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Abstract

We prove that no online algorithm (even randomized,
against an oblivious adversary) is better than 1/2-
competitive for welfare maximization with coverage val-
uations, unless NP = RP . Since the Greedy algo-
rithm is known to be 1/2-competitive for monotone sub-
modular valuations, of which coverage is a special case,
this proves that Greedy provides the optimal compet-
itive ratio. On the other hand, we prove that Greedy
in a stochastic setting with i.i.d. items and valuations
satisfying diminishing returns is (1 − 1/e)-competitive,
which is optimal even for coverage valuations, unless
NP = RP . For online budget-additive allocation, we
prove that no algorithm can be 0.612-competitive with
respect to a natural LP which has been used previously
for this problem.

1 Introduction

We study an online variant of the welfare maximiza-
tion problem in combinatorial auctions: m items are
arriving online, and each item should be allocated upon
arrival to one of n agents whose interest in different
subsets of items is expressed by valuation functions
wi : 2[m] → R+. The goal is to maximize

∑n
i=1 wi(Si)

where Si is the set of items allocated to agent i. Vari-
ants of the problem arise by considering different classes
of valuation functions wi and different models (adver-
sarial/stochastic) for the arrival ordering of the items.
We remark that in this work we do not consider any
game-theoretic aspects of this problem.

The origin of this line of work can be traced back to
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a seminal paper of Karp, Vazirani and Vazirani [KVV90]
on online bipartite matching. This can be viewed as
a welfare maximization problem where one side of the
bipartite graph represents agents and the other side
items; each agent i is interested in the items N(i)
joined to i by an edge, and he is completely satisfied
by 1 item, meaning the valuation function can be
written as wi(S) = min{|S ∩ N(i)|, 1}. Karp, Vazirani
and Vazirani gave an elegant (1 − 1/e)-competitive
randomized algorithm, which improves a greedy 1/2-
approximation and is optimal in this setting.

Recent interest in online allocation problems arises
from applications in online advertising, where the items
represent ad slots associated with search queries, and
agents are advertisers interested in having their ad
displayed in connection with certain queries. A popular
model in this context is the budget-additive framework
[GKP01, MSVV05, BJN07] where valuations have the
form wi(S) = min{

∑
j∈S bij , Bi}. More generally,

combinatorial auctions [LLN06] form a setting where
multiple items are sold to multiple agents with valuation
functions wi. Again, practical restrictions often require
that the decision about each item needs to be made
immediately, rather than after seeing the entire pool of
items. Hence the online model, which we study in this
paper.

The baseline algorithm in this setting is the greedy
algorithm, due to Fisher, Nemhauser and Wolsey, who
initiated the study of problems involving maximization
of submodular functions [NWF78, FNW78, NW78].
The greedy algorithm simply allocates each incoming
item to the agent who gains from it the most and
is 1/2-competitive whenever the valuation functions of
the agents are monotone submodular [FNW78, LLN06].
This is in fact the most general setting known where
a constant-factor approximation can be achieved even
for the offline welfare maximization problem (using
value queries; more general classes of valuations can
be handled when more powerful queries are available
[Fei06]). Thus the basic question in most variants of this
problem is whether the factor of 1/2 is optimal or can be
improved. For the offline welfare maximization problem
with monotone submodular valuations, a (1 − 1/e)-

mailto:kapralov@stanford.edu
mailto:itp@stanford.edu
mailto:jvondrak@us.ibm.com
mailto:jvondrak@us.ibm.com


approximation has been found [Von08], and this is
optimal [KLMM08].

At the other end of the spectrum is the above-
mentioned bipartite matching problem, which can be
viewed as a welfare maximization problem with valua-
tion functions of the form wi(S) = min{|S ∩ N(i)|, 1}
(a very special case of a submodular function). The
(1 − 1/e)-competitive algorithm of [KVV90] is opti-
mal in the adversarial online setting; several improve-
ments have been obtained in various stochastic set-
tings [GM08, FMMM09, BK10, MOS11, MOZ12]. Fac-
tor (1 − 1/e)-competitive algorithms have been also
found in two adversarial budget-additive settings, the
small-bids case, wi(S) = min{

∑
j∈S bij , Bi} where

bij � Bi [MSVV05], and the single-bids case, wi(S) =
min{

∑
j∈S bij , Bi} where bij ∈ {0, bi} for some bi inde-

pendent of j [AGKM11]. A unifying generalization of
these (1 − 1/e)-competitive algorithms to the budget-
additive setting, wi(S) = min{

∑
j∈S bij , Bi}, has been

conjectured but still remains open. Prior to this work, it
was conceivable that a (1− 1/e)-competitive algorithm
might exist for arbitrary monotone submodular valua-
tions, but the best known online algorithm gave only an
o(1) improvement over 1/2 [DS06].

