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Abstract

We develop a compositional method for proving cryp-
tographically sound security properties of key exchange
protocols, based on a symbolic logic that is interpreted
over conventional runs of a protocol against a probabilis-
tic polynomial-time attacker. Since reasoning about an un-
bounded number of runs of a protocol involves induction-
like arguments about properties preserved by each run, we
formulate a specification ofsecure key exchangethat is
closed under general composition with steps that use the
key. We present formal proof rules based on this game-
based condition, and prove that the proof rules are sound
over a computational semantics. The proof system is used
to establish security of a standard protocol in the computa-
tional model.

1 Introduction

Key exchange protocols enable secure communication
over an untrusted network by setting up shared keys be-
tween two or more parties. For example, SSL [28] and
TLS [21] provide symmetric encryption keys for secure In-
ternet transactions, IPSec [36] protocols provide confiden-
tiality and integrity at the IP layer, IEEE 802.11i [1] pro-
vides data protection and integrity in wireless local area
networks, and Kerberos [37] provides authenticated client-
server interaction in local area networks. While some of
these protocols have been proved correct in the simplified
symbolic Dolev-Yao model [33, 38, 44, 27], most key ex-
change protocols in use today have not been proved secure
in the complexity-theoretic model of modern cryptography.
Our aim is to develop a formal logic that will allow us to
convert known proofs based on the Dolev-Yao model into
formal proofs that are provably sound for the standard cryp-
tographic interpretation based on probabilistic polynomial-
time attacks. This paper presents progress on key exchange
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protocols, in the form of an axiom system for relevant prim-
itives, a soundness proof for these rules, and a condition on
key exchange that can be proved invariant under steps that
legitimately use an agreed key for its intended purpose.

In proving security of a key exchange protocol, it is nec-
essary to state an appropriate security property, one that is
true of the protocol, and sufficient to guarantee that the key
is suitable for use. Several approaches have been proposed
in the cryptographic literature [11, 10, 45, 14], including
the concept ofkey indistinguishability:a key produced by
a key exchange protocol should be indistinguishable (given
access to messages sent in the protocol) from one chosen at
random from the same distribution. This is a very natural
condition, and certainly a desirable goal for key exchange
protocols. However, key indistinguishability does not ap-
pear satisfactory for incremental verification of some im-
portant protocols, or for stating the property achieved when
the key exchange steps are combined with protocols that use
the key. The somewhat weaker condition we use instead
works well in our formal setting and has the advantage that
it may be useful when the key exchange protocol contains
key confirmation steps (as in SSL) that may prevent the key
exchange protocol from satisfying the stronger key indistin-
guishability condition.

In this paper, we develop a compositional method for
proving cryptographically sound security properties of key
exchange protocols, develop a suitable specification of ac-
ceptable key generation, and apply the method to an illus-
trative sample protocol. We use a symbolic logic for speci-
fying security and a formal proof system for proving secu-
rity properties of key exchange protocols. The specific logic
we use in this paper builds on a computational version [20]
of Protocol Composition Logic (PCL)[23, 24, 18, 19, 33]
and offers several advantages. First, the analyst may rea-
son abstractly, without referring to probability, asymptotics,
or actions of an attacker. At the same time, a proof pro-
vides the same mathematical guarantees as more detailed
reduction-based proofs because the semantics ofComputa-
tional PCLis defined with respect to a complexity-theoretic
model of protocol execution, and the axioms and proof
rules are proved sound using conventional reduction ar-
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guments. This framework is also flexible enough to treat
cryptographic primitives like CMA-secure signatures and
complexity-theoretic assumptions like Decisional Diffie-
Hellman naturally as axioms in the proof system. Second,
PCL comes withcomposition theorems[18, 19], which also
carry over to Computational PCL. These theorems allow the
security proof of a composite protocol to be built up from
proofs of its parts, without implicit assumptions like dis-
joint state of repeated instances of the protocol. This com-
positional approach is useful for handling large, complex
protocols like IEEE 802.11i [33] and is relevant to key ex-
change protocols since key exchange is intended for use in
composition with other protocols. Finally, since the proofs
are completely axiomatic, in principle they can be machine-
checked, although we currently do not have an implemen-
tation that allows this.

We demonstrate the applicability of the proof method
by formalizing and proving some security properties of the
ISO-9798-3 key exchange protocol [39] and its composi-
tion with a canonical secure sessions protocol. The secu-
rity proof for ISO-9798-3 relies on the Decisional Diffie-
Hellman assumption and the use of CMA-secure signatures,
while the security of the secure sessions protocol relies on
the use of a CPA-secure symmetric encryption scheme [30].
The fact that these two protocols compose securely when
executed one after the other follows from thesequential
composition theorem[19]. In order to model and prove
security for these protocols, we had to extend the compu-
tational model and logic [20] to include a number of addi-
tional cryptographic primitives: signatures, symmetric en-
cryption, as well as codify the Decisional Diffie-Hellman
assumption. This application provides evidence that Com-
putational PCL can support axiomatic proofs of interesting
security protocols. The results of the present paper open the
way to developing computationally sound proofs of larger
practical protocols like IEEE 802.11i and Kerberos.

Organization Section 2 presents our security model for
key exchange and secure sessions and compares it to other
models in the literature. Section 3 describes the program-
ming language for representing protocols and defines their
execution model. Section 4 presents the logic for expressing
protocol properties and the proof system for proving such
properties. Section 5 presents the application of the method
to the ISO-9798-3 protocol, a generic secure sessions pro-
tocol, and the proof of their secure composition. Section 6
presents the semantics of extensions to the logic. Section 7
compares our model for key exchange to other models in
the literature. Finally, Section 8 concludes the paper and
discusses directions for future work.

2 Security Model

In this section, we describe some problems with induc-
tive compositional reasoning about key indistinguishability
and present an alternative condition that appears more suit-
able for our purposes. We also give a definition of secure
session that uses a key. These definitions are formulated
within a complexity-theoretic model, in the style of mod-
ern cryptographic game-based definitions [11]. In subse-
quent sections, we use these definitions to develop a cryp-
tographically sound proof system for reasoning about key
exchange protocols. The soundness proofs are subtle and
involve complexity-theoretic reductions.

2.1 Key indistinguishability

Our goal is to develop a formal method for composi-
tional proofs of protocol suites involving key exchange pro-
tocols. Since we intend to apply our method to prove se-
curity properties of existing protocols in common use, as
presented in RFCs and as currently implemented, we aim
to accommodate conditions such as semantic security that
may be weaker than the security conditions advocated by
some cryptographers. A central concept in many composi-
tional proof methods [4, 25, 26, 13, 19] is aninvariant. In
developing compositional security proofs of complex proto-
cols [33], we require that each protocol component respects
the invariants of the other components in the system [19].

