Lecture 6. Symmetric Shearer’s Lemma

Here we discuss a corollary of Shearer’s Lemma that considers the symmetric case, in which all events are given the same probability bound.

Theorem 6.1 (Symmetric Shearer’s Lemma) Suppose there is a collection of events \(\{E_i\}_{i=1}^n \) such that each \(E_i \) is independent of all but \(d \) other events \((d \geq 2) \), and

\[
\mathbb{P}(E_i) \leq \frac{(d-1)^{d-1}}{d^d} =: p_{\text{Shearer}} \quad \forall \, i = 1, 2, \ldots, n.
\] (6.1)

Then

\[
\mathbb{P}\left(\bigcap_{i=1}^n \overline{E_i} \right) > 0.
\]

Proof: Let \(G \) be a dependency graph for \(\{E_i\} \) with maximum degree \(d \), and let \(p = (d-1)^{d-1}/d^d \).

We may assume that \(G \) is connected, since otherwise the problem reduces to a collection of independent problems. For \(G \) connected, we can find an ordering of vertices \((v_1, \ldots, v_n) \) such that each \(v_i \), \(i \geq 2 \), has degree at most \(d-1 \) among \(\{v_i, \ldots, v_n\} \). (However, this is not possible to arrange for \(v_1 \) if \(G \) is \(d \)-regular. Therefore, we need to handle this case separately later.)

By induction on \(|S| \) we claim that

\[
\frac{\tilde{q}_S}{\tilde{q}_{S-a}} > 1 - \frac{1}{d} \quad \text{for } a \in S \text{ where } |S \cap \Gamma(a)| \leq d - 1.
\]

The base case of the induction is satisfied as

\[
\frac{\tilde{q}_a}{\tilde{q}_\emptyset} = \frac{\tilde{q}_a}{1} = 1 - p = 1 - \frac{(d-1)^{d-1}}{d^d} > 1 - \frac{d^{d-1}}{d^d} = 1 - \frac{1}{d^2}.
\]

For the general case, we will use an identity established in the proof of the asymmetric case (see Lecture 5):

\[
\frac{\tilde{q}_S}{\tilde{q}_{S-a}} = 1 - p \cdot \frac{\tilde{q}_{S \setminus \Gamma^+(a)}}{\tilde{q}_{S-a}}. \tag{6.2}
\]

Assume that \(a \in S \) is such that \(|S \cap \Gamma(a)| \leq d - 1 \), and write \(S \cap \Gamma^+(a) = \{a, a_1, a_2, \ldots, a_k\} \), \(k \leq d - 1 \). Since each \(a_i \) has degree at most \(d - 1 \) inside \(S \setminus \{a, \ldots, a_{i-1}\} \), the inductive hypothesis gives

\[
\frac{\tilde{q}_{S \setminus \Gamma^+(a)}}{\tilde{q}_{S-a}} = \frac{\tilde{q}_{S \setminus \Gamma^+(a)}}{\tilde{q}_{(S \setminus \Gamma^+(a)) + a_k}} \cdot \frac{\tilde{q}_{(S \setminus \Gamma^+(a)) + a_k + a_{k-1}}}{\tilde{q}_{S-a}} < \frac{1}{(1 - 1/d)^{d-1}}.
\]

at most \(d - 1 \) terms

\[
\frac{\tilde{q}_{S-a}}{\tilde{q}_{S-a}} < \frac{1}{(1 - 1/d)^{d-1}}.
\]

\[
\frac{\tilde{q}_{S-a}}{\tilde{q}_{S-a}} < \frac{1}{(1 - 1/d)^{d-1}}.
\]
From (6.2), we get
\[
\frac{\tilde{q}_S}{\tilde{q}_{S-a}} = 1 - p \cdot \frac{\tilde{q}_{S\setminus \Gamma(a)}}{\tilde{q}_{S-a}} > 1 - p \cdot \frac{d^{d-1}}{(d-1)^{d-1}} = 1 - \frac{1}{d}
\]
which finishes the inductive claim.

Finally let us handle the case where \(S = \{v_1, \ldots, v_n\} \) and \(v_1 \) has degree \(d \). We can still use (6.2), but now the telescoping product in (6.3) may involve \(d \) terms, giving
\[
\frac{\tilde{q}_{[n]}}{\tilde{q}_{[n]-v_1}} = 1 - p \cdot \frac{\tilde{q}_{[n] \setminus \Gamma(v_1)}}{\tilde{q}_{[n]-v_1}} > 1 - p \cdot \frac{d^d}{(d-1)^d} = 1 - \frac{1}{d-1}.
\]
We note that \(1 - \frac{1}{d-1} \) could be 0 (for \(d = 2 \)) but the strict inequality ensures that the ratio is still positive. We conclude that
\[
P\left(\bigcap_{i=1}^n E_i \right) \geq \frac{\tilde{q}_{[n]}}{\tilde{q}_{[n]-a_1}} \cdot \frac{\tilde{q}_{[n]-v_1}}{\tilde{q}_{[n]-v_2}} \cdots \frac{\tilde{q}_{v_n}}{\tilde{q}_{\emptyset}} > \left(1 - \frac{1}{d-1} \right)^{n-1} \geq 0,
\]
completing the proof. \(\square \)

