Submodular Functions and Their Applications

Jan Vondrák¹

¹IBM Almaden Research Center San Jose, CA

ACM-SIAM SODA, New Orleans, LA January 7, 2013

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

There are two kinds of mathematicians:

- The Problem Solver: "How can I solve this problem?"
- The Theory Builder: "What is the structure that would allow me to solve more and more problems?"

There are two kinds of mathematicians:

- The Problem Solver: "How can I solve this problem?"
- The Theory Builder: "What is the structure that would allow me to solve more and more problems?"

Problem Solvers \longrightarrow *combinatorics*...

Theory Builders \longrightarrow algebra...

There are two kinds of mathematicians:

- The Problem Solver: "How can I solve this problem?"
- The Theory Builder: "What is the structure that would allow me to solve more and more problems?"

Problem Solvers \longrightarrow combinatorics...

Theory Builders \longrightarrow algebra...

Dominic Welsh [1976]:

"... mathematical generalization often lays bare the important bits of information about the problem at hand."

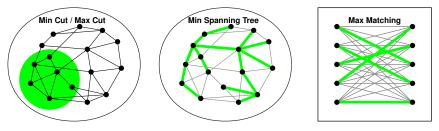
What are submodular functions?

- Is submodularity more like convexity or concavity?
- Opplications of submodular maximization.
- Recent advances: the multilinear relaxation.

Discrete optimization

What is a discrete optimization problem?

- Find a solution S in a *finite set* of feasible solutions $\mathcal{F} \subset \{0, 1\}^n$
- Maximize/minimize an objective function f(S)



Some problems are in P:

Min Spanning Tree, Max Flow, Min Cut, Max Matching,...

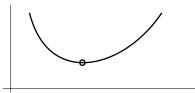
Many problems are NP-hard:

Traveling Salesman, Max Clique, Max Cut, Set Cover, Knapsack,...

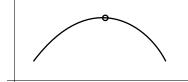
What makes continuous optimization tractable?

Continuous optimization

What makes continuous optimization tractable?



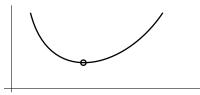
A function $f : \mathbb{R}^n \to \mathbb{R}$ can be minimized efficiently, if it is convex.



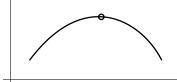
A function $f : \mathbb{R}^n \to \mathbb{R}$ can be maximized efficiently, if it is concave.

Continuous optimization

What makes continuous optimization tractable?



A function $f : \mathbb{R}^n \to \mathbb{R}$ can be minimized efficiently, if it is convex.



A function $f : \mathbb{R}^n \to \mathbb{R}$ can be maximized efficiently, if it is concave.

Discrete analogy? Not so obvious... *f* is now a set function, or equivalently

$$f: \{\mathbf{0},\mathbf{1}\}^n \to \mathbb{R}.$$

From concavity to submodularity

Concavity:

 $f:\mathbb{R} \to \mathbb{R}$ is concave,

if the derivative f'(x) is non-increasing in *x*.

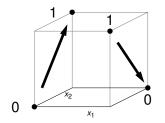
From concavity to submodularity

Concavity:

 $f: \mathbb{R} \to \mathbb{R}$ is concave,

if the derivative f'(x) is non-increasing in *x*.

Submodularity:



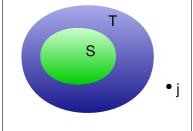
 $f: \{0, 1\}^n \to \mathbb{R}$ is submodular,

▲ 同 ▶ | ▲ 三 ▶

if $\forall i$, the discrete derivative $\partial_i f(x) = f(x + e_i) - f(x)$ is non-increasing in *x*.

Equivalent definitions

(1) For $f : 2^{[n]} \to \mathbb{R}$, define the marginal value of element j, _______ $f_S(j) = f(S \cup \{j\}) - f(S)$.

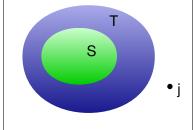


f is submodular, if $\forall S \subset T, j \notin T$:

 $f_{\mathcal{S}}(j) \geq f_{\mathcal{T}}(j).$

Equivalent definitions

(1) For $f : 2^{[n]} \to \mathbb{R}$, define the marginal value of element j, _______ $f_S(j) = f(S \cup \{j\}) - f(S)$.



f is submodular, if $\forall S \subset T, j \notin T$:

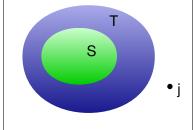
A (1) > A (2) > A

 $f_{\mathcal{S}}(j) \geq f_{\mathcal{T}}(j).$

(2) $f : 2^{[n]} \to \mathbb{R}$ is submodular if for any S, T, $f(S \cup T) + f(S \cap T) \le f(S) + f(T).$

