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Programming Language 
Methods in

Computer Security

John Mitchell
Stanford University

Plan

uPerspective on computer security
uProtocol security

• Protocol examples
• A basic rewriting model
• Incorporating probability and complexity

Talk is deliberately too long – give impressionistic 
view of main ideas; you can read details later

Part I

Computer Security

Orientation

uComputer security is 
• Branch of computer science concerned 

with the protection of computer systems 
and digital information

uOpportunistic view 
• This is a problem area 
• Not a solution technique

You can use methods you know to solve 
problems in computer security

And you may find yourself 
living in a shotgun shack

And you may find yourself 
in another part of the world

And you may find yourself 
… 

in a beautiful house, 
with a beautiful wife

And you may ask yourself
Well...

How did I get here?

Personal POPL timeline

1980-88 1988-95 1996-01

Computer 
Security

Object systems
Subtyping 

Polymorphism
Data abstraction
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Personal turning point

uIs Java secure?
• Proof is easy 

– Induction on structure of expressions, 
proving preservation of some property by 
structured operational semantics

– (This was known to Curry, Hindley, …)
• But what’s the theorem?

– Need to understand what “secure” means

Study some problems in computer security 
to see what this is all about

Topics in computer security

uAccess control

uOperating systems security 
uNetwork security 
uCryptography

principal do operation reference
monitor

object

source request guard resource

Cryptography is wonderful, but almost all CERT 
advisories are software problems, not crypto.

Some references

uBooks
– D. Gollman, Computer Security, Wiley, 1999.
– W. Stallings, Cryptography and Network 

Security …, Prentice-Hall, 1999.
– A.J. Menzies, P.C. van Oorschot, and S.A.

Vanstone, Handbook of Applied Cryptography, 
CRC Press, 1997.

– D. Kahn, The Codebreakers, MacMillan, 1967.

uPeriodicals and Journals
– J. Computer Security
– J. Cryptology

uResearch Conferences
– Crypto, EuroCrypt, AsiaCrypt  (www.iacr.org)
– IEEE Security and Privacy
– IEEE Computer Security Foundations 

Workshop (CSFW)
– ACM Computer and Communication Security 

uOn-line newsgroups, web sites
– Comp.risks,  Comp.lang.java.security
– CERT
– Internet RFCs
– RSA FAQ, many many more

Security vs Correctness

uCorrectness
• Given expected input, system produces 

desired output
uSecurity

• Given arbitrary input, system does not 
– reveal secrets
– become corrupted
– provide false guarantees

Security usually involves safety properties; 
adversary can often destroy liveness properties

Example: Protocol Security

uCryptographic Protocol
• Program distributed over network
• Use cryptography to achieve goal

uAttacker
• Read, intercept, replace messages and 

remember their contents
uCorrectness

• Attacker cannot learn protected secret 
or cause incorrect protocol completion
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POPL relevance

uModeling
• Need to characterize possible behaviors 

of system and attacker
uVerification

• Show that system has security property
uLanguage security issues

• Sandboxing, Java security 
• Mobile code security  

Example of POPL-relevant concept

uFolklore in security community
• Security properties do not compose

uWhy is this a problem?
• Build secure system from secure parts

uCan this be correct?
• IMH(B)O,  this is based on naïveté of 

researchers in security community

Compositionality is fundamental in denotational 
semantics, programming language foundations

Outline of rest of talk

uSample protocols
uFormulation of protocol security

• Complexity, decidability results
uProcess calculus approach to probability 

and complexity
• Why secrecy does not compose
• Observational congruence “solves” problem

Part II

Security Protocols

Examples

uKerberos
• Authentication protocol
• Keep plaintext passwords off network

uSSL
• Secure communication layer over TCP
• Used for web transactions

uContract signing protocols
• Symmetric goal for asymmetric protocol 

uNeedham-Schroeder public key protocol
• Simplified research-paper example

Motivation for Kerberos

uLogin, ftp connections require authentication 
• Intruders can run “packet sniffers”