Let us compare Symmetric Shearer’s Lemma to the Lovász Local Lemma. In the LLL, assuming that all events get the same parameter \(x \), it is required that
\[
p \leq x(1 - x)^d \quad \text{(6.4)}
\]
for some \(x \in (0,1) \). The optimal choice here can be shown to be \(x = \frac{1}{d+1} \), which gives
\[
p \leq \frac{d^d}{(d+1)^{d+1}} =: p_{\text{LLL}}. \quad \text{(6.5)}
\]
Comparing (6.5) to (6.1), we see that the threshold probability in Shearer’s lemma, \(p_{\text{Shearer}} := \frac{(d-1)^{d-1}}{d^d} \), has the benefit of 1 additional dependency over the LLL. Further, the inequalities
\[
\frac{(d+1)^d}{d^d} < e < \frac{d^d}{(d-1)^d}
\]
show that
\[
\frac{1}{e(d+1)} < p_{\text{LLL}} < \frac{1}{ed} < p_{\text{Shearer}} < \frac{1}{e(d-1)}.
\]
Of course, as \(d \) grows large, \(p_{\text{LLL}} \) and \(p_{\text{Shearer}} \) are asymptotically the same.

6.1 Worst instance: \(d \)-regular trees

We would like to demonstrate that \(p_{\text{Shearer}} \) is optimal, in the sense that Theorem 6.1 fails if \(p_{\text{Shearer}} \) is taken any larger. The extreme case is when each \(E_i \) is dependent on exactly \(d \) other events and moreover the dependency graph is a (large) \(d \)-regular tree. Begin with a root vertex \(r \), by itself called \(T_0 \). A root with \(d-1 \) children is called \(T_1 \). Constructed recursively, \(T_\ell \) is the tree obtained by taking a root with \(d-1 \) subtrees, each of which is \(T_{\ell-1} \). Note that all vertices in levels 1 through
Figure 1: A binary tree \((d = 3)\). Here, \(T_3\) is shown (levels 0 through 3).

\(\ell - 1\) have degree \(d\); the root has degree \(d - 1\), and level \(\ell\) consists of leaves. We call this a \(d\)-regular tree of depth \(\ell\) (ignoring the slightly different degree at the root). For consistency, we also define \(T_{-1}\) to be the empty tree.

Suppose that the probability of each event is \(p\). From (6.2), we have

\[
\hat{q}_{T_\ell} = \hat{q}_{T_\ell} \setminus r - p \cdot \hat{q}_{T_\ell} \setminus \Gamma^+(r).
\]

But \(T_\ell \setminus r\) is the union of \(d - 1\) disjoint copies of \(T_{\ell - 1}\). Similarly, \(T_\ell \setminus \Gamma^+(r)\) is the union of \((d - 1)^2\) disjoint copies of \(T_{\ell - 2}\). Hence

\[
\hat{q}_{T_\ell} = (\hat{q}_{T_{\ell - 1}})^{d - 1} - p (\hat{q}_{T_{\ell - 2}})^{(d - 1)^2}.
\]

Let us define

\[
b_\ell := \frac{\hat{q}_{T_\ell}}{(\hat{q}_{T_{\ell - 1}})^{d - 1}} = 1 - p \left(\frac{(\hat{q}_{T_{\ell - 2}})^{d - 1}}{\hat{q}_{T_{\ell - 1}}} \right)^{d - 1}.
\]

That is,

\[
b_\ell = 1 - p \left(\frac{1}{b_{\ell - 1}} \right)^{d - 1}.
\]

If Shearer’s positivity conditions are satisfied for an arbitrarily large \(d\)-regular tree, then \(b_\ell > 0\) for all \(\ell \geq 0\), and also the sequence is decreasing by induction: \(b_0 = 1 - p\), \(b_1 = 1 - \frac{p}{(1 - p)^{d - 1}} \leq b_0\), and if \(b_\ell \leq b_{\ell - 1}\), then \(b_{\ell + 1} = 1 - p/b_{\ell - 1}^{d - 1} \leq 1 - p/b_{\ell - 1}^{d - 1} = b_\ell\). Hence there is a limit,

\[
\lambda := \lim_{\ell \to \infty} b_\ell,
\]

which must satisfy \(\lambda = 1 - \frac{p}{\lambda^{d - 1}}\), and hence \(p = \lambda^{d - 1} - \lambda^d\). The maximum is attained at \(\lambda = \frac{d - 1}{d}\), which gives

\[
p \leq \left(\frac{d - 1}{d} \right)^{d - 1} - \left(\frac{d - 1}{d} \right)^d = \frac{1}{d} \left(\frac{d - 1}{d} \right)^{d - 1} = p_{\text{Shearer}}.
\]

Indeed, \(p_{\text{Shearer}}\) is optimal.