Equivalent definitions

(1) For $f : 2^{[n]} \to \mathbb{R}$, define the marginal value of element j, $f_S(j) = f(S \cup \{j\}) - f(S)$.



f is submodular, if $\forall S \subset T, j \notin T$:

 $f_{\mathcal{S}}(j) \geq f_{\mathcal{T}}(j).$

(2) $f : 2^{[n]} \to \mathbb{R}$ is submodular if for any S, T, $f(S \cup T) + f(S \cap T) \le f(S) + f(T).$

Value oracle model

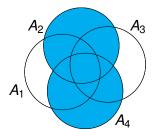
Access to f: through an oracle answering queries "f(S) =?"

Jan Vondrák (IBM Almaden)

Examples of submodular functions

Coverage function: Given $A_1, \ldots, A_n \subset U$,

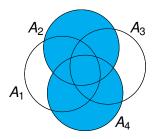
$$f(S) = \big| \bigcup_{j \in S} A_j \big|.$$

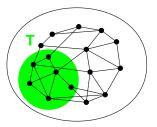


Examples of submodular functions

Coverage function: Given $A_1, \ldots, A_n \subset U$,

$$f(S) = \big| \bigcup_{j \in S} A_j \big|.$$





Cut function:

 $\delta(T) = |\boldsymbol{e}(T,\overline{T})|$

- What are submodular functions?
- Is submodularity more like convexity or concavity?
- Applications of submodular maximization.
- Becent advances: the multilinear relaxation.

- Argument for concavity: Definition looks more like concavity *non-increasing* discrete derivatives.
- Argument for convexity: Submodularity seems to be more useful for *minimization* than maximization.

- Argument for concavity: Definition looks more like concavity *non-increasing* discrete derivatives.
- Argument for convexity: Submodularity seems to be more useful for *minimization* than maximization.

Theorem (Grötschel-Lovász-Schrijver, 1981; Iwata-Fleischer-Fujishige / Schrijver, 2000)

There is an algorithm that computes the minimum of any submodular function $f : \{0, 1\}^n \to \mathbb{R}$ in poly(n) time (in the value oracle model).

Convex aspects of submodular functions

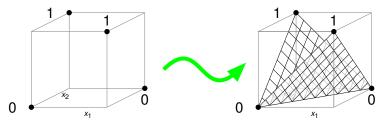
Why is it possible to minimize submodular functions?

- The combinatorial algorithms are sophisticated...
- But there is a simple explanation: the *Lovász extension*.

Convex aspects of submodular functions

Why is it possible to minimize submodular functions?

- The combinatorial algorithms are sophisticated...
- But there is a simple explanation: the Lovász extension.



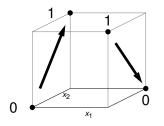
• Submodular function $f \longrightarrow$ convex function f^L ,

$$f^{L}(\mathbf{x}) = \mathbb{E}_{\lambda \in [0,1]}[f(\{i : \mathbf{x}_{i} > \lambda\})].$$

- f^L can be minimized efficiently.
- A minimizer of $f^{L}(x)$ can be converted into a minimizer of f(S).

Concave aspects?

Recall definition: non-increasing discrete derivatives.



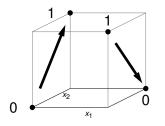
 $f: \{0, 1\}^n \to \mathbb{R}$ is submodular,

if $\forall i$, the discrete derivative $\partial_i f(x) = f(x + e_i) - f(x)$ is non-increasing in *x*.

• Looks like concavity.

Concave aspects?

Recall definition: non-increasing discrete derivatives.



 $f: \{0, 1\}^n \to \mathbb{R}$ is submodular,

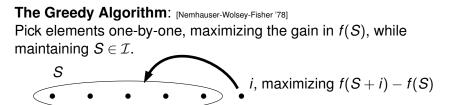
if $\forall i$, the discrete derivative $\partial_i f(x) = f(x + e_i) - f(x)$ is non-increasing in *x*.

- Looks like concavity.
- But problems involving maximization of submodular functions are typically NP-hard! (Max Cut, Max Coverage)

So what's going on?

The Greedy Algorithm

Problems in the form: max{ $f(S) : S \in \mathcal{I}$ } where $f : 2^N \to \mathbb{R}_+$ is monotone (non-decreasing) submodular.



The Greedy Algorithm

Problems in the form: max{ $f(S) : S \in \mathcal{I}$ } where $f : 2^N \to \mathbb{R}_+$ is monotone (non-decreasing) submodular.

