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Prelude: what is this about?

There are two kinds of mathematicians:

The Problem Solver: "How can I solve this problem?"
The Theory Builder: "What is the structure that would allow me

to solve more and more problems?"

Problem Solvers −→ combinatorics...

Theory Builders −→ algebra...

Dominic Welsh [1976]:
". . . mathematical generalization often lays bare the important bits of
information about the problem at hand."
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Outline

1 What are submodular functions?

2 Is submodularity more like convexity or concavity?

3 Applications of submodular maximization.

4 Recent advances: the multilinear relaxation.
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Discrete optimization

What is a discrete optimization problem?
Find a solution S in a finite set of feasible solutions F ⊂ {0,1}n

Maximize/minimize an objective function f (S)

Min Cut / Max Cut Min Spanning Tree Max Matching

Some problems are in P:
Min Spanning Tree, Max Flow, Min Cut, Max Matching,...

Many problems are NP-hard:
Traveling Salesman, Max Clique, Max Cut, Set Cover, Knapsack,...
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Continuous optimization

What makes continuous optimization tractable?

A function f : Rn → R
can be minimized efficiently,
if it is convex.

A function f : Rn → R
can be maximized efficiently,
if it is concave.

Discrete analogy?
Not so obvious... f is now a set function, or equivalently

f : {0,1}n → R.
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From concavity to submodularity

Concavity:

f : R→ R is concave,

if the derivative f ′(x)

is non-increasing in x .

Submodularity:

0

1 1

0
x1

x2

f : {0,1}n → R is submodular,

if ∀i , the discrete derivative
∂i f (x) = f (x + ei)− f (x)

is non-increasing in x .
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Equivalent definitions

(1) For f : 2[n] → R, define the marginal value of element j,
fS(j) = f (S ∪ {j})− f (S).

j

S

T

f is submodular, if ∀S ⊂ T , j /∈ T :

fS(j) ≥ fT (j).

(2) f : 2[n] → R is submodular if for any S,T ,

f (S ∪ T ) + f (S ∩ T ) ≤ f (S) + f (T ).

Value oracle model
Access to f : through an oracle answering queries "f (S) = ?"
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Examples of submodular functions

A1

A2 A3

A4

Coverage function:
Given A1, . . . ,An ⊂ U,

f (S) =
∣∣⋃

j∈S Aj
∣∣.

T Cut function:

δ(T ) = |e(T ,T )|
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Submodular = concave or convex?

Argument for concavity: Definition looks more like concavity -
non-increasing discrete derivatives.
Argument for convexity: Submodularity seems to be more
useful for minimization than maximization.

Theorem (Grötschel-Lovász-Schrijver, 1981;
Iwata-Fleischer-Fujishige / Schrijver, 2000)
There is an algorithm that computes the minimum of any submodular
function f : {0,1}n → R in poly(n) time (in the value oracle model).
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Convex aspects of submodular functions

Why is it possible to minimize submodular functions?

The combinatorial algorithms are sophisticated...
But there is a simple explanation: the Lovász extension.

0

1 1

0
x1

x2

0

1 1

0
x1

x2

Submodular function f −→ convex function f L,

f L(x) = Eλ∈[0,1][f ({i : xi > λ})].

f L can be minimized efficiently.
A minimizer of f L(x) can be converted into a minimizer of f (S).
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Concave aspects?

Recall definition: non-increasing discrete derivatives.

0

1 1

0
x1

x2

f : {0,1}n → R is submodular,

if ∀i , the discrete derivative
∂i f (x) = f (x + ei)− f (x)

is non-increasing in x .

Looks like concavity.

But problems involving maximization of submodular functions are
typically NP-hard! (Max Cut, Max Coverage)

So what’s going on?

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 12 / 29



Concave aspects?

Recall definition: non-increasing discrete derivatives.

0

1 1

0
x1

x2

f : {0,1}n → R is submodular,

if ∀i , the discrete derivative
∂i f (x) = f (x + ei)− f (x)

is non-increasing in x .

Looks like concavity.
But problems involving maximization of submodular functions are
typically NP-hard! (Max Cut, Max Coverage)

So what’s going on?

Jan Vondrák (IBM Almaden) Submodular Functions and Applications 12 / 29



The Greedy Algorithm

Problems in the form: max{f (S) : S ∈ I}
where f : 2N → R+ is monotone (non-decreasing) submodular.

