Programming Language
Methods in
Computer Security

John Mitchell
Stanford University

Computer Security

And you may find yourself

living in a shotgun shack
And you may find yourself

in another part of the world
And you may find yourself

in a beautiful house,

with a beautiful wife
And you may ask yourself

Well...

Plan

@ Perspective on computer security
@Protocol security

+ Protocol examples

* A basic rewriting model

* Incorporating probability and complexity

Orientation

@ Computer security is

* Branch of computer science concerned
with the protection of computer systems
and digital information

@ Opportunistic view
+ This is a problem area
* Not a solution technique

Personal POPL timeline

Computer

Personal turning point

@ 1Is Java secure?

* Proof is easy

- Induction on structure of expressions,
proving preservation of some property by
structured operational semantics

- (This was known to Curry, Hindley, ...)
+ But what's the theorem?
- Need to understand what “secure” means

Some references

¥ Books

- D. Gollman, Computer Security, Wiley, 1999.

- W. Stallings, Cryptography and Network
Security ..., Prentice-Hall, 1999.

- AJ. Menzies, P.C. van Oorschot, and S.A.

Vanstone, Handbook of Applied Cryptography,

CRC Press, 1997.
- D. Kahn, The Codebreakers, MacMillan, 1967.
®Periodicals and Journals
- J. Computer Security
- J. Cryptology

Security vs Correctness

@ Correctness
* Given expected input, system produces
desired output
@ Security
+ Given arbitrary input, system does not
- reveal secrets

- become corrupted
- provide false guarantees

Topics in computer security

@ Access control

[

source request guard resource

@ Operating systems security
@ Network security
@ Cryptography

@ Research Conferences
- Crypto, EuroCrypt, AsiaCrypt (www.iacr.org)
- IEEE Security and Privacy

- IEEE Computer Security Foundations
Workshop (CSFW)

- ACM Computer and Communication Security
@ On-line newsgroups, web sites

- Comp.risks, Comp.lang.java.security

- CERT

- Internet RFCs

- RSA FAQ, many many more

Example: Protocol Security

@ Cryptographic Protocol
* Program distributed over network
+ Use cryptography to achieve goal
@ Attacker
* Read, intercept, replace messages and
remember their contents
@ Correctness

+ Attacker cannot learn protected secret
or cause incorrect protocol completion

POPL relevance

@ Modeling

*+ Need to characterize possible behaviors
of system and attacker

@ Verification

* Show that system has security property
®Language security issues

+ Sandboxing, Java security

* Mobile code security

Outline of rest of talk

@ Sample protocols

@ Formulation of protocol security
+ Complexity, decidability results

@Process calculus approach to probability
and complexity
+ Why secrecy does not compose
+ Observational congruence “"solves” problem

Examples

@ Kerberos
+ Authentication protocol
* Keep plaintext passwords of f network
®SSL
+ Secure communication layer over TCP
+ Used for web fransactions
@ Contract signing protocols
+ Symmetric goal for asymmetric protocol
@ Needham-Schroeder public key protocol
+ Simplified research-paper example

Example of POPL-relevant concept

@ Folklore in security community

+ Security properties do not compose
@ Why is this a problem?

* Build secure system from secure parts
@ Can this be correct?

- IMH(B)O, this is based on naiveté of
researchers in security community

Part IT

Security Protocols

Motivation for Kerberos

@ Login, ftp connections require authentication
+ Intruders can run “packet sniffers”

@ Keep passwords off the network
* Challenge-response under shared secret key

Kerberos passwords and keys

Client password Server

hash Network

Password shared with server but not transmitted

SSL: Secure Sockets Layer

Another
complicated
real-life
protocol

One general idea in SSL

@ Client, seaver communicate
HI
»
—
4 Hello :

How are you? ~

@ Compare hash of all messages
+ Compute hash(hi,hello,howareyou?) locally
+ Exchange hash values under encryption

@ Abort if intervention detected

Abstract protocol

¢ e

{Chs S !m
.

| Service

SSL Handshake Protocol

@ Negotiate protocol version, crypto suite
- Possible "version rollback attack”

@ Authenticate client and server
- Appeal to “certificate authority”

@ Use public key to establish shared secret

Handshake Protocol Description

ClientHello C® s C, Verg, Suiteg, N
ServerHelo S® C Verg, Suiteg, Ng, S, Kg

ClientVerify C® S C, V¢
Ver, Secret,
Hash(Master(Ng, Ng, Secret;) + Pad, +

Hash(Msgs + C + Master(N¢, Ng, Secret;) + Pad,))
(Change to negotiated cipher)