Our results. We prove that:

• In the online setting with submodular valuations,
the factor of 1/2 cannot be improved unless NP =
RP (even by randomized algorithms against an
oblivious adversary). Hence, the greedy 1/2-
competitive algorithm is optimal up to lower-order
terms. This holds in fact for the special case of
coverage valuations (see Section 2).

• In the online setting with budget-additive valua-
tions, we prove that no (randomized) algorithm
is 0.612-competitive with respect to a natural LP,
which has been used successfully in the special
case of small bids [BJN07]. Thus, a (1 − 1/e)-
competitive algorithm would need to use a different
approach (see Section 3).

• In a stochastic setting with items arriving
i.i.d. from an unknown distribution, the greedy al-
gorithm is (1−1/e)-competitive for valuations with
the property of diminishing returns (a natural ex-
tension of submodularity to multisets which we de-
fine in Section 4.1). This is optimal even for cover-
age valuations and a known (uniform) distribution,
unless NP = RP (see Section 4).

Our techniques. Our hardness result for online
algorithms in the adversarial setting relies on a combi-
nation of two sources of hardness: (1) the inapproxima-
bility of Max k-cover due to Feige [Fei98], and (2) the

lack of information arising from the unknown online or-
dering. A careful combination of these two ingredients
gives an optimal hardness result (1/2+ε) for online algo-
rithms under coverage valuations. Our hardness result
in the i.i.d. stochastic setting also relies on the hard-
ness of Max k-cover. A consequence of our use of the
computational hardness of (offline) Max k-cover is that
our results rely on a complexity-theoretic assumption
(NP = RP ), which is somewhat unusual in the context
of online algorithms.

Our negative result for budget-additive valuations is
based on an integrality-gap example for the natural LP
and does not rely on any complexity-theoretic assump-
tion. This result does not rule out, e.g., a (1 − 1/e)-
competitive algorithm for budget-additive valuations,
but we consider it instructive, considering recent efforts
to develop online algorithms in the primal-dual frame-
work. Our result points to the fact that perhaps the
natural LP is too weak for the general budget-additive
setting, and stronger LPs such as the Configuration LP
should be considered (also, see a discussion in [CG08]).

Finally, our positive result for the greedy algorithm
in the i.i.d. stochastic setting is an extension of a sim-
ilar analysis for budget-additive valuations [DJSW11].
Here, we want to point out the definition of valuation
functions satisfying the property of diminishing returns
(Section 4.1). This is a generalization of submodular-
ity to functions on multisets. We remark that for set
functions, the properties of diminishing returns and sub-
modularity coincide, but this is not the case for func-
tions on multisets. We believe that our generalization
is a natural one, considering the original motivation for
submodularity in the context of combinatorial auctions,
and we wish to highlight this definition for possible fu-
ture work.

In the following, we state our results more formally
and present the proofs.

2 Online allocation with coverage valuations

Welfare maximization. In the welfare maximiza-
tion problem (sometimes also referred to as the “allo-
cation problem” or “combinatorial auctions”), the goal
is to allocate |M | = m items to n agents with valua-
tion functions wi : 2M → R+ in a way that maximizes∑n
i=1 wi(Si), where Si is the set of items allocated to

agent i (satisfying Si ∩ Sj = ∅ for i 6= j).
Online welfare maximization. In the online ver-

sion of the problem, items arrive one by one and we have
to allocate each item when it arrives, knowing only the
agents’ valuations on the items that have arrived so far.
An algorithm is c-competitive if, for any ordering of the
incoming items, it achieves at least a c-fraction of the



(offline) optimal welfare. A randomized algorithm is c-
competitive against an oblivious adversary if, for any
ordering of the incoming items (fixed before running
the algorithm), it achieves at least a c-fraction of the
optimal welfare in expectation.

Coverage valuations. A valuation function w :
2M → R+ is called a coverage valuation if there is a set
system {Aj : j ∈ M} such that w(S) = |

⋃
j∈S Aj | for

all S ⊆M .
Submodular valuations. A valuation function

w : 2M → R+ is called submodular if w(S ∪ T ) +w(S ∩
T ) ≤ w(S)+w(T ). It is called monotone if w(S) ≤ w(T )
whenever S ⊆ T .

Succinct representation and oracles. For
complexity-theoretic considerations, it is important how
the valuation functions are presented on the input. In
this paper, we assume that coverage valuations are pre-
sented explicitly, by a succinct representation of size
polynomial in |M |. Submodular valuations are pre-
sented by means of a value oracle, which can answer
queries in the form “What is the value of wi(S)?”

Our main result for online welfare maximization is
as follows.