uKeep passwords off the network
• Challenge-response under shared secret key

Network

Client Server

pass

word



4

pass file

Kc

Kerberos passwords and keys

Password shared with server but not transmitted

Network

Client Server

hash

Kc

password

request

{msg}Kt

{Kt}Kc

Ticket 2

Ticket 2

Ticket 1

Ticket 1

Abstract protocol

Client

KDC

Service

TGS

{Kt}Kc  

C TGS

{Ks}Kt 

{C}Kt  S

{C}Ks

Ktgs

Kc

Kv

{C, Ks}Kv

{C, Kt}Ktgs

{C, Ks}Kv

{C, Kt}Ktgs

SSL: Secure Sockets Layer

Another 
complicated 

real-life 
protocol

SSL Handshake Protocol

uNegotiate protocol version, crypto suite
– Possible “version rollback attack”

uAuthenticate client and server
– Appeal to “certificate authority”

uUse public key to establish shared secret

Several underlying primitives: 
public key crypto, signature, hash, private key crypto

One general idea in SSL

uClient, server communicate

uCompare hash of all messages
• Compute hash(hi,hello,howareyou?) locally
• Exchange hash values under encryption

uAbort if intervention detected

Client Server

Hi

Hello

How are you?

Handshake Protocol Description

ClientHello C → S C, VerC, SuiteC, NC

ServerHello S → C VerVerSS, Suite, SuiteSS, N, NSS,, signCA{ S, KS, KS S }

ClientVerify  C → S signCA{ C, VC }
{ VerC, SecretC }    
signC { Hash( Master(NC, NNSS, SecretC) +  Pad2 +
Hash(Msgs + C +  Master(NC, NNSS, SecretC) + Pad1)) }

(Change to negotiated cipher)
ServerFinished S → C { Hash( Master(NC, NNSS, SecretC) + Pad2 +

Hash( Msgs + S +  Master(NC, NNSS, SecretC) + Pad1))
}

ClientFinished C → S { Hash( Master(NC, NNSS, SecretC) + Pad2 + 
Hash( Msgs + C + Master(NC, NNSS, SecretC) + Pad1))

}

KSS

Master(NC, NSS, SecretC)

Master(NC, NSS, SecretC)
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Contract signing

uBoth parties want to sign the 
contract
uNeither wants to commit first

Immunity
deal

General protocol outline

uTrusted third party can force contract
• Third party can declare contract binding if 

presented with first two messages.

A B

I am going to sign the contract

I am going to sign the contract

Here is my signature

Here is my signature

BA

m1= sign(A,  〈c, hash(r_A)〉 )

sign(B,  〈m1, hash(r_B)〉 )
r_A
r_B

Agree

A B
Network

T

Abort

???

Resolve Attack?

BA Net

T sigT (m1, m2)

m1

???

m2 A

T

Asokan-Shoup-Waidner protocol

If not already
resolved

a1

sigT (a1,abort)

Abuse-Free Contract Signing

uExample
• Alice agrees to buy Bob’s house
• Bob shows partially signed contract to Carol

Abuse
Ability to determine the outcome

Ability to prove it
= +

Not a trace property!

Protocol analysis can benefit from sophisticated 
concurrency models

Needham-Schroeder Key Exchange

{ A, Noncea }

{ Noncea, Nonceb }

{ Nonceb}

Ka

Kb

Result: A and B share two private numbers 
not known to any observer without Ka

-1, Kb 
-1

A B
Kb

Anomaly in Needham-Schroeder

A E

B

{ A, Na }

{ A, Na }{ Na, Nb }

{ Na, Nb }

{ Nb }

Ke

KbKa

Ka

Ke

Evil agent E tricks
honest A into revealing
private key Nb from B.

Evil E can then fool B.

[Lowe]
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Part III

Multiset Rewriting 
Formulation

Analyzing Security Protocols

uNon-formal approaches   (can be useful, but no tools…)

• Some crypto-based proofs  [Bellare, Rogaway]

u BAN and related logics 
• Axiomatic semantics of protocol steps

H Methods based on operational semantics
• Intruder model derived from Dolev-Yao
• Protocol gives rise to set of traces
• Perfect encryption

– Possible to include known algebraic properties

A notation for inf-state systems

uDefine protocol, intruder in minimal framework

Linear Logic
( ∀ ∃ ∧ ∨ ¬ )

Process 
Calculus

Finite Automata

Proof search
(Horn clause)

