the available budgetmong the keyword-slot

pairs with the goal of maximizing valuation.

We can compute the expected price-per-impressigrof a given keyword-slot pair
(7, k) by using the price-per-click and the merchant’s click-through rate for the keyword-
slot pair. Similarly, assuming the merchant is risk-neutral, we can compute her valuation
of an impression;;, for a given keyword-slot paifj, ) by using her valuation-per-click
and her click-through rate for the keyword-slot pair.

A Greedy Strategy. One simple strategy is buy impressions greedily according to de-
creasing valuation-per-unit-cost ratio. However, daamplementation would end up
buying multiple slots on a single impression of a keyword. To prevent this, we devise
a slightly more clever greedy algorithm as follows. For each keyword, we have a set of
valuation-per-unit-cost ratios corresponding to different slots on the page. Among all the
available keyword-slot pairs, we pick the pair with the maximum valuation-per-unit-cost ra-
tio and buy all available impressions of the keyword (or as much as we can with the current
remaining budget). We now observe that replacing one impression at the just-bought slot
of keywordk with an impression at another slgt(with a higher valuation-per-impression)

of the same keyworé incurs an additional cost a&f;,; = 7;,» — 7, and gets an additional
valuation of2;,, = v — v, Thus, for the remaining slots on the page, we update the
valuation-per-unit-cost to the ratio fg;/ /7 ;.. Now we repeat till the remaining budget is

no longer sufficient to buy any more impressions of the current best keyword-slot pair.
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Performance. Until the final step, we always buy the slot that gives the most valuation
for money. The only possible reason for the solution being sub-optimal is the unspent
budget. The potential loss due to this is no more than the valuation of an impression on the
best slot at the end of the algorithm.

Theorem 6.6.1 Let the maximum valuation of a single impression at any slot of any key-
word beg, and letO PT be the total payoff (valuation) achieved by the optimal algorithm.
Then, the greedy algorithm above achieves a payoff of at &5t — .

Note that valuation from a single impression is usually quite small in practice. This
algorithm gives similar performance guarantees whenever the valuation increases linearly
with the cost as we buy more and more impressions of a slot on a page.

NP-hardness. The above problem can be shown to be NP-hard by a straightforward re-
duction from the knapsack problem: for each item, create a page with a single impression,
with the cost of that impression (i.e. the cost of a click multiplied by the click-through rate)
equal to the size of the item and the valuation equal to the profit associated with the item.
Let the budget be equal to the size of the knapsack. Then the problem of maximizing the
total valuation is equivalent to the problem of maximizing profit for the knapsack problem.

We note that the advertising problem instance created in the above reduction is not a
very realistic one, since in most real-life scenarios, the number of available impressions of
a single page is quite large.



Chapter 7
Conclusions

We have presented solutions for several problems that have arisen due to the pervasive use
of the Internet and the networking infrastructure in general. The set of problems considered
fall into two broad areas: (a) protection of data privacy, and (b) selling advertisement space
on the Internet.

With respect to data privacy, we first considered the probleamofiymizing databases
before dissemination, in order to safeguard the privacy of the individuals described by the
databases. For the privacy frameworkkeAnonymity, we presented approximation algo-
rithms that anonymize databases while maximizing the utility of the anonymized database.
Then, we studied the problem of enabling two or more partiegtorely and efficiently
compute thek!-ranked elementof a set split between them, without revealing any infor-
mation not implied by the value of the output. We presented protocols with polylogarithmic
overhead for this purpose, improving upon the linear overhead of earlier solutions.

Next, we considered the problem of selling advertisements space on web pages. We
observed that the use of a truthful selling mechanism would considerably simplify the task
of bidding, potentially attracting more advertisers to the online advertising market. We
presented truthful auctions for two problem formulations in this setting — one that models
selling a single slot on a web page with known budget constraints, and another that models
selling multiple slots on a web page with no budget constraints.

Several problems still remain open. We mention a couple of them here:

117
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Extensions of thek-Anonymity framework. One source of concern about the privacy
guarantees under tlkieAnonymity model is that for a given record in the public database,

all thek records corresponding to it in the anonymized table might have the same value of
the sensitive attribute(s) (the attribuibéseasesn our examples), thus revealing the sensi-

tive attribute(s) conclusively. To address this issue, we could add a constraint that specifies
that for each cluster in thieanonymized table, the sensitive attribute(s) should take at least

r distinct values. This would be an interesting extension of the dasioconymity frame-

work. Another interesting direction of research is to extend the model to deal with changes
in the database. A hospital may want to periodically release an anonymized version of its
patient database. However, releasing several anonymized versions of a database might leak
enough information to enabtecord linkagedor some of the records. It would be useful to
extend thek-ANONYMITY framework to handle inserts, deletes and updates to a database.

Selling multiple advertisement slots with budget constraints. A big open problem in

the area of auction design for online advertising is the problem of designing an auction that
takes into account both the interaction between multiple slots on a web page as well as
budgets constraints for advertisers. An interesting extension would be to design auctions
for selling a collection of keywords, when each advertiser is interested in a subset of the
keywords and would like to spend her budget in a way that maximizes her combined utility.
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