ServerFinished S® C Hash(Master(Ng,)Ns, Secret;) + Pad, +

Hash(Msgs + S + Master(N, Ng, Secret;) + Pad,))

ClientFinished C® S Hash(Master(Ng, Ng, Secret;) + Pad, +

Hash(Msgs + C + Master(N, N, Secret;) + Pad,))

Contract signing

¢l |

@ Both parties want to sign the
contract

& Neither wants to commit first

Asokan-Shoup-Waidner protocol
Agree

“Network/

sigr (ay,abort) ’ If not already

resolved

__—~—~Resolve Attack?

— —_—
T < :
. . .

sigr (my, my)

Needham-Schroeder Key Exchange

o >
(a
E jU Czi : >

Result: A and B share two private numbers
not known to any observer without K 1, K -1

General protocol outline

I am going to sign the contract
I

I am going to sign the contract
qe—— =

Here is my signature
- F

Here is my signature
<

@ Trusted third party can force contract

+ Third party can declare contract binding if
presented with first fwo messages.

Abuse-Free Contract Signing

bility to determine
Abuse =
Ability to prove it

@®Example
+ Alice agrees to buy Bob's house
+ Bob shows partially signed contract to Carol

Anomaly in Needham-Schroeder

[I:owe]

Evil agent E tfricks

honest A into revealing
private key N, from B.

Evil E can then fool B.

Part IIT Analyzing Security Protocols

@ Non-formal approaches (can be useful, but no tools...)
. .. + Some crypto-based proofs [Bellare, Rogaway]
MUITISZT Rewr' Tlng @ BAN and related logics
. + Axiomatic semantics of protocol steps
FOI"I’\'\U IGT'O” P Methods based on operational semantics
+ Intruder model derived from Dolev-Yao
+ Protocol gives rise to set of traces

+ Perfect encryption
- Possible to include known algebraic properties

A notation for inf-state systems Protocol Modeling Decisions

n

@ How powerful is the adversary?
Linear Logic Proof search + Simple replay of previous messages
" sUUQ + Decompose, reassemble and resend
- Statistical analysis of network traffic
+ Timing attacks
@ How much detail in underlying data types?
+ Plaintext, ciphertext and keys

- atomic data or bit sequences

. + Encryption and hash functions
@ Define protocol, intruder in minimal framework - “perfect” cryptography
- algebraic properties: encr(x*y) = encr(x) * encr(y) for
RSA encrypt(k,msg) = msgk mod N

Process

Finite Automata
Calculus

Protocol Notation State Transitions

@ Non-deterministic infinite-state systems
®Facts

@ Transition
L Multi-sorted @ What this means

B first-order o I in state s, then a next state s has
& States atomic formulas - Facts removed

. = added, with replaced by new symbols
Multiset of facts X - Other facts in state s carry over to
- Includes network messages, private state
.) * Free variables in rule universally quantified
- Intruder will see messages, not private state o . .
+ Pattern matching in can invert functions
®Linear Logic:

Simplified Needham-Schroeder

n

@ Predicates A® B: {n, A}y,
A BN, B® A: {n, nly,

@ Transitions A® B: {np},
$x. A(x)
A(X) %:® Ny(x), Ax(x)
Ny(x) %@ $y. By(x.y)
Bi(xy) %® Ny(xy), By(x.y) @ Authentication
Az(x), Na(xy) %® As(xy)
As(x.y) Ns(y), As(x.y)
Ba(x.y). N3(y) %® Bs(xy)

picture next slide

What does this accomplish?

@ Represent protocols precisely

* High-level program that defines how
protocol agent responds to any message

@ Represent intruder precisely
+ Capture Dolev-Yao model
Define classes of protocols
+ Finite length, bounded message size, etc.

@ Study upper, lower bounds on protocol
security

Formalize Intruder Model

@ Intercept, decompose and remember messages
Ny(x) %@ M(x) Na(xy) %:® M(x), M(y)
N3(x) %® M(x)

@ Compose and send messages from “known" data
M(x) 7@ Ny(x), M(x)

M(x), M(y) %:® Na(x.y), M(x), M(y)

M(x) %® Ns;(x), M(x)

@ Generate new data as needed

$x. M(x)

Sample Trace

$x. A(x)

A ® Ay(x), Ny(x) oy

Ni(x) ® $y. B(xy)

By(x.y) ® Na(x.y), Bx(x.y) - -
Az(x), Na(xy) ® As(x.y) - Ny(n,) -
As(x.y) ® Ns(y), As(xy) - -

Common Intruder Model

@ Derived from Dolev-Yao model

* Adversary is nondeterministic process
+ Adversary can

- Block network traffic

- Read any message, decompose into parts

- Decrypt if key is known to adversary

- Insert new message from data it has observed
+ Adversary cannot

- Gain partial knowledge

- Guess part of a key

- Perform statistical tests, ...