Multiset
rewriting

Protocol Modeling Decisions

uHow powerful is the adversary?
• Simple replay of previous messages
• Decompose, reassemble and resend
• Statistical analysis of network traffic
• Timing attacks

uHow much detail in underlying data types?
• Plaintext, ciphertext and keys

– atomic data or bit sequences

• Encryption and hash functions
– “perfect” cryptography
– algebraic properties:  encr(x*y) = encr(x) * encr(y) for 

RSA encrypt(k,msg) = msgk mod N

Protocol Notation

uNon-deterministic infinite-state systems
uFacts

F ::=  P(t1, …, tn)
t  ::=  x  |  c  |  f(t1, …, tn)

uStates   { F1, ..., Fn }
• Multiset of facts

– Includes network messages, private state
– Intruder will see messages, not private state

Multi-sorted 
first-order 
atomic formulas

State Transitions

uTransition
• F1, …, Fk → ∃x1 … ∃xm.  G1, … , Gn

uWhat this means
• If F1, …, Fk in state σ, then a next state σ’ has

– Facts F1, …, Fk removed
– G1, … , Gn added, with x1 … xm replaced by new symbols
– Other facts in state σ carry over to σ ’

• Free variables in rule universally quantified
• Pattern matching in F1, …, Fk can invert functions

uLinear Logic:  F1⊗…⊗Fk ο ∃x1 … ∃xm(G1⊗…⊗Gn)
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Simplified Needham-Schroeder

uPredicates
Ai, Bi, Ni    

-- Alice, Bob, Network in state i

uTransitions
∃x. A1(x)
A1(x) → N1(x), A2(x)
N1(x) → ∃y. B1(x,y)
B1(x,y) → N2(x,y), B2(x,y) 
A2(x), N2(x,y) → A3(x,y)
A3(x,y) → N3(y), A4(x,y)
B2(x,y), N3(y) → B3(x,y)

picture next slide

A → B:  {na, A}Kb

B → A:  {na, nb}Ka
A → B:  {nb}Kb

uAuthentication
A4(x,y) ∧ B3(x,y’)  ⊃ y=y’

Sample Trace
A → B:  {na, A}Kb

B → A:  {na, nb}Ka

A → B:  {nb}Kb

A2(na) 

A1(na)

A2(na)

A2(na)

A3(na, nb)

A4(na, nb)

A4(na, nb)

B2(na, nb)

B1(na, nb)

B2(na, nb)

B3(na, nb)

B2(na, nb)

N1(na)

N2(na, nb)

N3( nb)

∃x. A1(x)

A1(x) → A2(x), N1(x) 

N1(x) → ∃y. B1(x,y)

B1(x,y) → N2(x,y), B2(x,y) 

A2(x), N2(x,y) → A3(x,y)

A3(x,y) → N3(y), A4(x,y)

What does this accomplish?

uRepresent protocols precisely
• High-level program that defines how 

protocol agent responds to any message
uRepresent intruder precisely

• Capture Dolev-Yao model
uDefine classes of protocols

• Finite length, bounded message size, etc.
uStudy upper, lower bounds on protocol 

security

Common Intruder Model

uDerived from Dolev-Yao model    [NS 78, DY 89]
• Adversary is nondeterministic process
• Adversary can

– Block network traffic
– Read any message, decompose into parts
– Decrypt if key is known to adversary
– Insert new message from data it has observed

• Adversary cannot
– Gain partial knowledge
– Guess part of a key
– Perform statistical tests, …

Formalize Intruder Model

uIntercept, decompose and remember messages
N1(x) → M(x)            N2(x,y) → M(x), M(y)      
N3(x) → M(x)

uCompose and send messages from “known” data
M(x) → N1(x), M(x)   

M(x), M(y) → N2(x,y), M(x), M(y) 
M(x) → N3(x), M(x) 

uGenerate new data as needed
∃x. M(x)

Highly nondeterministic, same for any protocol

Restricted class of protocols

uFinite number of roles (participant rules)
uFinite number of steps

• Each participant does ≤n steps
uBounded message size

• Fixed number of fields in message
• Fixed set of message constants
• Fixed depth encryption  (1 or 2 enough)
• Nonces  (but no only “create new”, and =?)

uEverything fixed or constant, except nonces
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Upper and lower bounds

All: finite # of different roles, finite 
length roles, bounded message size

[Durgin, Lincoln, Mitchell, Scedrov]