It appears that standard cryptographic security defini-
tions for key exchange likekey indistinguishability[11, 10]
are not invariant in the manner needed for an inductive,
compositional proof of security of many systems that in-
clude both key exchange and use of the key. of Even if a
key exchange protocol, run by itself in isolation, produces
a key that is indistinguishable from a random value chosen
from the same distribution, key indistinguishability is gen-
erally lost as soon as the key is used to encrypt a message
of a known form or with partially known possible content.
Moreover, some situations allow one agent to begin trans-
mitting encrypted data before the other agent finishes the
last step of the key exchange, rendering key indistinguisha-
bility false at the point that the key exchange protocol fin-
ishes. (This appears to be the case for SSL [28]; see [42]
for a discussion of data transfer before the key exchange
finishedmessages are received.) Furthermore, some key
exchange protocols even use the generated key during the
protocol, preventing key indistinguishability. Fortunately,
many protocols that use keys do not require key indistin-
guishability to provide meaningful security guarantees. In
particular, semantic security [31] doesnot require that the
keys used remain indistinguishable from random.

To circumvent the technical problems we encountered in
working with key indistinguishability, we develop an alter-
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native notion that is parameterized by the security goal of
the application in which the resulting key is used. As con-
crete examples, we consider cases where the key is used
for encryption or MAC. The security definition for key ex-
change requires that the key produced is “good” for that ap-
plication, i.e. an adversary interacting with the encryption
scheme using this key cannot win the security game for that
scheme (for example, the IND-CPA game for encryption).
The resulting definition for key exchange is invariant under
composition with the application protocol which uses the
key.

Some interesting issues related to key indistinguishabil-
ity were raised by Rackoff, who proposed an example pro-
tocol that is explained in the appendix of [14]. Rackoff’s ex-
ample illustrates the difference between key indistinguisha-
bility based on an attacker who uses a challenge (the key or
a surrogate chosen randomly from the same distribution) to
interact with subsequent steps of the key exchange proto-
col, and indistinguishability based on an attacker who can-
not execute further protocol steps. The definition of key
usability that we use in this paper is similar to the weaker
notion of key indistinguishability in that the adversary who
attempts to win, for example, the IND-CPA game for en-
cryption, does not have the opportunity to interact further
with other protocol participants. On the other hand, because
protocols (such as SSL [28]) that provide key confirmation
steps will also fail the stronger form of definition suggested
by Rackoff’s example, we consider the weaker condition
we use advantageous for certain practical settings. Specif-
ically, we believe that whatever security properties are en-
joyed by practical key exchange protocols in current use,
there is merit in being able to state and prove these prop-
erties precisely. We also believe that the setting presented
in this paper provides a useful starting point for expressing
and reasoning about stronger security conditions.

We emphasize that the definition and subsequent theo-
rems below apply to any cryptographic primitive that satis-
fies the application game condition, e.g., theENC axiom
(presented in Section 4.2) holds for any encryption scheme
that satisfies the IND-CPA condition.

2.2 Key usability

While there are many desirable properties a “good” key
exchange protocol might satisfy, such as key freshness, high
key entropy, and agreement, one essential property is that
the key should be suitable for use. Specifically, an adver-
sary who interacts with the key exchange protocol should
not be able to extract information that can compromise the
application protocol which uses the resulting key. This is
the main idea underlying the security definition that we de-
velop in this section. The specific applications that we focus
on here are symmetric encryption and message authentica-

tion codes. But the definition can be extended in a natural
manner to cover other primitives. There are several ways in
which this intuition can be translated into a security defini-
tion. We present one such definition below.

We define usability of keys obtained through a key ex-
change protocolΣ with respect to a class of applications
S via a two-phase experiment. The experiment involves a
two-phase adversaryA = (Ae,Ac). In the key exchange
phase, the honest parties run sessions of the protocol fol-
lowing the standard execution model: each principal ex-
ecutes multiple sessions of the protocol (as both initiator
and responder) with other principals; the communication
between parties is controlled by the adversaryAe. At the
end of the key exchange phase, the adversary selects a chal-
lenge sessionsid among all sessions executed by the honest
parties, and outputs some state informationSt representing
the informationAe was able to gather during its execution.
Let k be the key locally output by the honest party execut-
ing the sessionsid. At this point, the experiment enters
its second phase—thechallenge phasewhere the goal of
the adversary is to demonstrate an attack against a scheme
Π ∈ S which uses the keyk. AfterAc receives as inputSt,
it starts interacting withΠ according to the game used for
defining security of the application protocols inS. For ex-
ample, ifS is a set of encryption schemes, then the relevant
game may be IND-CPA, IND-CCA1, or IND-CCA2 [30].
Since the specific task we treat in this paper is secure ses-
sions, we formalize the case when the game defines IND-
CPA security. Thus, in playing the game,Ac has access
to a left-right encryption oracle underk, and in addition, it
receives as input the state information fromAe. The advan-
tage of the adversary is defined as for the standard IND-CPA
game with the difference that the probability is taken over
the random coins of the honest parties (used in the execu-
tion of the protocol), the coins of the two adversaries, and
the coins used for encryption in the challenge phase. The
keys obtained by running the key exchange protocol are us-
able for the schemes inS if this advantage is bounded above
by a negligible function of the security parameter, forall
encryption schemes inS. The universal quantification over
schemes is used to capture the fact that the security property
is guaranteed for all encryption schemes which satisfy the
IND-CPA condition. This idea is formally stated as Defini-
tion 1 below.

We note that in this definition the adversaryAc is not
allowed to interact with the key exchange protocol in the
challenge phase. In subsequent work, we plan to explore
variants of this definition with other forms of communica-
tion between the adversariesAe andAc. Note also that this
setting does not consider dynamic corruption and gives the
adversary access to one key from one session, as opposed
to multiple keys from multiple sessions.

Definition 1. Consider the following experiment
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Expb
A,Σ,Π(η), involving an adversaryA = (Ae,Ac),

a key exchange protocolΣ and an encryption scheme
Π = (K, E ,D). The experiment is parameterized by the
bit b.

• The adversaryAe is given as input the security para-
meter and can make the following queries:

– Request that a new principali be added to the sys-
tem: new pairs of encryption/decryption keys are gen-
erated for the principal via(pki, ski)

$← K(η). The
principal is willing to engage in any number of ses-
sions of the key exchange protocol as both initiator and
responder, with any other principal in the system.

– Send a messagem to a protocol session: the receiv-
ing party processesm and returns toAe the answers
it computes according to the protocol.

– At some pointAe finishes its execution and outputs
(sid, St), that is a session identifier and some state
information.

• AdversaryAc is given the state informationSt and
is provided access to a left-right encryption oracle
E(LR(·, ·, b), k) keyed with the keyk locally output in
sessionsid.

• AdversaryAc plays the standard IND-CPA game: it
submits pairs of equal-length messages(m0,m1) to
the encryption oracle and obtains in returnE(mb, k).

• At some pointAc finishes its execution and outputs a
guess bitd, which is also the output of the experiment.

For any adversaryA = (Ae,Ac) we define its advan-
tage as:

Advke
A,Σ,Π(η) = Pr[Exp1

A,Σ,S(η) = 1]−Pr[Exp0
A,Σ,S(η) = 1]

and say that keys exchanged throughΣ are usable in
schemes inS if for anyΠ ∈ S the advantage of any proba-
bilistic, polynomial-time adversaryA is negligible.

The definition can be easily modified to define a similar
usability property of keys for other primitives, for exam-
ple, message authentication codes, by appropriately chang-
ing the security game that is played in the second phase.

