1 The greedy algorithm for matroids

The following algorithm finds the maximum weight base in a matroid $\mathcal{M} = (E, \mathcal{I})$

Algorithm 1 Greedy algorithm for selecting the max-weight base of a matroid

Input: a matroid $\mathcal{M} = (E, \mathcal{I})$, where $E = \{1, 2, \ldots, n\}$ is the ground set, and weight of i is w_i.

Output: A base $B \in \mathcal{I}$ such that $w(B) = \max_{B \in \mathcal{I}} w(B)$.

1: Relabel the elements of the matroid so that $w_1 \geq w_2 \geq \ldots \geq w_n$.
2: $S \leftarrow \emptyset$.
3: for $i \leftarrow 1$ to n do
4: if $S + i \in \mathcal{I}$ then
5: $S \leftarrow S + i$.
6: end if
7: end for
8: return S

Theorem 1 (Rado/Gale) For any ground set $E = \{1, 2, \ldots, n\}$, and a family of subsets $\mathcal{I} \subset 2^E$, Algorithm 1 returns the maximum-weight base for any set of weights $w : E \to \mathbb{R}$ if and only if $\mathcal{M} = (E, \mathcal{I})$ is a matroid.

We prove this theorem in two parts.

Claim 2 (\Leftarrow part) Suppose that (E, \mathcal{I}) is a matroid. For any set of weights assigned to the elements of E, Algorithm 1 returns the maximum-weight base.

Proof: Wlog assume that $w_1 \geq w_2 \geq \ldots \geq w_n$. We prove that at any point of the execution of the algorithm, there exists an optimal base B such that $S \subseteq B$ and $B \setminus S$ is among the remaining elements.

In particular, let S_i be the set S after observing the first i elements (e.g. $S_0 = \emptyset$). We use induction to show that for any S_i, there exists an optimal base B_i such that $S \subseteq B_i$, and $B_i \setminus S_i \subseteq \{i+1, \ldots, n\}$. Note this certainly implies the claim, since we get $S_n = B_n$ is an optimal base. The base case of the induction is trivially satisfied for $S_0 = \emptyset$.

Suppose before the i-th iteration we have $S_{i-1} \subseteq B_{i-1}$ where B_{i-1} is a max-weight base. If the algorithm does not add i to S_{i-1}, it means that $S_{i-1} + i \notin \mathcal{I}$ and therefore i cannot be in B_{i-1} (by the downward closed-ness property of the matroid). Therefore, $B_i = B_{i-1}$ satisfies the induction statement.

Now assume that the algorithm adds i to S_{i-1}. By the induction hypothesis, if $i \in B_{i-1}$, then $S_i = S_{i-1} + i \subseteq B_{i-1}$, and we can set $B_i = B_{i-1}$. Otherwise, by the extension axiom of the matroid \mathcal{M}, the set S_i can be extended from B_{i-1} until it becomes a base, say B'. Since $i \notin B_{i-1}$, we have
Moreover, since B' is also a base, we have $|B_{i-1} \setminus B'| = 1$, so let $B_{i-1} \setminus B' = \{j\}$. Therefore we can write $B' = B_{i-1} + i - j$.

Since $B_{i-1} \setminus S_i \subset \{i + 1, \ldots, n\}$, we have $j \in \{i + 1, \ldots, n\}$ is one of the remaining elements. Therefore, since the algorithm orders the element decreasingly according to their weights, we have $w_j \leq w_i$. But this means that $w(B') = w(B_{i-1}) + w_i - w_j \geq w(B_{i-1})$. By the optimality assumption of B_{i-1}, we have $w(B') = w(B_{i-1})$, hence $B_i = B'$ satisfies the induction statement.

Claim 3 (\Rightarrow part) Suppose (E, I) is not a matroid. There exists an assignment of weights to the elements of E such that algorithm 1 does not return a maximum-weight base.

Proof: If (E, I) is not a matroid, it does not satisfy at least one of the two properties of the matroid. Suppose I is not a downward-closed family of sets. Therefore, there exist two sets $S \subset T \in I$, but $S \not\in I$. Suppose we assign the weights as follows:

$$
\forall 1 \leq i \leq n, \quad w_i = \begin{cases}
2 & i \in S \\
1 & i \in T \setminus S \\
0 & \text{otherwise}
\end{cases}
$$

By the weight assignment, the algorithm first considers the elements of S, then the elements of T, and then the rest of the elements. The elements in $E \setminus S$ are worth nothing, thus every optimal base must contain T. Suppose the algorithm selects a subset $S_1 \subset S$ after observing the elements of S. Since $S \not\in I$, we have $S_1 \neq S$. Out of the remaining elements, the algorithm can get value at most $|T \setminus S|$. If S_2 is the final set chosen by the algorithm, we have

$$w(S_2) = 2|S_1| + w(S_2 \setminus S) < 2|S| + |T \setminus S| = w(T).$$

Now suppose (E, I) is not a matroid because the extension axiom is violated (assume the downward closed property). In particular, let $S, T \in I$ be two independent sets such that $|S| < |T|$, and for all $i \in T \setminus S, S + i \not\in I$. We use the following weights:

$$
\forall 1 \leq i \leq n, \quad w_i = \begin{cases}
1 + \frac{1}{2|S|} & i \in S \\
1 & i \in T \setminus S \\
0 & \text{otherwise}
\end{cases}
$$