= only

≠, =
= only

≠, =

I w/o ∃

I with ∃

Unbounded 
#  of ∃

Bounded  
#  of  ∃

Bounded 
# of roles

NP –
complete

UndecidableDExp –
time

Attack requires exponential runs

A: Broadcast {0, 0, 0, 0}k

B1:  {x0, x1, x2, 0 }k → {x0, x1, x2, 1}k
B2: {x0, x1,  0,  1 }k    → {x0, x1,  1,  0 }k
B3: {x0, 0,   1,  1 }k → {x0, 1,   0,  0 }k
B4: { 0,  1,   1,  1 }k → { 1,  0,  0,  0 }k

C : {1, 1, 1, 1, 1 }k → Broadcast( k )

One Idea:

Protocol (without nonces) with n roles
B1, …, Bn requires attack with 2n steps

Part IV

Probability, 
Complexity, and 
Process Calculus

Limitations of Standard Model

uCan find some attacks
• Successful analysis of industrial protocols

uOther attacks are outside model
• Interaction between protocol and encryption

uSome protocols cannot be modeled
• Probabilistic protocols
• Steps that require specific property of 

encryption
uPossible to “OK” an erroneous protocol

Language Approach

uWrite protocol in process calculus
uExpress security using observational equivalence

• Standard relation from programming language theory
P ≈ Q iff  for all contexts C[ ], same 

observations about C[P] and C[Q]
• Context (environment) represents adversary

uUse proof rules for ≈ to prove security
• Protocol is secure if no adversary can distinguish it 

from some idealized version of the protocol

[Abadi, Gordon]
Probabilistic Poly-time Analysis

uAdopt spi-calculus approach, add probability
uProbabilistic polynomial-time process calculus

• Protocols use probabilistic primitives
– Key generation, nonce, probabilistic encryption, ...

• Adversary may be probabilistic
• Modal type system guarantees complexity bounds

uExpress protocol and specification in calculus
uStudy security using observational equivalence

• Use probabilistic form of process equivalence

[Lincoln, Mitchell, Mitchell, Scedrov]
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Needham-Schroeder Private Key

uAnalyze part of the protocol  P
A → B:   { i } K
B → A:   { f(i) } K

u“Obviously’’ secret protocol   Q (zero knowledge)

A → B:   { random_number } K

B → A:   { random_number } K

uAnalysis: P ≈ Q reduces to crypto condition 
related to non-malleability [Dolev, Dwork, Naor]

– Fails for RSA encryption,  f(i) = 2i 

Technical Challenges

uLanguage for prob. poly-time functions
• Extend Hofmann language with rand

uReplace nondeterminism with probability
• Otherwise adversary is too strong ...

uDefine probabilistic equivalence
• Related to poly-time statistical tests ...

uDevelop specification by equivalence
• Several examples carried out

uProof systems for probabilistic equivalence 
• Work in progress

Basic example

uSequence generated from random seed
Pn: let b = nk-bit sequence generated from n random bits

in  PUBLIC 〈b〉 end          
uTruly random sequence

Qn: let b = sequence of nk random bits

in  PUBLIC 〈b〉 end        
uP is crypto strong pseudo-random generator

P ≈ Q
Equivalence is asymptotic in security parameter n

Compositionality

uProperty of observational equiv

A ≈ B  C ≈ D

A|C  ≈ B|D

similarly for other process forms

Current State of Project

uNew framework for protocol analysis 
• Determine crypto requirements of protocols !
• Precise definition of crypto primitives

uProbabilistic ptime language 
uPi-calculus-like process framework

• replaced nondeterminism with rand
• equivalence based on ptime statistical tests

uProof methods for establishing equivalence
uFuture:  tool development

Formal Analysis Techniques

Low High

H
ig

h
Lo

w

S
op

hi
st

ic
at

io
n 

of
 a

tta
ck

s

Protocol complexity

=
Murϕ=

FDR

= NRL

=

Poly-time calculus

=Athena

=
Hand proofs

=
Paulson=

Bolignano

=
BAN logic

=
Spi-calculus
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Conclusion

uComputer security is fun
• Lots of technical problems
• High cocktail-party quotient

uProgramming language methods can work
• Model systems and attackers
• Define and analyze security properties
• Methods for verifying security
• Increase sophistication of security research

– Resolve issues like compositionality problem