The above definition of usability is consistent with ac-
cepted definitions of symmetric key-based primitives based
on security against adversaries that are allowed arbitrary
uses of the primitive in a priori unknown settings. In ad-
dition, our model considers the possibility that key genera-
tion is accomplished using a key exchange protocol instead
of a non-interactive algorithm. The adversary is provided
with auxiliary information obtained by interacting with this
protocol.

2.3 Logical formalization

Key exchange The game described in section 2.2 is used
to define the semantics of a “Goodkey” predicate and to pro-
vide the basis for computational proofs of the soundness of
formal axioms using this predicate. In fact, the basic pred-
icate of the logic isGoodKeyAgainst, which asserts that a
key is good against a specific agent; the truth of this pred-
icate at any point in the run of one or more protocols will
depend on the additional information available to that agent
from observations about the protocol steps and actions of
any protocol adversary. In logical proofs involving key ex-
change protocols and their use, we use a derived predicate
SharedKey, which asserts that a key is good against any
agent not among those sharing the key. (The agents who
share the key are arguments to the predicate.)

Secure sessions Formulas involvingSharedKey are also
used to reason about protocols that use a key generated by
a key exchange protocol. A key obtained by running a key
exchange protocol may be used to encrypt and authenticate
subsequent communication in what is commonly referred to
as asecure sessionor secure channel. As an example, we
will use a formula involvingSharedKey as a precondition
to a proof of security of a simple one-message protocol in
which the sender encrypts some data using a symmetric en-
cryption scheme. Such a session providessecrecyif, assum-
ing the sender flips a coin and sends one of two known mes-
sagesm0 or m1 depending on the outcome, the attacker’s
probability of determining which message was sent is close
to 1/2. We express these additional probabilistic proper-
ties using other predicates of Computational PCL. While
secure sessions typically provide integrity and replay pro-
tection guarantees, in this paper, we only focus on the se-
crecy property.

Composition We obtain a security proof of the composi-
tion of key exchange with secure sessions using a general
composition theorem [19]. In carrying out the composition,
we ensure that the two protocols do not degrade each other’s
security guarantees. Technically, this is accomplished by
checking that each component respects the invariants of the
other. It is important to notice the distinction between the
“conditional” composition used in this logic and “universal”
composition approaches [12, 8]. Specifically, the PCL com-
position theorems only apply when a protocol is composed
with protocol steps that respect specified invariants. No
guarantees are expressed or implied for composition with
protocols that violate invariants that are needed.

Because of the requirements on composition, some prov-
able properties may only hold under relatively stringent
conditions. In our framework, it may be possible to prove
security properties of a key exchange protocol, assuming
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Init(Ỹ ) ≡ [

new x;

gx := expg x;

send X̂, Ŷ , gx;

receive Ŷ , X̂, z, s;

verify s, (z, gx, X̂), Ŷ ;

r := sign (gx, z, Ŷ ), X̂;

send X̂, Ŷ , r;

k := dhkeyken x, z;

]X̃

Resp ≡ [

receive X̂, Ŷ , w;

new y;

gy := expg y;

r := sign (gy, w, X̂), Ŷ ;

send Ŷ , X̂, gy, r;

receive X̂, Ŷ , t;

verify t, (w, gy, Ŷ ), X̂;

k := dhkeyken y, w;

]Ỹ

Figure 1. Roles of the ISO-9798-3 protocol

certain invariants, even if the key exchange protocol is aug-
mented to provide a decryption oracle after one party has
completed the protocol. However, the condition given in
Definition 1 must be understood as only guaranteeing use-
fulness of the key material itself, apart from some aspects
of interaction between the key exchange protocol and pro-
tocols that use the key. In our framework, the way the key is
used is handled by the composition theorems. In particular,
a key exchange protocol that provides a decryption oracle
will generally not satisfy the requirements of the composi-
tion theorem since the subsequent key usage protocol will
typically require that no such mechanisms are present.

3 Modeling Protocols

We use a simple “protocol programming language”
based on [24, 18, 19] to represent a protocol by a set of
roles, such as “Initiator”, “Responder” or “Server”, each
specifying a sequence of actions to be executed by a hon-
est participant. Protocol actions include nonce genera-
tion, signature creation and verification, pattern matching,
and communication steps (sending and receiving). The

actionsexpg and dhkeyken are used to create a pub-
lic Diffie-Hellman key (v := gx), and to create a key
based on a Diffie-Hellman public/private key pair (v :=
KeyGen(PRF (yx))), respectively. In Table 1 we show
how to specify the roles of the ISO-9798-3 protocol using
this language.

As usual, we consider a two-phase execution model. In
the initialization phase of protocol execution, we assign a
set of roles to each principal, identify a subset which is hon-
est, and provide all entities with keys for digital signature
creation/verification, a public group generator for the Diffie-
Hellman key exchange, and random coins. In the execution
phase, the adversary executes the protocol by interacting
with honest principals. We make the standard assumption
that the adversary has complete control over the network,
i.e. it sends messages to the parties and intercepts their an-
swers, as in the accepted cryptographic model of [11].

Informally, a formula of the logic expresses a property
of all runsof a protocols, where a run is a record of all ac-
tions executed by honest principals and the attacker during
protocol execution. Since honest principals execute sym-
bolic programs, a run contains symbolic descriptions of the
actions executed by honest parties as well as the mapping
of bitstrings to variables. On the other hand, although the
attacker may produce and send arbitrary bitstrings, the run
only records the send-receive actions of the attacker, and
not its internal actions. The execution model is presented
in more detail in an earlier paper [20].

4 Protocol Logic

In this section, we present relevant parts of the syntax
and proof system of Computational PCL [20]. The syntax
indicates the kinds of protocol security properties that are
expressible in the logic. The proof system is used for ax-
iomatically proving such properties for specific protocols.
It includes axioms capturing properties of cryptographic
primitives like signature and encryption schemes, which are
used as building blocks in protocol security proofs.

4.1 Syntax

The formulas of the logic are given in Table 1. Proto-
col proofs usually use modal formulas of the formψ[P ]X̃ϕ.
The informal reading of the modal formula is that ifX̃ starts
from a state in whichψ holds, and executes the programP ,
then in the resulting state the security propertyϕ is guaran-
teed to hold irrespective of the actions of an attacker and
other honest agents. Many protocol properties are natu-
rally expressible in this form (see Section 5 for examples).
Most formulas have the same intuitive meaning as in the
symbolic model [18, 19], except for predicatesIndist and
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Action Predicates:
a ::= Send(T, t) |Receive(T, t) |Verify(T, t, N) |

Sign(T, t) |Encrypt(T, t, k) |Decrypt(T, t, k) |
New(T, n)

Formulas:
ϕ ::= a | t = t | Start(T ) | Indist(T, t) |

GoodKeyAgainst(T, t) |Fresh(T, t) |
Honest(N) |Contains(t, t) |
DHSource(T, t) |PSource(T, n, t, t) |
ϕ ∧ ϕ |ϕ ∨ ϕ | ∃V. ϕ | ∀V. ϕ | ¬ϕ |ϕ ⊃ ϕ |ϕ ⇒ ϕ

Modal formulas:
Ψ ::= ϕ [Strand]T ϕ

Table 1. Syntax of the logic

GoodKeyAgainst. We describe the meaning of standard for-
mulas informally below, and give a precise semantics in a
later section. Predicates that are most relevant to the key ex-
change example are presented alongside proof rules in the
next subsection.

