
Submodular Functions and Their Applications

Jan Vondrák1

1IBM Almaden Research Center
San Jose, CA

SIAM Discrete Math conference, Minneapolis, MN
June 2014

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 1 / 28



Discrete optimization

What is a discrete optimization problem?
Find a solution S in a finite set of feasible solutions F ⊂ {0,1}n

Maximize/minimize an objective function f (S)

Min Cut / Max Cut Min Spanning Tree Max Matching

Some problems are in P:
Min Spanning Tree, Max Flow, Min Cut, Max Matching,...

Many problems are NP-hard:
Traveling Salesman, Max Clique, Max Cut, Set Cover, Knapsack,...
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Continuous optimization

What makes continuous optimization tractable?

A function f : Rn → R
can be minimized efficiently,
if it is convex.

A function f : Rn → R
can be maximized efficiently,
if it is concave.

Discrete analogy?
Not so obvious... f is now a set function, or equivalently

f : {0,1}n → R.
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Outline

1 What are submodular functions?

2 Is submodularity more like convexity or concavity?

3 Continuous relaxations for submodular optimization problems.

4 Hardness from symmetric instances.

5 Where do we go next...
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From concavity to submodularity

Concavity:

f : R→ R is concave,

if the derivative f ′(x)
is non-increasing in x .

Submodularity:

0

1 1

0
x1

x2

f : {0,1}n → R is submodular,

if ∀i , the discrete derivative
∂i f (x) = f (x + ei)− f (x)
is non-increasing in x .
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Equivalent definitions

(1) Define the marginal value of element j,
fS(j) = f (S ∪ {j})− f (S).

j

S

T

f is submodular, if ∀S ⊂ T , j /∈ T :

fS(j) ≥ fT (j).

(2) A function f : 2[n] → R is submodular if for any S,T ,

f (S ∪ T ) + f (S ∩ T ) ≤ f (S) + f (T ).
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Where do submodular functions appear?

1. Foundations of combinatorial optimization:
[Edmonds, Lovász, Schrijver... 70’s-90’s]

rank functions of matroids, polymatroids, matroid intersection, submodular
flows, submodular minimization→ submodular functions often appear in the
background of P-time solvable problems.

2. Algorithmic game theory:
[Lehmann, Lehmann, Nisan, Dobzinski, Papadimitriou, Kempe, Kleinberg, Tardos,... 2000-now]

submodular functions model valuation functions of agents with diminishing
returns→ algorithms and incentive-compatible mechanisms for problems like
combinatorial auctions, cost sharing, and marketing on social networks.

3. Machine learning:
[Guestrin, Krause, Gupta, Golovin, Bilmes,... 2005-now]

submodular functions often appear as objective functions of machine learning
tasks such as sensor placement, document summarization or active learning
→ simple algorithms such as Greedy or Local Search work well.

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 7 / 28



Where do submodular functions appear?

1. Foundations of combinatorial optimization:
[Edmonds, Lovász, Schrijver... 70’s-90’s]

rank functions of matroids, polymatroids, matroid intersection, submodular
flows, submodular minimization→ submodular functions often appear in the
background of P-time solvable problems.

2. Algorithmic game theory:
[Lehmann, Lehmann, Nisan, Dobzinski, Papadimitriou, Kempe, Kleinberg, Tardos,... 2000-now]

submodular functions model valuation functions of agents with diminishing
returns→ algorithms and incentive-compatible mechanisms for problems like
combinatorial auctions, cost sharing, and marketing on social networks.

3. Machine learning:
[Guestrin, Krause, Gupta, Golovin, Bilmes,... 2005-now]

submodular functions often appear as objective functions of machine learning
tasks such as sensor placement, document summarization or active learning
→ simple algorithms such as Greedy or Local Search work well.

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 7 / 28



Where do submodular functions appear?

1. Foundations of combinatorial optimization:
[Edmonds, Lovász, Schrijver... 70’s-90’s]

rank functions of matroids, polymatroids, matroid intersection, submodular
flows, submodular minimization→ submodular functions often appear in the
background of P-time solvable problems.