6.2 Application of Shearer’s Lemma: the multipartite Turán problem

Consider an \(r\)-partite graph \(G\) on \(V_1 \cup V_2 \cup \cdots \cup V_r\). Suppose we have at least a certain density \(\rho\) between any two parts:

\[
e(V_i, V_j) \geq \rho |V_i||V_j| \quad \forall i \neq j.
\]
How large must ρ be to guarantee the existence of a clique K_r in G? More generally, given a graph H on r vertices, assume

$$\{i, j\} \in E(H) \Rightarrow e(V_i, V_j) \geq \rho |V_i||V_j|.$$

How large must ρ be to guarantee the existence of a copy of H in G? Following (Csikvári and Nagy, 2012), we show how to apply Shearer’s Lemma.

Pick $x_i \in V_i$ independently and uniformly at random. For each $(i, j) \in E(H)$, define an event $E_{ij} = \{\{x_i, x_j\} \notin E(G)\}$, so that if all E_{ij} are avoided, then a copy of H is present. Note that the probability of each event is at most $1 - \rho$ by assumption. A dependency graph for the events E_{ij} is the line graph of H, which we call D: The vertices of D are the edges in H, and two of these vertices are adjacent if and only if the corresponding edges in H share a vertex. So independent sets in D are exactly matchings in H.

First, consider Symmetric Shearer’s Lemma. The degrees in D are at most $2(\Delta(H) - 1)$ where $\Delta(H)$ is the maximum degree in H. Hence, if the probability of each event is at most $\frac{1}{2e(\Delta(H) - 1)}$, then by Theorem 6.1 $P[\bigcap_{(i,j) \in E(H)} E_{ij}] > 0$. Equivalently, if $\rho \geq 1 - \frac{1}{2e(\Delta(H) - 1)}$ then G contains a copy of H.

This problem is actually a rare setting where we can apply Shearer’s Lemma directly and obtain a stronger result. Consider the polynomial

$$q_\emptyset(p) = \sum_{I \in \text{Ind}(D)} (-1)^{|I|} p^I = \sum_{M \subset H \text{ matching}} (-1)^{|M|} p^{|M|}.$$

This last sum is a variant of the matching polynomial of K_r. It is most commonly defined in the following form, which we refer to as the matching defect polynomial:

$$M_H(x) = \sum_{M \subset H \text{ matching}} (-1)^{|M|} x^{r-2|M|}.$$

(Recall that $r = |V(H)|$.) A simple calculation gives

$$M_H(x) = x^r q_\emptyset \left(\frac{1}{x^2} \right).$$

It is useful in this setting to consider Property 4 of Shearer’s Lemma, stated in Lecture 5. In particular, we ask, for which p is it true that

$$q_\emptyset(\lambda p) > 0 \quad \forall \lambda \in [0, 1]?$$

To answer this question, it suffices to locate the minimum positive root of q_\emptyset, or equivalently the maximum positive root of M_H. Here we appeal to the following theorem (which we will prove later in this course).

Theorem 6.2 (Heilmann-Lieb) For any graph H, the roots of the matching defect polynomial are all real and the maximum root is at most $2\sqrt{\Delta(H) - 1}$.

It follows that the minimum positive root of $q_0(p)$ for H is at least $\frac{1}{4(\Delta(H) - 1)}$. Consequently, if $\rho \geq 1 - \frac{1}{4(\Delta(H) - 1)}$ then G contains a copy of H, which improves the bound from above ($2e$ has been improved to 4).

For $H = K_r$, which is perhaps the most interesting special case here, we obtain that density $\rho \geq 1 - \frac{1}{4(r-2)}$ is sufficient to guarantee a copy of K_r. In fact, here we can go one step further and obtain a slightly tighter bound. M_{K_r} is known to be the Hermite polynomial of degree r. Recall that the Hermite polynomials are defined recursively, corresponding to the recursion in the context of matchings:

$$H_0(x) = 1, \quad H_{r+1}(x) = xH_r(x) - rH_{r-1}(x).$$

For this special case, more accurate bounds are known. In particular, the maximum root of M_{K_r} is known to be $2\sqrt{r} - \Theta(r^{-1/6})$. Hence, the minimum positive root of q_0 is

$$\frac{1}{(2\sqrt{r} - \Theta(r^{-1/6}))^2} = \frac{1}{4r - \Theta(r^{1/3})}.$$

Consequently, if $\rho \geq 1 - \frac{1}{4(r-2)}$ then G contains a copy of K_r, a slight improvement over the bound of $1 - \frac{1}{4(r-2)}$ from the Heilmann-Lieb theorem.

We conclude by mentioning that it is easy to construct an r-partite graph of density $\rho = 1 - \frac{1}{r-1}$ which does not contain a K_r (an exercise). A better counterexample which can be found in [Csikvári-Nagy’12] implies that $\rho = 1 - \frac{1}{(2+o(1))r}$ is not sufficient to guarantee a copy of K_r. The gap between $1 - \frac{1}{(2+o(1))r}$ and $1 - \frac{1}{(4-o(1))r}$ remains open.

References