For every protocol action, there is a corresponding ac-
tion predicate which asserts that the action has occurred in
the run. For example,Send(X̃, t) holds in a run where the
threadX̃ has sent the termt. Action predicates are useful
for capturing authentication properties of protocols since
they can be used to assert which agents sent and received
certain messages.Fresh(X̃, t) means that the value oft gen-
erated byX̃ is “fresh” in the sense that no one else has seen
any messages containingt, whileHonest(X̂) means that̂X
is acting honestly,i.e., the actions of every thread of̂X pre-
cisely follow some role of the protocol.

4.2 Proof System

The proof system used in this paper is based on the
proof system for the symbolic execution model developed
in [18, 19, 5]. A first step towards developing a proof sys-
tem faithful to the complexity-theoretic semantics is given
in [20]. In this section, we describe the predicates and
axioms for reasoning about Diffie-Hellman, symmetric en-
cryption, and signature primitives introduced in this paper.
The soundness theorem for the extended proof system is in
Section 6. We reiterate that the advantage of using the proof
system is that its justification using cryptographic-style ar-
guments is a one-time mathematical effort; protocol proofs
can be carried out symbolically using the proof system with-
out explicitly reasoning about probability and complexity.

Diffie-Hellman key exchange: Reasoning about Diffie-
Hellman key exchange can be divided into two steps. First
we reason about symbolic actions of honest participants;
then we deduce computational key secrecy properties from
the fact that honest principals follow certain rules when
dealing with Diffie-Hellman key material.

The DHSource predicate is used to reason about the
source of a piece of information, such as a nonce. Intu-
itively, the formulaDHSource(X̃, x) means that the thread
X̃ created the noncex, and in all subsequent actions of that
thread it appears only inexpg anddhkeyken actions. In
other words,DHSource(X̃, x) holds if a thread only usesx
“inside” exponentialgx or a keyk = KeyGen(PRF (yx)).

We extend the proof system with the following axioms
used for reasoning about theDHSource axiom. The sec-
ond is written with a side condition involving the subterm
relation⊆.

S0 > [new x]X̃ DHSource(X̃, x)

S1 DHSource(X̃, x)[a]X̃ DHSource(X̃, x)

where (x 6⊆ a or a = expg x

or a = dhkeyken y, x andx 6⊆ y)

Axioms S0 andS1 model introduction and persistence of
theDHSource predicate. Informally, after a thread̃X cre-
ates a new noncex, DHSource(X̃, x) holds (axiomS0),
and it continues to hold (axiomS1) as long as the thread
does not usex, other than creating a public keygx, and cre-
ating and using a shared keyv = yx. Axioms S0 andS1
capture simple properties about information flow within a
program and we prove their soundness using direct argu-
ments. When we use these axioms in a formal proof, we
are essentially performing induction over symbolic actions
of honest parties proving that they treat Diffie-Hellman ex-
ponents in a correct way.

The result of a good key exchange protocol is a shared
key k which is indistinguishable from a randomly cho-
sen key by a polynomial-time attacker. As discussed in
the introduction, after the key is used (e.g. to establish
a secure session), partial information about the key is re-
vealed to the attacker. In our model we capture the qual-
ity of a key using the predicateGoodKeyAgainst. Infor-
mally we wish to capture the property that the key can
be securely used for encryption, even if the attacker has
some partial information about the key. A bit more for-
mally, GoodKeyAgainst(X̃, k) holds whenever no proba-
bilistic polynomial-time algorithm, giveñX ’s view of the
run, can win the IND-CPA game if the challenger uses key
k instead of a key generated using the key generation al-
gorithm. We often use the shorthandSharedKey(Ã, B̃, k)
to denote, thatk is a good key against everyone exceptÃ
andB̃. More preciselySharedKey(Ã, B̃, k) ≡ ∀X̃(X̃ =
Ã ∨ X̃ = B̃ ∨ GoodKeyAgainst(X̃, k)).

We extend the proof system with the following axiom
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used for establishing key secrecy in Diffie-Hellman key ex-
change.

DH Honest(X̂, Ŷ ) ∧ DHSource(X̃, x) ∧ DHSource(Ỹ , y)

∧KeyGen(X̃, k, x, gy) ⇒ SharedKey(X̃, Ỹ , k)

Axiom DH says that if two threads of honest agentsX̃
andỸ use their respective private key in a safe way, then the
shared key generated fromgxy can be safely used with any
IND-CPA secure encryption scheme. Note that this axiom
does not capture key agreement: threadsX̃ andỸ could in
principle have different keys (or no keys at all). Key agre-
ment has to be established by other methods. We prove the
soundness of axiomDH using a cryptographic-style reduc-
tion to the security of the underlying IND-CPA secure en-
cryption scheme and to the Decisional Diffie-Hellman as-
sumption. The proof employs a hybrid argument and is
sketched in Section 6.

Signatures: The signature axiom is given below.

SIG Verify(X̃, m, Ŷ ) ∧ Honest(X̂, Ŷ ) ⇒ ∃Ỹ .Sign(Ỹ , m)

Informally, this axiom says that if a thread̂X performs a
successful signature verification step using a public key of
an honest partŷY then there has to be a threadỸ of agent
Ŷ that performed the signature operation on the same mes-
sage. This axiom captures unforgeability of signatures and
its soundness is proved by reduction to the CMA-security
game for signatures. A complete proof will appear in the
full version of this paper.

Symmetric Encryption: In the symbolic model [18, 19],
the predicateHas states that a principal can “derive” a mes-
sage or its contents from the information gathered dur-
ing protocol execution. Since secrecy in the computa-
tional model involves absence of any partial information,
we use the predicateIndist(X̃, t) to state that no proba-
bilistic polynomial-time algorithm, giveñX ’s view of the
run, can distinguish the actual bitstring corresponding to
the termt from a random bitstring chosen from the same
distribution.

ThePSource(X̃, b, m, k) predicate means that the bitb
and the messagem were chosen bỹX via apick action,
and in all subsequent actions of that threadb does not ap-
pear, andm appears only inside encryptions with the key
k. We use it for expressing security properties of symmetric
encryption schemes and reasoning about protocols which
use such schemes.

We extend the proof system with the following axioms

used for reasoning about symmetric encryption.

PS0 > [(m, b) = pick m0, m1]X̃ PSource(X̃, b, m, k)

PS1 PSource(X̃, b, m, k)[a]X̃ PSource(X̃, b, m, k)

(m, b 6⊆ a or a = enc m, k)

ENC PSource(X̃, b, m, k) ∧ Honest(X̂, Ŷ ) ∧
SharedKey(X̃, Ỹ , k) ∧
(Decrypts(Ỹ , m, k) ∧ Contains(m, m′) ∧
Send(Ỹ , m′′) ⊃ ¬Contains(m′′, m′)) ∧
(Decrypts(X̃, m, k) ∧ Contains(m, m′) ∧
Send(X̃, m′′) ⊃ ¬Contains(m′′, m′)) ∧
∧Z̃ 6= X̃ ∧ Z̃ 6= Ỹ ⇒ Indist(Z̃, b)

Axiom ENC captures the properties of an IND-CPA en-
cryption scheme. Informally, in a scenario wherek is a
shared key between threads̃X andỸ , if X̃ chooses a mes-
sagem and the bitb via a pick action, and both threads
follow the rules of the IND-CPA game (i.e. the do not send
parts of messages they decrypt) then the bitb should be in-
distinguishable from a random bit to any other party.