The Greedy Algorithm: [Nemhauser-Wolsey-Fisher '78] Pick elements one-by-one, maximizing the gain in f(S), while maintaining $S \in \mathcal{I}$. *S i*, maximizing f(S+i) - f(S)

Theorem (Nemhauser, Wolsey, Fisher '78)

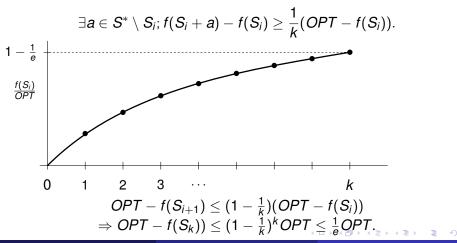
If *f* is monotone submodular, Greedy finds a solution of value at least $(1 - 1/e) \times$ optimum for the problem max{ $f(S) : |S| \le k$ }.

(and this is best possible for this problem) [Nemhauser-Wolsey '78] [Feige '98]

Analysis of Greedy

Greedy Algorithm: S_i = solution after *i* steps; pick next element a to maximize $f(S_i + a) - f(S_i)$.

Let the optimal solution be S^* . By submodularity:



Jan Vondrák (IBM Almaden)

Submodular Functions and Applications

- What are submodular functions?
- Is submodularity more like convexity or concavity?
- Applications of submodular maximization.
- Becent advances: the multilinear relaxation.

Spreading of Influence in Social Networks [Kempe-Kleinberg-Tardos '03] (1 - 1/e)-approximation for choosing an initial set of active nodes, to maximize the expected number of nodes activated at the end

Sensor Placement in Machine Learning [Guestrin-Krause et al.] (1 - 1/e)-approximation for placing a set of sensors in order to extract maximum amount of information in various settings (using the submodularity of the *entropy function*)

Battle of Water Sensor Networks (Water Distribution Systems Analysis Symposium, Cincinnati, 2006) 1st prize using a greedy-based algorithm for detecting contamination outbreaks in a water network [Leskovec-Krause-Guestrin-Faloutsos-VanBriesen-Glance]

Document Summarization [Bilmes-Lin '11]

Algorithms for extracting a small collection of phrases/sentences to represent a large document (using submodularity of a coverage+diversity function)

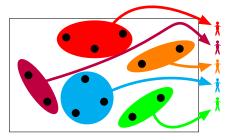
Algorithmic Game Theory

Submodular functions \simeq valuations with diminishing returns

Algorithmic Game Theory

Submodular functions \simeq valuations with diminishing returns

Combinatorial auctions [Lehmann-Lehmann-Nisan '01] |M| = m items are to be sold to *n* agents with (monotone) valuations $v_i : 2^M \to \mathbb{R}_+$.

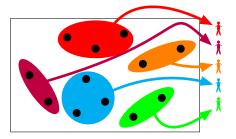


Allocate S_i to agent *i* to maximize $\sum_{i=1}^{n} v_i(S_i)$.

Algorithmic Game Theory

Submodular functions \simeq valuations with diminishing returns

Combinatorial auctions [Lehmann-Lehmann-Nisan '01] |M| = m items are to be sold to *n* agents with (monotone) valuations $v_i : 2^M \to \mathbb{R}_+$.



Allocate S_i to agent *i* to maximize $\sum_{i=1}^{n} v_i(S_i)$.

Submodular Welfare Maximization [Nemhauser-Wolsey-Fisher '78] for *submodular valuations*, Greedy gives a 1/2-approximation.

Beyond the Greedy Algorithm

Questions that don't seem to be answered by the greedy algorithm:

- Optimal approximations (Submodular Welfare Problem?)
- Non-monotone submodular functions?
- Extensions to more general constraints?

Beyond the Greedy Algorithm

Questions that don't seem to be answered by the greedy algorithm:

- Optimal approximations (Submodular Welfare Problem?)
- Non-monotone submodular functions?
- Extensions to more general constraints?

Alternative techniques: Greedy algorithm with partial enumeration [Sviridenko '04] Iterated greedy algorithms [Gupta-Roth-Schoenebeck-Talwar '09] Local search algorithms [Feige-Mirrokni-V:07] [Lee-Mirrokni-Nagarajan-Sviridenko'09] [Lee-Sviridenko-V:09]

[Feldman-Naor-Schwartz-Ward '11] [Filmus-Ward '12]

< ロ > < 同 > < 回 > < 回 > < 回 >

Beyond the Greedy Algorithm

Questions that don't seem to be answered by the greedy algorithm:

- Optimal approximations (Submodular Welfare Problem?)
- Non-monotone submodular functions?
- Extensions to more general constraints?