Note that S is not necessarily a subset of T here. This time, because of the downward closedness property the algorithm would select all of the elements of S. But this means that it can not add any element in $T \setminus S$, as this would violate independence. Further elements do not bring any value anymore, so if S_2 is the solution returned by the algorithm,

$$w(S_2) = w(S) = |S| \left(1 + \frac{1}{2|S|}\right) = |S| + \frac{1}{2},$$

while the value of T is

$$w(T) \geq |T| \geq |S| + 1.$$

The following properties can be shown using the above theorem.
1. Let S_i be the set of elements chosen by the algorithm after observing the first i elements. Then S_i is always a base of those i elements. (By considering $w_1 = \ldots = w_i = 1$ and $w_{i+1} = \ldots = w_n = 0$.)

2. Finding the maximum-weight base in a matroid is in fact equivalent to finding the minimum-weight base. Let $w_{\text{max}} = \max_{1 \leq i \leq n} w_i$ be the maximum weight assigned to the elements; to find the minimum-weight base it is sufficient to consider $w'_i = w_{\text{max}} - w_i$, for all $i \in E$.

3. Also, it is straightforward that if the weights are non-negative, then the maximum-weight independent set is the same as the maximum-weight base. In general, we can say that the maximum-weight independent set is the maximum-weight base of the elements with non-negative weights.

2 The span function in matroids

The following definition of a “span” of a set of elements in a matroid is a generalization of the notion of span in vector spaces.

Definition 4 Let $\mathcal{M} = (E, \mathcal{I})$ be a matroid. For any set $S \subseteq E$ define
\[
\text{span}(S) := \{i \in E : \text{rank}(S + i) = \text{rank}(S)\}.
\]

Lemma 5 Let $S \subseteq E$. Then, any base of S is also a base of $\text{span}(S)$.

Proof: By contradiction: Let B be a base of S which is not a base of $\text{span}(S)$. Since B is a base of S, we have $|B| = \text{rank}(S)$. Also, since B is not a base of $\text{span}(S)$, it means that there is some element $i \in \text{span}(S) \setminus B$, such that $B + i \in \mathcal{I}$. Therefore,
\[
\text{rank}(S + i) \geq \text{rank}(B + i) > \text{rank}(B) = \text{rank}(S).
\]
This contradicts the definition of $i \in \text{span}(S)$.

Lemma 6 Let $S \subseteq E$. For any base B of S and any element $i \in E \setminus S$, $i \in \text{span}(S)$ if and only if $B + i \not\in \mathcal{I}$.

Proof: If $i \in \text{span}(S)$ and B is a base of S, then by Lemma 5, B is also a base of $\text{span}(S)$, and thus a base of $S + i$. Therefore, $B + i \not\in \mathcal{I}$.

Conversely, suppose $i \not\in \text{span}(S)$. Therefore, $\text{rank}(S+i) > \text{rank}(S)$, and there is an independent set $B' + i$, where $B' \subseteq S$ and $|B' + i| = \text{rank}(S) + 1$. In other words, B' is a base of S. Now consider any base B of S. This is also an independent subset of $S + i$. Since $|B| < |B' + i|$, by the extension axiom, it can be extended by adding an element from $B' + i$. But that element must be i (otherwise, B was not a base of S), and thus $B + i$ is independent.

Next, we prove that span preserves the ordering by inclusion.

Lemma 7 For any $S \subseteq T \subseteq E$, $\text{span}(S) \subseteq \text{span}(T)$.
Proof: Let \(B_S \) be a base of \(S \), and \(B_T \) a base of \(T \). By the extension axiom, \(B_S \) can be extended to a base \(B' \) of \(T \) from the elements of \(B_T \) (note that \(B' \setminus B_S \subseteq T \setminus S \)).

Consider \(i \in \text{span}(S) \). Since \(\text{rank}(S + i) = \text{rank}(S) \), we have \(B_S + i \notin I \). Therefore, since \(B_S \subseteq B' \), by the downward closedness axiom, \(B' + i \notin I \) either. By Lemma 6, \(i \in \text{span}(T) \). \(\square \)

Suppose we assign distinct weight to the elements of the matroid (i.e. \(w_i \neq w_j \) for all \(i, j \in E \)), then the maximum weight base is unique. Using the facts above, we can describe the maximum-weight base as follows:

Lemma 8 Let \(M = (E, I) \) be a matroid, \(E = \{1, 2, \ldots, n\} \) and assume \(w_1 > w_2 > \ldots > w_n \). Then, the maximum-weight base is

\[
B_{\text{opt}} = \{i \in E : i \notin \text{span}(\{1, \ldots, i-1\})\}.
\]

Proof: Consider Algorithm 1. Let \(E_i = \{1, 2, \ldots, i\} \) be the set of the first \(i \) elements observed by the algorithm, and similar to the proof of Theorem 1, let \(S_{i-1} \) be the independent set chosen by the algorithm after observing the elements of \(E_{i-1} \). Recall that \(S_{i-1} \) is a base of \(E_{i-1} \). Therefore, by Lemma 6, \(S_{i-1} + i \in I \) if and only if \(i \notin \text{span}(S_{i-1}) = \text{span}(E_{i-1}) \). So the algorithm produces exactly the set \(B_{\text{opt}} \). From the analysis of Algorithm 1, it is also clear that in this case the maximum-weight base in unique. \(\square \)

3 Characterization of rank functions

In this section we prove some of the basic properties of rank functions.