Restricted class of protocols

@ Finite number of roles (participant rules)
@ Finite number of steps
+ Each participant does £n steps
@ Bounded message size
+ Fixed number of fields in message
+ Fixed set of message constants
+ Fixed depth encryption (1 or 2 enough)
+ Nonces (but no only “create new", and =?)
@®Everything fixed or constant, except nonces

One Idea:
Upper and lower bounds Do

[Durgin, Lincoln, Mitchell, Sc?drov] ATTaCk I"CUIr‘eS exonenTlal r‘UH§

of roles |# of # of $

_| Bl: {xo, X1, X5, 0} %@ {Xq, Xy, X5, 1}
B2: {xy, x;, 0, 1}, {x0. %1, 1, O}
DEXP — | ndecidable B3:{x,,0, 1, 1}, {x0,1, 0, 0},
time B4:{0, 1, 1,1}, {1, 0,0 0}
Broadcast(k)

c:{1,1,1,1,1),

Protocol (without nonces) with n roles
B1, .., Bn requires attack with 2" steps

Part IV Limitations of Standard Model

@ Can find some attacks
+ Successful analysis of industrial protocols

H N @ Other attacks are outside model
Pr‘o babl l I Ty ’ + Inferaction between protocol and encryption

@ Some protocols cannot be modeled

ComPIQXITYI and + Probabilistic protocols
- Steps that require specific property of

PPOCCSS CGICUIUS encryption

@ Possible to "OK" an erroneous protocol

Probabilistic Poly-time Analysis
Language Appr‘oaCh [Abadi, Gordon] y [Lincoln, Mitchell, %tchell. Scedrov]

@ Write protocol in process calculus @ Adopt spi-calculus approach, add probability
@ Express security using observational equivalence @ Probabilistic polynomial-time process calculus

+ Standard relation from programming language theory - Protocols use probabilistic primitives

P » Q iff for all contexts C[], same - Key generation, nonce, probabilistic encryption, ...
observations about C[P] and C[Q] + Adversary may be probabilistic

* Context (environment) represents adversary * Modal type system guarantees complexity bounds
® Use proof rules for » to prove security @ Express protocol and specification in calculus

+ Protocol is secure if no adversary can distinguish it # Study security using observational equivalence

from some idealized version of the protocol - .
+ Use probabilistic form of process equivalence

Needham-Schroeder Private Key

@ Analyze part of the protocol
A® B {i}
B® A {f()}¢
@ "Obviously" secret protocol (zero knov
A® B: {random_number }
B® A: {random_number },

@ Analysis: reduces to crypto condition

related to non-malleability [Dolev, Dwork, Naor]
- Fails for RSA encryption, f(i) = 2i

Basic example

@ Sequence generated from random seed
i let b = nk-bit sequence generated from n random bits
in PUBLIC &fi end
@ Truly random sequence
i let b = sequence of nk random bits
in PUBLIC &fi end
@P is crypto strong pseudo-random generator

Equivalence is asymptotic in security parameter n

Current State of Project

@ New framework for protocol analysis

+ Determine crypto requirements of protocols !

* Precise definition of crypto primitives
@Probabilistic ptime language
@Pi-calculus-like process framework

* replaced nondeterminism with rand

+ equivalence based on ptime statistical tests
@Proof methods for establishing equivalence
@ Future: tool development

Technical Challenges

@ Language for prob. poly-time functions
+ Extend Hofmann language with rand
@ Replace nondeterminism with probability
+ Otherwise adversary is too strong ...
@ Define probabilistic equivalence
+ Related to poly-time statistical tests ...
@ Develop specification by equivalence
+ Several examples carried out
@Proof systems for probabilistic equivalence
+ Work in progress

Compositionality

@Property of observational equiv

similarly for other process forms

Formal Analysis Techniques

and proofs
.

.
Poly-time calculus

Spi-calculus
Athena ® e Paulson
o® NRL

Bolignano
BAN logic
.

Sophistication of attacks

High
Protocol complexity

Conclusion

@ Computer security is fun
+ Lots of technical problems
* High cocktail-party quotient
@ Programming language methods can work

* Model systems and attackers

+ Define and analyze security properties

+ Methods for verifying security

+ Increase sophistication of security research
- Resolve issues like compositionality problem

10