Discussion: The presented axioms deduce computational
properties based on symbolic actions executed by individual
honest parties. This resembles the setup in defining security
properties of cryptographic primitives using games. For ex-
ample, in the IND-CPA game the challenger is required to
generate a random key and use it for encryption only. If
this syntactic property is satisfied, then the security condi-
tion (semantic security) is guaranteed to hold for all com-
putational adversaries interacting with the challenger. The
predicatesDHSource andPSource are used to exactly state
symbolic constraints for actions of honest parties. The ax-
iomsDH andENC bridge the gap between the symbolic
and computational world and are proven sound by reduction
to security properties of corresponding primitives.

In Section 2.1 we pointed out that the key indistinguisha-
bility property is not invariant under composition. Specif-
ically, focusing on the Diffie-Hellman example, we could
have formulated theDH axiom to guarantee key indistin-
guishability by modifying theDHSource predicate to pre-
clude the case where the resulting secret is used as a key.
The resulting axiom could be proven sound by a similar re-
duction. However, this axiom will not be useful in a proof
involving a composition of a key exchange protocol with a
protocol that uses a key.

5 Applications

5.1 Key Exchange

In this section, we use the protocol logic to formally
prove a property of the ISO 9798-3 protocol. The ISO
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9793-3 protocol is defined by a set of two rolesQISO =
{Init,Resp}, comprising one roleInit for the initiator of
the protocol and one programResp for the responder. The
roles of the protocol, written using the protocol language
are given in Figure 1.

Writing Init = Init(Ỹ ) for the protocol steps of initia-
tor X̂ communicating with responder̂Y , the security guar-
antee for the initiator is expressed by the following for-
mula:

QISO ` > [Init]X̃ Honest(X̂, Ŷ ) ⊃
∃Ỹ .∃y. z = gy ∧ SharedKey(X̃, Ỹ , k)

This formula states the key usability property for the ini-
tiator when ISO-9798-3 protocol is run in isolation. More
precisely, after the initiator̂X completes the initiator steps
with Ŷ then, assuming both agents are honest in all of their
threads, there is one thread̃Y of agentŶ that has estab-
lished a shared key witĥX. The meaning of the predi-
cateSharedKey in this formula is defined using the game
condition explained in Section 2. Note that this property
is guaranteed against any polynomial time adversary when
any number of sessions are executed concurrently. The only
additional assumption is that honest agents follow roles of
the ISO-9798-3 protocol.

The formal proof, given in Table 2, illustrates some gen-
eral properties of our method. This example proof is mod-
ular, consisting of three distinct parts. In the first part of
the proof, steps (1)-(2), we establish that valuex generated
by the initiator is only used to creategx and the final key
gxy. The reasoning in this step is non-cryptographic, and
only relies on the structure of the program of the initiator.
In the second step the analogous property fory is estab-
lished based on the security of the signature scheme, and
the structure of the responding program. Finally, the axiom
that captures the DDH assumption is used to conclude that
the key derived fromgxy is secure. Notice that the axioms
SIG andDH are used independently to establish different
security properties. The two properties are only combined
in the last step of the proof.

The modular symbolic proof can be compared with con-
ventional computational arguments, such as the computa-
tional proof of the same property by reduction. The re-
duction proof starts from an adversary against the key de-
rived fromgxy and constructs two different adversaries, one
against the DDH assumption and the other one against the
signature scheme. The assumptions on signatures and DDH
are used intertwined. Specifically, to argue that the adver-
sary against DDH is successful, it is necessary to argue that
the values that occur in a possible simulation are created
by the honest party, and consequently, to argue that the sig-
nature scheme is secure. More generally, the analysis of
protocols that use more primitives, and where the reduc-
tion uses multiple adversaries, the proofs become increas-

ingly complex. In contrast, evidence drawn from work with
the symbolic version of the logic indicates that axiomatic
proofs are at the same level of complexity as our proof for
the ISO-9798-3 protocol [1].

5.2 Secure Sessions

We formalize the definition of secure sessions presented
in Section 2.3 for a protocolQSS = {InitS,RespS} be-
low.

QSS `
h
(m, b) = pick m0, m1; InitS(Ỹ,m)

i
X̃

Honest(X̂, Ŷ ) ∧ Z̃ 6= X̃ ∧ Z̃ 6= Ỹ ⇒ Indist(Z̃, b)

In words, this formula states that if initiator̂X picks one of
two messages at random and executes the secure sessions
protocol withŶ , then the attacker cannot distinguish, which
of the two messages was transmitted.

As a concrete example, we consider the secure session
protocol with the following initiator program. The respon-
der simply decrypts the message.

InitS(Ŷ , m, k) ≡
h
e := enc m, k; send Ŷ , e;

i
X̃

Using the proof system we can prove that this protocol pro-
vides the secure-session property between threadsX̃ andỸ
assuming that the keyk is a shared key betweeñX andỸ ,
formally:

SharedKey(X̃, Ỹ , k)h
(m, b) = pick m0, m1; InitS(Ỹ,m,k)

i
X̃

Honest(X̂, Ŷ ) ∧ Z̃ 6= X̃ ∧ Z̃ 6= Ỹ ⇒ Indist(Z̃, b)

The security property of an IND-CPA secure encryption
scheme (expressed by axiomENC) is central to this proof.
This is a point of difference between the logic and the
approaches which relate the symbolic and computational
models [41, 8] and require stronger cryptographic assump-
tions such as IND-CCA-2.

5.3 Composition

We prove that the sequential composition of ISO-9798-
3 and the secure sessions protocol described above is also
a good secure session protocol, when the key generated in
the first part is used in the second part. We use the gen-
eral sequential theorem of [19]. This involves two steps: a)
the property guaranteed by ISO (thatk is a shared key be-
tweenX̃ and Ỹ ) is precisely the assumption of the secure
sessions protocol; b) two protocols satisfy each other’s in-
variants (e.g. line (6) of Table 2). This step guarantees that
one protocol does not provide an oracle that can be used to
break the security of the other protocol (see [19] for further
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S0 > [new x; ]X̃ DHSource(X̃, x) (1)

S1, (1) > [Init]X̃ DHSource(X̃, x) (2)

AA1 > [verify s, (z, gx, X̂), Ŷ ; ]X̃ Verify(X̃, (z, gx, X̂), Ŷ ) (3)

P,SEQ, (3) > [Init]X̃ Verify(X̃, (z, gx, X̂), Ŷ ) (4)

SIG, (4) > [Init]X̃ ∃Ỹ .Sign(Ỹ , (z, gx, X̂)) (5)

HON Honest(Ŷ ) ∧ Sign(Ỹ , (z, gx, X̂)) ⊃ ∃y. z = gy ∧ DHSource(Ỹ , y) (6)

(6) > [Init]X̃ Honest(X̂, Ŷ ) ⊃ ∃Ỹ .∃y. z = gy ∧ DHSource(Ỹ , y) (7)

(7), (2) > [Init]X̃ Honest(X̂, Ŷ ) ⊃ ∃Ỹ .∃y. z = gy ∧ DHSource(X̃, x) ∧ DHSource(Ỹ , y) (8)

(8),DH > [Init]X̃ Honest(X̂, Ŷ ) ⊃ ∃Ỹ .∃y. z = gy ∧ SharedKey(X̃, Ỹ , k) (9)

Table 2. Secrecy proof for the initiator in the ISO-9798-3 Protocol

elaboration and examples of composition). The composi-
tion would not have worked if we used key indistinguisha-
bility instead of the weaker shared-key property.