Alternative techniques: Greedy algorithm with partial enumeration [Sviridenko '04] Iterated greedy algorithms [Gupta-Roth-Schoenebeck-Talwar '09] Local search algorithms [Feige-Mirrokni-V:07] [Lee-Mirrokni-Nagarajan-Sviridenko'09] [Lee-Sviridenko-V:09]

[Feldman-Naor-Schwartz-Ward '11] [Filmus-Ward '12]

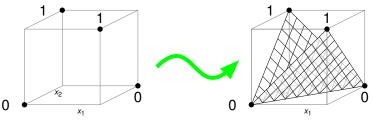
General question:

o continuous relaxation for submodular maximization problems?

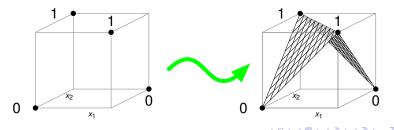
- What are submodular functions?
- Is submodularity more like convexity or concavity?
- Opplications of submodular maximization.
- Recent advances: the multilinear relaxation.

Continuous relaxation for submodular maximization?

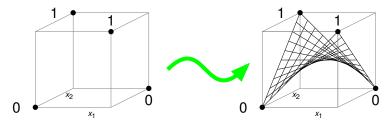
The Lovász extension is convex — not suitable for maximization.



2 There is also a "concave closure". However, NP-hard to evaluate!



Multilinear extension of f:



F(*x*) = 𝔼[*f*(*x̂*)], where *x̂* is obtained by rounding each *x_i* randomly to 0/1 with probabilities *x_i*.

- F(x) is neither convex nor concave.
- $F(x + \lambda \vec{d})$ is a *concave* function of λ , if $\vec{d} \ge 0$.

How to use the multilinear relaxation

The multilinear relaxation turns out to be useful for maximization:

() The continuous problem $\max\{F(x) : x \in P\}$ can be solved:

- (1 1/e)-approximately for any monotone submodular function and solvable polytope [V. '08]
- (1/*e*)-approximately for any nonnegative submodular function and down-closed solvable polytope [Feldman-Naor-Schwartz '11]
- A fractional solution can be rounded:
 - without loss for a matroid constraint [Calinescu-Chekuri-Pál-V. '07]
 - losing (1ϵ) factor for a constant number of linear constraints [Kulik-Shachnai-Tamir '10]
 - for more general constraints, using *contention resolution schemes* [Chekuri-V.-Zenklusen '11]
 - e.g., O(k)-approximation for k matroids & O(1) linear constraints

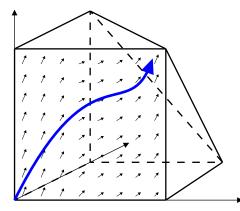
In particular:

Optimal (1 - 1/e)-approximation for the Submodular Welfare Problem.

The Continuous Greedy Algorithm [V. '08]

Problem: $\max\{F(x): x \in P\},\$

F multilinear extension of a monotone submodular function.



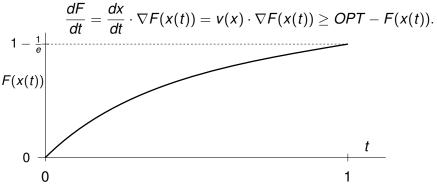
Start with x = 0, t = 0; While t < 1Find $v \in P$ maximizing $v \cdot \nabla F|_x$; Update $x = x + \delta v$, $t = t + \delta$;

Claim: $x(1) \in P$ and $F(x(1)) \ge (1 - 1/e)OPT$.

Analysis of Continuous Greedy

Evolution of the fractional solution:

- Differential equation: $x(0) = 0, \frac{dx}{dt} = v(x).$
- Chain rule:



Solve the differential equation:

$$F(x(t)) \geq (1 - e^{-t}) \cdot OPT.$$

Multilinear relaxation for non-monotone functions

Non-monotone submodular functions: [Feldman-Naor-Schwartz '11]

- Continuous greedy still solves max{F(x) : x ∈ P} within a constant factor for any down-closed P.
- A careful modification achieves a factor of 1/e; e.g., for Submodular Welfare Problem with *non-monotone* valuations.

Multilinear relaxation for non-monotone functions

Non-monotone submodular functions: [Feldman-Naor-Schwartz '11]

- Continuous greedy still solves max{F(x) : x ∈ P} within a constant factor for any down-closed P.
- A careful modification achieves a factor of 1/e; e.g., for Submodular Welfare Problem with non-monotone valuations.