2. Algorithmic game theory:
[Lehmann, Lehmann, Nisan, Dobzinski, Papadimitriou, Kempe, Kleinberg, Tardos,... 2000-now]

submodular functions model valuation functions of agents with diminishing
returns→ algorithms and incentive-compatible mechanisms for problems like
combinatorial auctions, cost sharing, and marketing on social networks.

3. Machine learning:
[Guestrin, Krause, Gupta, Golovin, Bilmes,... 2005-now]

submodular functions often appear as objective functions of machine learning
tasks such as sensor placement, document summarization or active learning
→ simple algorithms such as Greedy or Local Search work well.

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 7 / 28



Outline

1 What are submodular functions?

2 Is submodularity more like convexity or concavity?

3 Continuous relaxations for submodular optimization problems.

4 Hardness from symmetric instances.

5 Where do we go next...

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 8 / 28



Submodular = concave or convex?

Argument for concavity: Definition looks more like concavity -
non-increasing discrete derivatives.
Argument for convexity: Submodularity seems to be more
useful for minimization than maximization.

Theorem (Grötschel-Lovász-Schrijver, 1981;
Iwata-Fleischer-Fujishige / Schrijver, 2000)
There is an algorithm that computes the minimum of any submodular
function f : {0,1}n → R in poly(n) time (using value queries, f (S) =?).
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Convex aspects of submodular functions

Why is it possible to minimize submodular functions?

The combinatorial algorithms are sophisticated...
But there is a simple explanation: the Lovász extension.

0

1 1

0
x1

x2

0

1 1

0
x1

x2

Submodular function f −→ convex function f L,

f L(x) = Eλ∈[0,1][f ({i : xi > λ})].

f L can be minimized efficiently.
A minimizer of f L(x) can be converted into a minimizer of f (S).
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Concave aspects?

Recall definition: non-increasing discrete derivatives.

0

1 1

0
x1

x2

f : {0,1}n → R is submodular,

if ∀i , the discrete derivative
∂i f (x) = f (x + ei)− f (x)
is non-increasing in x .

Looks like concavity.

But problems involving maximization of submodular functions are
typically NP-hard! (Max Cut, Max Coverage, )

So what’s going on?
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The Greedy Algorithm

Problems in the form: max{f (S) : S ∈ I}
where f is monotone (non-decreasing) submodular.
(S ⊂ T ⇒ f (S) ≤ f (T ))

The Greedy Algorithm: [Nemhauser,Wolsey,Fisher ’78]

Pick elements one-by-one, maximizing the gain in f (S), while
maintaining S ∈ I.

S
i , maximizing f (S + i)− f (S)

Theorem (Nemhauser,Wolsey,Fisher ’78)
If f is monotone submodular, Greedy finds a solution of value at least
(1− 1/e)× optimum for the problem max{f (S) : |S| ≤ k}.

Optimality: [NW’78] No algorithm using a polynomial number of
queries to f can achieve a factor better than 1− 1/e.
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Applications of the Greedy Algorithm

Greedy Algorithm provides: (using [NWF ’78])
1 (1− 1/e)-approximation for various problems in optimization and

machine learning in the form max{f (S) : |S| ≤ k};
marketing on social networks [Kempe-Kleinberg-Tardos ’03], optimal sensor placement [Krause-Guestrin-et al. ’06-’10]

2 1/2-approximation for problems in the form max{f (S) : S ∈ I}
where I is a matroid;
e.g. welfare maximization in combinatorial auctions with submodular bidders [Lehmann-Lehmann-Nisan ’01]

Questions that don’t seem to be answered by the greedy algorithm:
Optimal approximation for max{f (S) : S ∈ I}
where f is monotone submodular and I forms a matroid
Optimization of non-monotone submodular functions
More general constraints, or combinations of simple ones
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Continuous relaxation for submodular maximization?

1 The Lovász extension is convex — not suitable for maximization.
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2 There is also a "concave closure". However, NP-hard to evaluate!
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Multilinear relaxation [Calinescu,Chekuri,Pál,V. ’07]

Multilinear extension of f :

0

1 1

0
x1

x2

0

1 1

0
x1

x2

F (x) = E[f (x̂)], where x̂ is obtained by rounding each xi
randomly to 0/1 with probabilities xi .