Consider a protocol in which both parties execute ses-
sion of theQISO protocol followed by a session of protocol
QSS protocol. Moreover, key used in the secure session
protocol is exactly the key established in the key-exchange
phase, while the message transmitted in the secure session
phase in an arbitrary message obtained via input interface
of a resulting protocol. Formally,Q = {InitQ,RespQ}
where the initiators program is given by (responders pro-
gram is analogous):

InitQ(Ŷ , m) ≡ [Init(Ŷ ); InitS(Ŷ , k, m)]X̃

To formally prove that the combined protocol also pro-
vides secret session property we use composition theorems
and the sequencing rules in steps as follows: First we need
to ensure that protocols satisfy each others invariants, i.e.
QSS ` ΓISO and QISO ` ΓSS , whereΓISO and ΓSS

are invariants used in the proof of the key exchange and
the secure session protocol respectively. Informally,ΓISO

requires that honest agents treat their Diffie-Hellman expo-
nents correctly, whileΓSS requires that no party possessing
the shared key acts as a decryption oracle.

ΓISO = Honest(Ŷ ) ∧ Sign(Ỹ , (z, gx, X̂)) ⊃
∃y. z = gy ∧ DHSource(Ỹ , y)

ΓSS = Honest(X̂, Ŷ ) ∧ SharedKey(X̃, Ỹ , k) ∧
(Decrypts(Ỹ , m, k) ∧ Contains(m, m′) ∧
Send(Ỹ , m′′) ⊃ ¬Contains(m′′, m′))

(Decrypts(X̃, m, k) ∧ Contains(m, m′) ∧
Send(X̃, m′′) ⊃ ¬Contains(m′′, m′))

When this is established, both proofs are still valid, us-
ing the sequencing rule and the fact that theQSS protocol
does not invalidateDHSource predicate we establish that

the shared-key property persists from the end of theQISO

protocol to the end of theQSS protocol. Finally using the
properties of theQSS protocol, we establish that the com-
bined protocol provides secure session property.

As mentioned in Section 2, there are key exchange pro-
tocols which satisfy the key usability property but may not
compose well with any subsequent secure session. Using
the same example, if a key exchange protocol provides a
decryption oracle thenΓSS will not be satisfied and the pro-
tocol composition will fail.

6 Computational Semantics and Soundness
Theorem

In this section, we outline the main ideas behind the com-
putational semantics and present semantics for the predi-
cates introduced in this paper. We also state the sound-
ness theorem for the proof system and sketch the proof for
one representative axiom, demonstrating the connection be-
tween validity of logical formulas and standard security de-
finitions of cryptographic primitives. Because of space lim-
itations, the portions of the semantics that are presented in
full in [20] are only summarized here, allowing us to de-
scribe the semantics of predicates introduced in this paper
in more detail. The reader wishing a complete explanation
may consult Sections 6 and 7 of [20].

The meaning of a formula is defined with respect to a
set of computational traces, where each trace corresponds
to one particular execution of the protocol with all the pa-
rameters fixed (including the randomness of the attacker
and honest parties). Intuitively, the meaning of a formula
ϕ on a setT of computational traces is a subsetT ′ ⊆ T
that respectsϕ in some specific way. For example, an ac-
tion predicate such asSend selects a set of traces in which
a send occurs. The semantics of predicatesIndist and
GoodKeyAgainst are more complex and involve a second
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phase of execution where the distinguisher tries to guess the
secret value or break the encryption scheme.

We inductively define the set|[ϕ ]| (T, D, ε) of traces that
is the meaning of formulaϕ on the setT of traces, with dis-
tinguisherD and toleranceε. The distinguisher and toler-
ance are not used in any of the clauses except forIndist
and GoodKeyAgainst, where they are used to determine
whether the distinguisher has more than a negligible chance
of distinguishing the given value from a random value or
wining an IND-CPA game, respectively. A protocolQ
will satisfy a formulaϕ, written Q |= ϕ if for all adver-
saries, distinguishers, and sufficiently large security para-
meter,|[ϕ ]| (T, D, ε) is an overwhelming subset of the set
of all possible traces produced by the interaction of proto-
col Q and attackerA.

Every tracet ∈ T includes a set of symbolic actions ex-
ecuted by the honest participants, as well as the mappingλ
assigning bitstrings to all terms appearing in symbolic ac-
tions. A tracet also includes a mappingσ assigning bit-
strings to free formula variables. Informally,σ represents
the environment in which the formula is evaluated. Tech-
nically, as the binding operators (such as quantifiers) are
parsed,σ is used to keep track of the values assigned to the
variables by these operators.

•
∣∣∣
[
DHSource(X̃, x)

]∣∣∣ (T,D, ε) is the collection of all

tracest ∈ T such that for all basic termsy with σ(x) =
λ(y) there is a single symbolic action(new (X̃), y),
and termy does not appear in any symbolic actions
except possibly in(v := expg (X̃, y)) and (v :=
dhkeyken (X̃, z, y)) for some termz different from
y.

Notice that the conditionσ(x) = λ(y) is used to tie the
formula variablex to a trace variabley by requiring
that they both evaluate to the same bitstring. There-
fore, if we fix a particular tracet ∈ T with an envi-

ronmentσ, thent ∈
∣∣∣
[
DHSource(X̃, x)

]∣∣∣ (T, D, ε) if

in the tracet, the threadX̃ created a new nonce (rep-
resented by a trace variabley) with a bitstring value
equal to that ofσ(x), and used the variabley only in-
side an exponentiation action or a key generation ac-
tion.

•
∣∣∣
[
PSource(X̃, b, m, k)

]∣∣∣ (T, D, ε) is the collection of

all tracest ∈ T such that for all basic termsm′, b′ with
σ(m) = λ(m′) andσ(b) = λ(b′), such that there is
symbolic action((m′, b′) := pick X̃, m1,m2), terms
b′ andm′ do not appear in any symbolic actions except
maybe in(v := enc X̃, m′, k′), with σ(k) = λ(k′).

•
∣∣∣
[
GoodKeyAgainst(X̃, k)

]∣∣∣ (T, D, ε) is the complete

set of tracesT if the distinguisherD, who is given a

completeX̃ ’s view of the run, has an advantage less
thanε in winning the IND-CPA game against a chal-
lenger using the bitstring corresponding to termk, and
empty set∅ otherwise. Here the probability is taken
by choosing an uniformly random tracet ∈ T (which
includes the randomness of all parties, the attacker as
well as the distinguisher randomness).

•
∣∣∣
[
Sign(X̃, m)

]∣∣∣ (T, D, ε) is a collection of all traces

whereX̃ performs a symbolic signing operation on a
variable whose bitstring value corresponds to the bit-
string value ofm.