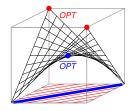
Unconstrained submodular maximization: [Buchbinder-Feldman-Naor-Schwartz '12]

- 1/2-approximation for the problem max_{S⊆N} f(S)
 double-greedy randomized algorithm
- No $(1/2 + \epsilon)$ -approx in the value oracle model [Feige-Mirrokni-V. '07] — hardness can be derived from the multilinear relaxation

伺 ト イ ヨ ト イ ヨ ト

Hardness from multilinear relaxation

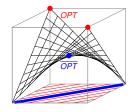
Symmetry gap: ratio $\gamma = \frac{\overline{OPT}}{\overline{OPT}}$ between the best *symmetric* and the best *asymmetric* solution for the multilinear relaxation of an instance max{ $F(x) : x \in P$ }.



 $\frac{OPT}{OPT} = \max\{F(x) : x \in P\}$ $\frac{OPT}{OPT} = \max\{F(\bar{x}) : \bar{x} \in P\}$

Hardness from multilinear relaxation

Symmetry gap: ratio $\gamma = \frac{\overline{OPT}}{\overline{OPT}}$ between the best *symmetric* and the best *asymmetric* solution for the multilinear relaxation of an instance max{ $F(x) : x \in P$ }.



 $\frac{OPT}{OPT} = \max\{F(x) : x \in P\}$ $\overline{OPT} = \max\{F(\bar{x}) : \bar{x} \in P\}$

Hardness result:

no ($\gamma + \epsilon$)-approximation for instances "of the same type" (oracle hardness [V. '09], computational hardness [Dobzinski-V. '12])

E.g.: symmetry gap for unconstrained maximization is 1/2 \Rightarrow no approximation better than 1/2 for this problem.

Submodular maximization overview

MONOTONE MAXIMIZATION

Constraint	Approximation	Hardness	technique
$ S \le k$	1 - 1/ <i>e</i>	1 – 1/ <i>e</i>	greedy
matroid	1 – 1/ <i>e</i>	1 – 1/ <i>e</i>	multilinear ext.
O(1) knapsacks	1 – 1/ <i>e</i>	1 – 1/ <i>e</i>	multilinear ext.
k matroids	$\mathbf{k} + \epsilon$	$k/\log k$	local search
k matroids & $O(1)$ knapsacks	<i>O</i> (<i>k</i>)	$k/\log k$	multilinear ext.

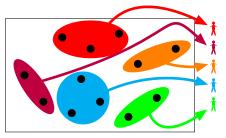
NON-MONOTONE MAXIMIZATION

Constraint	Approximation	Hardness	technique
Unconstrained	1/2	1/2	combinatorial
matroid	1/e	0.48	multilinear ext.
O(1) knapsacks	1/ <i>e</i>	0.49	multilinear ext.
k matroids	k + O(1)	<i>k</i> / log <i>k</i>	local search
k matroids & $O(1)$ knapsacks	<i>O</i> (<i>k</i>)	$k/\log k$	multilinear ext.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Truthful mechanism design

Combinatorial auctions:

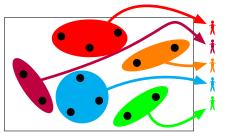


Allocate S_i to agent *i* to maximize $\sum_{i=1}^{n} v_i(S_i)$ + incentivize agents to report their true valuations!

A D b 4 A b

Truthful mechanism design

Combinatorial auctions:



Allocate S_i to agent *i* to maximize $\sum_{i=1}^{n} v_i(S_i)$ + incentivize agents to report their true valuations!

Building on the multilinear relaxation:

- There is a (1 1/e)-approximate truthful-in-expectation mechanism for coverage valuations [Dughmi-Roughgarden-Yan '11]
- However, no truthful-in-expectation m^{o(1)}-approximation for submodular valuations oracle hardness [Dughmi-V. '11], computational hardness [Dobzinski-V. '12]

We have:

Discrete optimization of linear functions \leftrightarrow Linear Programming Minimization of submodular functions \leftrightarrow Lovász Relaxation Maximization of submodular functions \leftrightarrow Multilinear Relaxation

4 A N

We have:

Discrete optimization of linear functions \leftrightarrow Linear Programming Minimization of submodular functions \leftrightarrow Lovász Relaxation Maximization of submodular functions \leftrightarrow Multilinear Relaxation

Main open questions:

- Can we approximate every maximization problem with a monotone submodular objective (up to constant factors) if we can approximate it with a linear objective?
- Obes the symmetry gap characterize approximability in some sense — "if and only if" results?
- Beyond submodularity: more general "polymorphisms"?