The Greedy Algorithm: [Nemhauser-Wolsey-Fisher ’78]

Pick elements one-by-one, maximizing the gain in f (S), while
maintaining S ∈ I.

S
i , maximizing f (S + i)− f (S)

Theorem (Nemhauser,Wolsey,Fisher ’78)
If f is monotone submodular, Greedy finds a solution of value at least
(1− 1/e)× optimum for the problem max{f (S) : |S| ≤ k}.

(and this is best possible for this problem) [Nemhauser-Wolsey ’78] [Feige ’98]
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Analysis of Greedy

Greedy Algorithm: Si = solution after i steps;
pick next element a to maximize f (Si + a)− f (Si).

Let the optimal solution be S∗. By submodularity:

∃a ∈ S∗ \ Si ; f (Si + a)− f (Si) ≥
1
k

(OPT − f (Si)).

0 k1 2 3 . . .

1− 1
e

f (Si )
OPT

OPT − f (Si+1) ≤ (1− 1
k )(OPT − f (Si))

⇒ OPT − f (Sk )) ≤ (1− 1
k )kOPT ≤ 1

e OPT .
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Applications of Submodular Maximization

Spreading of Influence in Social Networks [Kempe-Kleinberg-Tardos ’03]

(1− 1/e)-approximation for choosing an initial set of active nodes, to
maximize the expected number of nodes activated at the end

Sensor Placement in Machine Learning [Guestrin-Krause et al.]

(1− 1/e)-approximation for placing a set of sensors in order to extract
maximum amount of information in various settings
(using the submodularity of the entropy function)

Battle of Water Sensor Networks (Water Distribution Systems Analysis Symposium, Cincinnati, 2006)

1st prize using a greedy-based algorithm for detecting contamination
outbreaks in a water network [Leskovec-Krause-Guestrin-Faloutsos-VanBriesen-Glance]

Document Summarization [Bilmes-Lin ’11]

Algorithms for extracting a small collection of phrases/sentences to represent
a large document (using submodularity of a coverage+diversity function)
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Algorithmic Game Theory

Submodular functions ' valuations with diminishing returns

Combinatorial auctions [Lehmann-Lehmann-Nisan ’01]

|M| = m items are to be sold to n agents
with (monotone) valuations vi : 2M → R+.

Allocate Si to agent i

to maximize
∑n

i=1 vi(Si).

Submodular Welfare Maximization [Nemhauser-Wolsey-Fisher ’78]

for submodular valuations, Greedy gives a 1/2-approximation.
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Beyond the Greedy Algorithm

Questions that don’t seem to be answered by the greedy algorithm:
Optimal approximations (Submodular Welfare Problem?)
Non-monotone submodular functions?
Extensions to more general constraints?

Alternative techniques:
Greedy algorithm with partial enumeration [Sviridenko ’04]

Iterated greedy algorithms [Gupta-Roth-Schoenebeck-Talwar ’09]

Local search algorithms [Feige-Mirrokni-V.’07] [Lee-Mirrokni-Nagarajan-Sviridenko’09] [Lee-Sviridenko-V.’09]

[Feldman-Naor-Schwartz-Ward ’11] [Filmus-Ward ’12]

General question:

continuous relaxation for submodular maximization problems?
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Continuous relaxation for submodular maximization?

1 The Lovász extension is convex — not suitable for maximization.

0

1 1

0
x1

x2

0

1 1

0
x1

x2

2 There is also a "concave closure". However, NP-hard to evaluate!

0

1 1

0
x1

x2

0

1 1

0
x1

x2
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Multilinear relaxation [Calinescu,Chekuri,Pál,V. ’07]

Multilinear extension of f :

0

1 1

0
x1

x2

0

1 1

0
x1

x2

F (x) = E[f (x̂)], where x̂ is obtained by rounding each xi
randomly to 0/1 with probabilities xi .
F (x) is neither convex nor concave.