•
∣∣∣
[
Verify(X̂, m, Ŷ )

]∣∣∣ (T, D, ε) is a collection of all

traces wherẽX performs a successful symbolic signa-
ture verification operation where the bitstring value of
the signed text corresponds to the bitstring value ofm,
and the bitstring value of the agent name corresponds
to the bitstring value of̂Y .

Note that the predicates defined by reference to a set of
symbolic actions by a thread̃X only make sense if the agent
X̂ is honest and therefore its threads only perform symbolic
actions. For the threads of dishonest agents, we can define
the semantics of these terms arbitrarily. In all provable for-
mulas, these predicates will only occur in conjunction with
the assumption that the corresponding agent is honest.

The proof system used in this paper consists of axioms
and proof rules presented in [20] extended with the axioms
introduced in Section 4.2:S0, S1 andSH modeling prop-
erties of the Diffie-Hellman key exchange,SIG modeling
signatures andPS0, PS1 andENC modeling symmetric
encryption.

Theorem 1 (Soundness). The proof system [20] extended
with axioms from Section 4.2 is sound for the semantics [20]
extended with clauses above.

This soundness theorem is proved by showing that every
axiom is a valid formula and that all proof rules preserve
validity. For some axioms and proof rules soundness will
follow directly from the execution model or by information
theoretic reasoning. Axioms stating properties of crypto-
graphic primitives are proved sound by transforming a pro-
tocol and an attacker breaking the axiom to an attacker on
the game defining the security property of the cryptographic
primitive. Below we give a proof sketch for the soundness
of theDH axiom (introduced and discussed informally in
Section 4.2).

Proof sketch for axiomDH. Assuming the axiom is false
we deduce that there exists an adversaryA, and a distin-
guisherD such that:

||[¬ϕ ]| (T, D, ν(η))| ≥ ν(η)
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is non-negligible (as a function ofη). By unwinding the
semantics of¬ϕ, we obtain that there exists three parties
bX , bY andbZ such that the set:

|[¬ϕ ]| (T, D, ν(η))[X̃ → bX ][Ỹ → bY ][Z̃ → bZ ]

is of non-negligible size in rapport with|T |. More pre-
cisely, with non-negligible probability, the distinguisherD
can successfully break the IND-CPA game played against a
standard left-right encryption oracle keyed with the key that
party bX outputs at the end of the protocol execution with
partybY , provided thatD has access to the view associated
to party bZ . Given adversaryA and distinguisherD we
explain how to construct two adversariesA1 andA2, one
against the DDH assumption and the other one against the
IND-CPA security of the encryption scheme, such that at
least one of these two adversaries has non-negligible prob-
ability of wining the corresponding security game.

We consider two execution scenarios that involveA and
D. In the first scenario adversaryA interacts with the pro-
tocol as sketched in Section 3. Then,D plays the IND-CPA
game in which the key for encryption is the key obtained
by partybX . At the end of the executionD outputs a guess
bit d. Let guess1(A,D) be the event that the output ofD
coincides with the bitb of the left-right oracle to which it
has access. By the assumption thatD is successful we con-
clude thatP1 = Pr[guess(A,D)1] is non-negligible. (Here,
to simplify notation we omit to explicitly show the depen-
dence of the event on the security parameter.)

In the second scenario, the execution ofA proceeds also
as sketched in Section 3. However,D plays the IND-CPA
games against encryption oracles in which the key has been
randomly generated (in particular, this key is independent
from the execution of the protocol). Letguess2(A, D) be
the event thatD correctly guesses the bit that parameterizes
the left-right oracle, and letP2 = Pr[guess2(A,D) = b].

Intuitively, if the DDH assumption holds, adversaryD
should not observe any difference between the two differ-
ent execution scenarios that we consider. Formally, we con-
struct the following adversaryA1 against the DDH assump-
tion. The adversary takes as input a triple(X = gx, Y =
gy, Z = gz) and works as follows. It executes adversary
A as a subroutine, and emulates forA the behavior of the
honest parties. The difference is that for partiesbX andbY ,
the adversary does not generate the valuesx andy needed
for the execution, but whenever it needs to sendgx andgy it
sendsX andY respectively. Notice that here we crucially
use thatDHSource(X̂, x) andDHSource(Ŷ , y) hold, since
this implies that partiesbX andbY only send the valuesx
andy as exponents. (Otherwise, it would be impossible to
carry out the simulation).

WhenA finishes its execution, adversaryA1 flips a bit
b and simulates forD the left-right encryption oracle pa-
rameterized byb and keyed by the key generated fromZ.

WhenD finishes and outputs a bitd adversaryA outputs1
if d = b and0 otherwise.

Notice that when(X, Y, Z) are such thatz = xy, the
view of (A, D) is as in the normal execution of the pro-
tocol, and thus we have that Pr[A1 = 1|Z = gxy] =
Pr[guess1(A,D)]. When Z is such thatz is randomly
chosen, the view of(A,D) is as in the alternative exe-
cution scenario that we consider, and thus we obtain that
Pr[A1 = 1|Z = gz] = Pr[guess2(A,D)].

The advantage thatA1 has in breaking the DDH assump-
tion is thus:

AdvDDH,A1(η) = Pr[guess1(A,D)]− Pr[guess2(A,D)]
(10)

Next, we bound the probability ofguess2(A,D). Intu-
itively, if the encryption scheme is IND-CPA secure, no ad-
versary should be able to win the IND-CPA game in the
second execution scenario (since the key used in the ora-
cle is a randomly generated key, thus independent from that
generated in the key exchange phase). Formally, we con-
struct adversaryA2 against the IND-CPA security of the
encryption scheme. The adversary has access to a left-right
encryption oracle parameterized by a bitb and proceeds as
follows. It runs adversaryA as a subroutine and simulates
for A the execution of the honest parties involved in the pro-
tocol. Thus, it generates the encryption and decryption keys
of the honest parties and then receives and outputs messages
as prescribed by the protocol. WheneverA finishes its ex-
ecution, adversaryA2 provides toD the view of partybZ ,
whatever state informationA has output, and offers access
to his own oracle (parameterized by a bitb to be guessed).
Notice that if at any point, in order to carry out the simu-
lation adversaryA needs to output the encryption of some
messagem under the keyk of the oracle (this is the case for
example when the parties exchange confirmation messages
using the exchanged key),A2 can simply submit(m,m) to
its encryption oracle.

The guess ofA is whateverD outputs. The key obser-
vation is that the view of the pair(A,D) is exactly as in
the second execution scenario that we consider. ThusA2

successfully guesses the bitb precisely when, following the
execution we have just described, the distinguisherD out-
putsb. Thus, we obtain that:

AdvIND-CPA,A2(η) =
Pr[A2 wins the IND-CPA game] = Pr[guess2(A,D)]

(11)

By Equations (10) and (11) we get that:

Pr[guess1(A,D)] = AdvDDH,A1(η)+AdvIND-CPA,A2(η)

Since the left-hand side term is a non-negligible function so
is at least one of the summands on the right-hand side. Thus,
either the DDH assumption is not valid, or the encryption
scheme is not IND-CPA secure.
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7 Related Work

Computational Soundness We use the phrase “computa-
tional soundness” to refer to a line of work whose goal is to
develop symbolic methods for security analysis faithful to
the complexity theoretic model of cryptography. Abadi and
Rogaway [2] have initiated this line of research. Their main
result is a soundness theorem for a logic of encrypted ex-
pressions: a symbolic notion of equivalence between such
expressions based on Dolev-Yao deducibility [22] implies
computational indistinguishability. This work has been ex-
tended to the case of (symbolic) static equivalence [9],
while other works investigate completeness aspects of the
Abadi-Rogaway logic [40, 29, 3]. All these results hold for
a passive adversary, while our results are set in the more
general and more realistic framework of active adversaries.

