Please try to solve the homework on your own. Discussions are okay but make your own effort.

Problem 1. Prove from the Cluster Expansion Lemma (not using Shearer’s lemma!) that
\[p(1 + ed) \leq 1 \]
is a sufficient condition to avoid all bad events in the symmetric case.

Problem 2. True or false? In the Moser-Tardos algorithm, for a fixed \(t > 1 \) and \(i \in [n] \), the probability that the \(t \)-th resampled event is \(E_i \) is at most \(\Pr[E_i] \). Prove this or find a counterexample.

Problem 3. Let the dependency graph be a tree \(T \), with (an arbitrarily chosen) root \(r \). Prove that \(p \) satisfies Shearer’s conditions, if and only if there are parameters \(z_v \in (0, 1) \) such that
\[p_v = z_v \prod_{w \in C(v)} (1 - z_w), \]
where \(C(v) \) are the children of \(v \) (neighbors not on the path to \(r \)).
Hint: Find an expression for \(z_v \) in terms of Shearer’s polynomials.

Problem 4. Consider a 4-partite graph on \(V_0 \cup V_1 \cup V_2 \cup V_3 \) such that \(e(V_i, V_{i+1 \text{ mod 4}}) \geq \rho |V_i||V_{i+1 \text{ mod 4}}| \) for each \(i \). Prove that if \(\rho \geq 1/\sqrt{2} \), then there must exist \(C_4 \) as a subgraph with one vertex in each \(V_i \).

Bonus question: Can you identify the optimal threshold \(\rho \) for this question?