F (x + λ~d) is a concave function of λ, if ~d ≥ 0.
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How to use the multilinear relaxation

The multilinear relaxation turns out to be useful for maximization:
1 The continuous problem max{F (x) : x ∈ P} can be solved:

(1− 1/e)-approximately for any monotone submodular function and
solvable polytope [V. ’08]

(1/e)-approximately for any nonnegative submodular function and
down-closed solvable polytope [Feldman-Naor-Schwartz ’11]

2 A fractional solution can be rounded:
without loss for a matroid constraint [Calinescu-Chekuri-Pál-V. ’07]

losing (1− ε) factor for a constant number of linear constraints
[Kulik-Shachnai-Tamir ’10]

for more general constraints, using contention resolution schemes
[Chekuri-V.-Zenklusen ’11]

e.g., O(k)-approximation for k matroids & O(1) linear constraints

In particular:
Optimal (1− 1/e)-approximation for the Submodular Welfare Problem.
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The Continuous Greedy Algorithm [V. ’08]

Problem: max{F (x) : x ∈ P)},
F multilinear extension of a monotone submodular function.

Start with x = 0, t = 0;
While t < 1

Find v ∈ P maximizing v · ∇F |x ;
Update x = x + δv , t = t + δ;

Claim: x(1) ∈ P and F (x(1)) ≥ (1− 1/e)OPT .
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Analysis of Continuous Greedy

Evolution of the fractional solution:
Differential equation: x(0) = 0, dx

dt = v(x).
Chain rule:

dF
dt

=
dx
dt
· ∇F (x(t)) = v(x) · ∇F (x(t)) ≥ OPT − F (x(t)).

0 1

t
0

1− 1
e

F (x(t))

Solve the differential equation:

F (x(t)) ≥ (1− e−t ) ·OPT .
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Multilinear relaxation for non-monotone functions

Non-monotone submodular functions: [Feldman-Naor-Schwartz ’11]

Continuous greedy still solves max{F (x) : x ∈ P} within a
constant factor for any down-closed P.
A careful modification achieves a factor of 1/e; e.g., for
Submodular Welfare Problem with non-monotone valuations.

Unconstrained submodular maximization: [Buchbinder-Feldman-Naor-Schwartz ’12]

1/2-approximation for the problem maxS⊆N f (S)
— double-greedy randomized algorithm
No (1/2 + ε)-approx in the value oracle model [Feige-Mirrokni-V. ’07]

— hardness can be derived from the multilinear relaxation
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Hardness from multilinear relaxation

Symmetry gap: ratio γ = OPT
OPT between the best symmetric

and the best asymmetric solution for the multilinear relaxation of an
instance max{F (x) : x ∈ P}.

OPT

OPT = max{F (x) : x ∈ P}
OPT OPT = max{F (x̄) : x̄ ∈ P}

Hardness result:
no (γ + ε)-approximation for instances "of the same type"
(oracle hardness [V. ’09], computational hardness [Dobzinski-V. ’12])

E.g.: symmetry gap for unconstrained maximization is 1/2
⇒ no approximation better than 1/2 for this problem.
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Submodular maximization overview

MONOTONE MAXIMIZATION

Constraint Approximation Hardness technique

|S| ≤ k 1− 1/e 1− 1/e greedy
matroid 1− 1/e 1− 1/e multilinear ext.

O(1) knapsacks 1− 1/e 1− 1/e multilinear ext.
k matroids k + ε k/ log k local search

k matroids & O(1) knapsacks O(k) k/ log k multilinear ext.

NON-MONOTONE MAXIMIZATION

Constraint Approximation Hardness technique

Unconstrained 1/2 1/2 combinatorial
matroid 1/e 0.48 multilinear ext.

O(1) knapsacks 1/e 0.49 multilinear ext.
k matroids k + O(1) k/ log k local search

k matroids & O(1) knapsacks O(k) k/ log k multilinear ext.
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Truthful mechanism design

Combinatorial auctions:

Allocate Si to agent i
to maximize

∑n
i=1 vi(Si)

+ incentivize agents
to report their true valuations!

Building on the multilinear relaxation:
There is a (1− 1/e)-approximate truthful-in-expectation
mechanism for coverage valuations [Dughmi-Roughgarden-Yan ’11]

However, no truthful-in-expectation mo(1)-approximation for
submodular valuations oracle hardness [Dughmi-V. ’11], computational hardness [Dobzinski-V. ’12]
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Future directions

We have:
Discrete optimization of linear functions↔ Linear Programming
Minimization of submodular functions↔ Lovász Relaxation
Maximization of submodular functions↔ Multilinear Relaxation

Main open questions:
1 Can we approximate every maximization problem with a

monotone submodular objective (up to constant factors)
if we can approximate it with a linear objective?

2 Does the symmetry gap characterize approximability in some
sense — "if and only if" results?

3 Beyond submodularity: more general "polymorphisms"?
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