The active setting has been investigated by Backes, Pfitz-
mann, and Waidner [8] and by Micciancio and Warin-
schi [41], with further refinements and applications pro-
vided in [17, 35, 7]. In these approaches, the core results
are emulation theorems that state that the behavior of ar-
bitrary computational adversaries can be emulated by sym-
bolic adversaries. It follows from an emulation theorem that
security in the symbolic model implies security in the com-
putational model. However, current emulation theorems re-
quire strong cryptographic assumptions (e.g., IND-CCA2
encryption) while the present paper allows weaker assump-
tions. Our approach appears to offer a higher degree of flex-
ibility and modularity when compared to [8, 41], which re-
quires a new emulation theorem for each added primitive;
this may be difficult or impossible in some cases [6]. Simi-
larly, new primitives can be added to the present framework
by adding appropriate axioms and proof rules to the logic
and proving them sound. However, this appears easier, pri-
marily because it is not necessary to completely axiomatize
new primitives, but only to formalize the properties that are
needed to prove protocols of interest correct. For instance,
our axiom for exponentiation does not explicitly give any al-
gebraic properties (although the soundness proof certainly
accounts for them), and only reflects the Decisional Diffie-
Hellman assumption.

A complementary line of research is proposed by Im-
pagliazzo and Kapron [34], who provide a logic for reason-
ing about indistinguishability. Their logic is appropriate for
reasoning about security of primitives, but has not been ex-
tended to deal with protocols.

An approach similar to the present paper is taken by
Gupta and Shmatikov [32] who extend the logic of [20] with
signatures and Diffie-Hellman keys, and then use the re-
sulting logic to express security properties of key exchange
protocols. The main result is a proof that protocols that
satisfy their security requirement are secure with respect
to a computational model for secure key exchange due to

Shoup [45]. Their logical characterization of secure keys is
based on indistinguishability, and unlike our notion is not
composable.

Other models of key exchange In previous work, three
different approaches have been used to define security of
key-exchange protocols: the indistinguishability-based ap-
proach [11], the simulation-based security paradigm [45],
and universal composability [12] or reactive simulateabil-
ity [43].

The indistinguishability-based approach was proposed
by Bellare and Rogaway [11]. A central aspect of this defi-
nition is the notion ofkey indistinguishability, which states
that an attacker cannot distinguish between the real key and
one chosen at random. This model was refined and extended
by Bellare, Petrank, Rackoff and Rogaway (in unpublished
work) and later by Canetti and Krawczyk [14]. The ap-
proach of Canetti and Krawczyk also offers a limited form
of composition guarantees. Specifically, they prove that a
key exchange protocol which satisfies their definition can be
securely composed with a specific secure sessions protocol,
which uses the exchanged key. However, as noted in the in-
troduction of this paper, key indistinguishability is not gen-
erally preserved once the key is used. While [14] provides
for a specificcomposition, their theorem would not apply,
for example, to IEEE 802.11i, where the key exchange pro-
tocol (TLS [21]) is composed with a protocol that uses the
exchanged key to set up other fresh keys for securing data
transmission.

Bellare, Canetti, Krawzyck [10] and Shoup [45] pro-
vide simulation-based alternatives. This line of research is
grounded in foundational work on secure multi-party com-
putation. Here, security of a real protocol is asserted by
comparing it with an ideal protocol, which is secure by con-
struction. As usual with this approach, while the resulting
definitions are quite appealing to intuition, security proofs
may be quite involved. Moreover, the basic framework of
secure multi-party computation does not have built-in com-
positionality guarantees, and neither of these two models
offers improvements with respect to this important aspect.

Finally, the universal composability framework of
Canetti [12] has the explicit goal of providing a frame-
work where demonstrated security is preserved under ar-
bitrary composition. Working in this setting Canetti
and Krawczyk [15] prove an equivalence between single-
session UC-security of key exchange protocols and the
indistinguishability-based notion introduced in [14], and
their result implies that indistinguishability-based notion
may be composable. However, the general compositional-
ity properties offered by the basic UC framework only apply
when primitives do not share state. A partial solution is of-
fered in [16], which allows multiple sessions of a protocol
to share state under some very specific conditions.
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8 Conclusions

We propose and formalize an approach for proving the
security of key exchange protocols. The condition we use
to express suitability of the key requires that the key should
be adequate for the application in which it is used. For ex-
ample, if a key is used as an encryption key, we ask that
an attacker interacting with the protocol cannot use the aux-
iliary information thus obtained to break an IND-CPA (or
IND-CCA) game with that key used in encryption (and de-
cryption) oracles. One important feature of this definition
is that the key usability property is an invariant of protocols
that use the key, and is therefore amenable to the inductive
proofs and the form of composition that we use.

Our security definitions are formalized in a symbolic
protocol logic. We extend an existing computational
logic [20] with axioms capturing properties of signatures,
symmetric encryption, and message authentication codes,
as well as with the Decisional Diffie-Hellman assumption.
Protocol proofs in this logic are compositional—proofs of
compound protocols can be constructed from proofs of their
parts. As a simple illustrative example, we show how to
compose the proof of ISO-9798-3 with the proof of a se-
cure sessions protocol. Our definition of key usability was
crucial for this compositional proof; it could not have been
carried out with the key indistinguishability-based defini-
tion. The axioms used in a proof identify specific properties
of cryptographic primitives that are sufficient to guarantee
the desired protocol properties. Specifically, we note that
for the secure sessions protocol presented in this paper, an
IND-CPA secure encryption scheme is sufficient. This is an
important point of difference between our approach and the
emulation theorems of [41, 8], since those theorems work
only under stronger cryptographic assumptions (e.g., IND-
CCA2 for encryption).

Since commonly used reasoning principles are codified
in the proof system, protocol security proofs can be carried
out at a high-level of abstraction without worrying about
probability and complexity. All such details are buried
in the proof of the soundness theorem, which is a one-
time mathematical effort. The soundness proofs for the
various axioms involve standard cryptographic proof tech-
niques. For example, the soundness proof of the signature
axiom,SIG involves a reduction to the security of CMA-
signatures. Among the axioms introduced in this paper, the
soundness of theDH axiom was the most difficult to es-
tablish since it relied on two cryptographic security condi-
tions: Decisional Diffie-Hellman and IND-CPA secure en-
cryption.

We believe that the methods developed in this paper pro-
vide a viable alternative to existing methods for carrying out
cryptographically-sound security proofs of practical key ex-
change protocols. In the future, we believe that these meth-

ods could be used to prove security properties of protocols
like IKEv2 [36], IEEE 802.11i [1], and Kerberos [37].
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