You should solve the homework on your own. Don’t use any books or the internet.

Problem 1. Find the generating function of the sequence \((1, 1, 0, 1, 1, 0, 1, 1, 0, \ldots)\) (in a closed form, without infinite summations).

Problem 2.

- Prove that if \(A(x)\) is the generating function for the sequence \((a_0, a_1, a_2, \ldots)\), then \(\frac{A(x)}{1-x}\) is the generating function of the sequence \((a_0, a_0 + a_1, a_0 + a_1 + a_2, \ldots)\).
- Use this formula to compute \(\sum_{k=0}^{m} (-1)^k \binom{n}{k}\) for \(0 \leq m \leq n\).

Problem 3. Prove by suitable bijections that the following numbers are equal:

- The number of sequences \(\sigma \in \{+1, -1\}^{2n}\) such that \(\sum_{i=1}^{k} \sigma_i \geq 0\) for every \(1 \leq k \leq 2n\), and \(\sum_{i=1}^{2n} \sigma_i = 0\).
- The number of ways to arrange the numbers \(\{1, 2, \ldots, 2n\}\) in a \(2 \times n\) array so that each row and each column is increasing.
- The number of paths from \((0, 0)\) to \((n, n)\), where the steps are in the direction of either \((+1, 0)\) or \((0, +1)\), and the path must never drop below the diagonal connecting \((0, 0)\) and \((n, n)\).

What are these numbers called?

Bonus problem. Prove that the number \((6 + \sqrt{37})^{999}\) has at least 999 zeros after the decimal point.