F (x) is neither convex nor concave; it is multilinear and ∂2F
∂xi

2 = 0.

F (x + λ~d) is a concave function of λ, if ~d ≥ 0.
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The Continuous Greedy Algorithm [V. ’08]

Problem: max{F (x) : x ∈ P)},
F multilinear extension of a monotone submodular function.

For each x ∈ P, define v(x) by
v(x) = argmaxv∈P(v · ∇F |x).

Define a curve x(t):

x(0) = 0
dx
dt = v(x)

Run this process
for t ∈ [0,1] and return x(1).

Claim: x(1) ∈ P and F (x(1)) ≥ (1− 1/e)OPT .
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Analysis of Continuous Greedy

Evolution of the fractional solution:
Differential equation: x(0) = 0, dx

dt = v(x).
Chain rule:

dF
dt

=
dx
dt
· ∇F (x(t)) = v(x) · ∇F (x(t)) ≥ OPT − F (x(t)).

0 1

t
0

1− 1
e

F (x(t))

Solve the differential equation:

F (x(t)) ≥ (1− e−t) ·OPT .

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 18 / 28



Applications of the multilinear relaxation

Algorithms:
1 (1− 1/e)-approximation for the problem max{f (S) : S ∈ I} where

f is monotone submodular and I is a matroid [Calinescu-Chekuri-Pál-V. ’08]

2 (1− 1/e − ε)-approximation for maximizing subject to O(1) linear
constraints: max{f (S) : ∀i ;

∑
j∈S cij ≤ 1} [Kulik-Shachnai-Tamir ’09]

3 1/e-approximation for the same problems with non-monotone
submodular valuations [Feldman-Naor-Schwartz ’11]

4 Approximations for more general constraints [Chekuri-Zenklusen-V. ’11]

Open question: What is the best approximation for the problem
max{F (x) : x ∈ P} when F is non-monotone submodular?

(We know a 1/e ' 0.36-approximation, and better than 0.48 is impossible.)
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Hardness from multilinear relaxation

Symmetry gap: ratio γ = OPT/OPT between the best symmetric
and the best asymmetric solution for the multilinear relaxation

OPT
OPT = max{F (x) : x ∈ P}
OPT = max{F (x) : x ∈ Psym}

OPT

Idea: Based on such an example, we can generate similar instances
such that an efficient algorithm will find only “symmetric solutions",
hence it cannot get close to the optimum.

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 21 / 28



Hardness from multilinear relaxation

Symmetry gap: ratio γ = OPT/OPT between the best symmetric
and the best asymmetric solution for the multilinear relaxation

OPT
OPT = max{F (x) : x ∈ P}
OPT = max{F (x) : x ∈ Psym}

OPT

Idea: Based on such an example, we can generate similar instances
such that an efficient algorithm will find only “symmetric solutions",
hence it cannot get close to the optimum.

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 21 / 28



Hardness from symmetry gap

Theorem (informal)
For an instance of submodular optimization with symmetry gap γ and
any ε > 0, there is a family of "similar" instances F such that no
efficient algorithm can achieve a (γ + ε)-approximation on F .
(using value queries [V. ’09], or on explicit instances assuming that NP 6= RP [Dobzinski, V. ’12])

Consequences: unification of known hardness results, some new results.

1− 1/e is optimal for max{f (S) : |S| ≤ k}, f monotone [Nemhauser,Wolsey ’78]

1/2 is optimal for max{f (S) : S ⊆ N}, f non-monotone submodular
[Feige,Mirrokni,V. ’06][Buchbinder,Feldman,Naor,Schwartz ’12]

0.49 cannot be achieved for max{f (S) : |S| ≤ k}, f non-monotone
submodular [Oveis Gharan, V. ’11]

no constant factor can be achieved for max{f (S) : S ∈ B},
f non-monotone submodular and B bases in a matroid [V. ’09]
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Connections with integrality gap and UG-hardness