Lemma 9 The rank function of a matroid satisfies the following:

1. For any \(S \subseteq T \subseteq E \) of elements, we have \(r(S) \leq r(T) \) (monotonicity)

2. For any \(S \subseteq T \subseteq E \), \(i \in E \setminus T \), we have \(r(T + i) - r(T) \leq r(S + i) - r(S) \) (non-increasing marginal values)

Proof: The first property is trivial (since any base of \(S \) is also an independent set of \(T \)). To prove the second property we use Lemma 7. Observe that \(r(S + i) - r(S) = 0 \) if \(i \in \text{span}(S) \) and \(1 \) if \(i \notin \text{span}(S) \). Lemma 7 implies that if \(i \in \text{span}(S) \) then \(i \in \text{span}(T) \). Therefore,

\[
 r(T + i) - r(T) \leq r(S + i) - r(S).
\]

For a set \(S \) and an element \(i \notin S \), we call \(r(S + i) - r(S) \) the marginal value of \(i \) with respect to \(S \). In the next lemma we show that non-increasing marginal values are equivalent to submodularity: a function \(f \) is submodular if \(f(A \cup B) + f(A \cap B) \leq f(A) + f(B) \) for every pair of sets \(A, B \).

Lemma 10 Let \(f : 2^E \to \mathbb{R} \) be a set function on a ground set \(E \). Then \(f \) is submodular \(\forall A, B \subseteq E, f(A \cap B) + f(A \cup B) \leq f(A) + f(B) \) if and only if for all \(S \subset T \subset E \) and \(i \in E \setminus T \):

\[
f(T + i) - f(T) \leq f(S + i) - f(S).
\]
Proof: Assume for all \(S \subseteq T \) and \(i \notin T \), we have \(f(T+i) - f(T) \leq f(S+i) - f(S) \). Let \(A, B \subseteq E \) be two subsets of \(E \). If \(B \subseteq A \), the claim is trivial. Let \(B \setminus A = \{b_1, b_2, \ldots, b_k\} \). We have:

\[
\begin{align*}
 f(A \cup B) - f(A) &= \sum_{i=1}^{k} (f(A + b_1 + \ldots + b_i) - f(A + b_1 + \ldots + b_{i-1})) \\
 &\leq \sum_{i=1}^{k} (f(A \cap B + b_1 + \ldots + b_i) - f(A \cap B + b_1 + \ldots + b_{i-1})) \\
 &= f(B) - f(A \cap B).
\end{align*}
\]

Here the inequality follows from the assumption once we set \(S := A \cap B \) and \(T := A \) (note that this implies \(S \subseteq T \)).

Conversely, suppose for any two sets \(A, B \) we have \(f(A \cup B) + f(A \cap B) \leq f(A) + f(B) \). Let \(S \subseteq T \) and \(i \notin T \). Now set \(A := S + i \) and \(B := T \). By the submodularity condition, we get:

\[
 f(T+i) + f(S) = f(A \cup B) + f(A \cap B) \leq f(A) + f(B) = f(S+i) + f(T),
\]

which completes the proof.

It turns out that submodularity, together with the fact that marginal values are 0 or 1, characterizes exactly the rank functions of matroids.

Lemma 11 A function \(r : 2^E \mapsto \mathbb{R} \) is a rank function of a matroid if and only if

1. \(r(\emptyset) = 0 \) and \(r(S+i) - r(S) \in \{0, 1\} \) for all \(S \subseteq E, i \notin S \);

2. \(r \) is submodular, i.e. \(r(S \cup T) + r(S \cap T) \leq r(S) + r(T) \) for all \(S, T \subseteq E \).

Proof: We already know that any matroid rank function must satisfy these conditions. So let us assume that \(r \) satisfies the conditions and define \(I = \{ A : r(A) = |A| \} \). We claim that \((E, I) \) is a matroid and \(r \) is its rank function.

By the first condition on \(r \), it is clear that \(I \) is closed under taking subsets. We claim that for any set \(S \), all maximal subsets of \(S \) which are in \(I \) (bases of \(S \)) have the same size. Consider any \(A \subseteq S \) such that \(r(A) = |A| \). We have \(r(A+i) - r(A) \in \{0, 1\} \). As long as \(r(A) < r(S) \), by submodularity there is \(i \in S \setminus A \) such that \(r(A+i) = r(A) + 1 \). Hence, if \(A \) is maximal such that \(r(A) = |A| \), we have \(r(A) = r(S) \). i.e., all bases have the same size, and \(r(S) \) is equal to that size.

\(\square \)