Symmetry gap implies hardness for a submodular optimization
problem: in the oracle model [V. ’09] and also NP-hardness for
explicit instances [Dobzinski,V. ’12].
It is equal to the integrality gap of a related LP formulation.
For Min-CSP problems with the Not-Equal predicate, this also
implies hardness assuming the Unique-Games Conjecture.
[Manokaran,Naor,Raghavendra,Schwartz ’08] [Ene,V.,Wu ’13]

Symmetry Gap

Integrality Gap
(for Max/Min-CSP)

NP-Hardness of approximation
for Submodular Optimization

UG-Hardness of approximation
for Min-CSP problems
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Example: a Hypergraph Labeling Problem

Hypergraph Labeling: (problem in Min-CSP form)
Given a hypergraph H = (V ,E) with color lists L(v) ⊆ [k ] ∀v ∈ V,
find a coloring `(v) ∈ L(v) that minimizes the number of hyperedges
with more than 1 color.

Submodular generalization: Minimize
∑k

i=1 f (`−1(i))
Lovász extension gives a natural convex relaxation
−→ k -approximation for Hypergraph Labeling [Chekuri-Ene ’11]

is this best possible? enough to find a symmetry/integrality gap

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 24 / 28



Example: a Hypergraph Labeling Problem

Hypergraph Labeling: (problem in Min-CSP form)
Given a hypergraph H = (V ,E) with color lists L(v) ⊆ [k ] ∀v ∈ V,
find a coloring `(v) ∈ L(v) that minimizes the number of hyperedges
with more than 1 color.

Submodular generalization: Minimize
∑k

i=1 f (`−1(i))
Lovász extension gives a natural convex relaxation
−→ k -approximation for Hypergraph Labeling [Chekuri-Ene ’11]

is this best possible? enough to find a symmetry/integrality gap
Jan Vondrák (IBM Almaden) Submodular Functions and Applications 24 / 28



Integrality Gap example for Hypergraph Labeling

Sperner-style setup: hyperedges are k -vertex simplices, scaled
copies of a large simplex; vertices on the boundary are allowed to use
only the colors of the respective face.

{1}

{2} {3}

{1,2}

{1,2}

{1,2}

{1,2}

{1,3}

{1,3}

{1,3}

{1,3}

{2,3} {2,3} {2,3} {2,3}

Question: [Ene-V. ’14]

What is the minimum possible number of non-monochromatic hyperedges?
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Optimal Coloring => Integrality gap

Plausible conjecture: the following "simple coloring" has the
minimum number of non-monochromatic hyperedges:

1

2 3

1

1

1

1

1

1

1

1

2 2 2 2

1

1 1

1 1 1

This gives an integrality gap:
Total # hyperedges ' 1

(k−1)!n
k

LP cost ' 1
n ·

1
(k−1)!n

k = 1
(k−1)!n

k−1

Optimum cost ' 1
(k−2)!n

k−1 = (k − 1)× LP cost
this would imply that there is no approximation better than (k − 1),
assuming the Unique Games Conjecture (using [Ene-V.-Wu ’13])
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Proof of the optimality of the "simple coloring"

[Mirzakhani ’14]1

2 3

1

1

2

2

1

3

3

3

2 2 3 3

1

2 3

2 2 3

Set of vertices = Vn,k , hyperedges can be identified with Vn−1,k

Map monochromatic hyperedges to Vn−2,k as in the picture.

Since two monochromatic hyperedges cannot be neighbors, the
mapping is injective.
#non-monoχ ≥ |Vn−1,k | − |Vn−2,k | =

(n+k−2
k−1

)
−
(n+k−3

k−1

)
=
(n+k−3

k−2

)
.
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Future directions

We have:
Discrete optimization of linear functions↔ Linear Programming
Minimization of submodular functions↔ Lovász Relaxation
Maximization of submodular functions↔ Multilinear Relaxation

Fundamental questions:
1 Can we solve every maximization problem with a monotone

submodular objective that we can solve with a linear objective
(up to constant factors)?

2 The best approximations are achieved by randomized algorithms -
is randomization necessary?

Practical question: some progress in [Ashwinkumar-V. ’14]

1 Can these algorithms be used in practice — better running times?
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