Theorem 2.1. Unless NP = RP , there is no (1/2+δ)-
competitive polynomial-time algorithm (even random-
ized, against an oblivious adversary) for the online wel-
fare maximization problem with coverage valuations and
constant δ > 0.

Our main tool is Feige’s hardness reduction, which
proves the optimality of (1 − 1/e)-approximation for
Max k-cover [Fei98]. We also require some additional
properties of this reduction, which have been described
in [FT04, FV10]. We summarize the properties that we
need as follows:

Hardness of Max k-cover. For any fixed c0 > 0
and ε > 0, it is NP-hard to distinguish between the
following two cases for a given collection of sets S ⊂ 2U ,
partitioned into groups S1, . . . ,Sk:

1. YES case: There are k disjoint sets, 1 from each
group Si, whose union is the universe U .

2. NO case: For any choice of ` ≤ c0k sets, their
union covers at most a (1− (1− 1/k)` + ε)-fraction
of the elements of U .

This holds even for set systems with the following
properties:

• every set has the same (constant) size s; and

• each group contains the same (constant) number of
sets n.

As we show in Section 2.1, this reduction also gives
hard instances for welfare maximization with coverage
valuations, proving that any (offline) (1 − 1/e + δ)-
approximation would imply P = NP . In Section 2.2,
we prove our result, Theorem 2.1.

Our approach. We produce instances of online
welfare maximization by taking multiple copies of a
hard instance I for offline welfare maximization and
repeating them with certain (random) agents gradually
dropping out of the system. We prove that an online
algorithm faces two obstacles: it cannot solve the offline
instance I optimally (in fact it already loses a factor
of 1 − 1/e there), and in addition it does not know in
advance which agents will drop out at what time. A
careful analysis of these two obstacles in combination
gives the optimal hardness of (1/2 + δ)-approximation
for online algorithms.

2.1 Warm-up: hardness of offline welfare max-
imization First, we show how Feige’s reduction im-
plies the hardness (1− 1/e+ δ)-approximation for wel-
fare maximization with coverage valuations. This was
previously proved by a more involved technique in
[KLMM08]. The result of [KLMM08] has the additional
property that it holds even when all agents have the
same coverage valuation; in our reduction the valuations
are different.

Reduction. Consider a set system that forms a
hard instance of Max k-cover as described above. We
produce an instance of welfare maximization with n
agents and m = kn items (where n is the number of
sets in each group, and k is the number of groups).
Each agent will have a valuation associated with this
set system. However, the way items are associated
with sets will be different for each agent. Let the kn
items be described by pairs (j1, j2) ∈ [k] × [n], and let
the sets in the set system be denoted by Aj1,j2 where
(j1, j2) ∈ [k]× [n]. Then, the item (j1, j2) for agent i is
associated with the set Aj1,j2+i (mod n). In other words,
the value of a set of items S for agent i is

wi(S) =
∣∣∣ ⋃

(j1,j2)∈S

Aj1,(j2+i mod n)

∣∣∣.
Now consider the two cases:

• YES case: There are k sets, one from each group,
covering the universe. Denote these sets by Aj,π(j)

for some function π : [k] → [n]. Then, there is an
allocation where agent i receives the set of items
Si = {(j, π(j) − i mod n) : j ∈ [k]}. Note that
these sets of items are disjoint, due to the cyclic
shift depending on i. Also, each agent is perfectly
satisfied, since the union of the sets associated with



her items is
⋃
j∈[k]Aj,π(j) = U . Hence wi(Si) = |U |

for all i.

• NO case: For each choice of ` ≤ c0k sets, they
cover at most a (1− (1− 1/k)` + ε)-fraction of the
universe. (We choose c0 to be a large constant.) In
other words, any agent who receives ` ≤ c0k sets
gets value at most wi(Si) ≤ (1− (1− 1/k)` + ε)|U |.
Here, it does not matter who receives which items,
as we have a bound depending solely on the number
of items received. Since this bound is a concave
function, the best possible welfare is achieved when
each agent receives exactly k items, and this yields
welfare (1−(1−1/k)k+ε)|U | per agent. By choosing
k arbitrarily large and ε > 0 arbitrarily small, we
obtain welfare arbitrarily close to (1− 1/e)|U | per
agent.

In the following, we will use this hard instance of
welfare maximization with coverage valuation as a black
box.

2.2 Hardness of online welfare maximization
Here we prove Theorem 2.1. We produce a reduction
from Max k-cover to online welfare maximization as
follows.

The hard online instances. Let I be an instance
of welfare maximization with coverage valuations, ob-
tained from a hard instance of Max k-cover (as in Sec-
tion 2.1), with n agents and m = kn items. For a pa-
rameter t ≥ 1, we produce the following instance I(t)

of online welfare maximization, with tn agents and tm
items, proceeding in t stages:

• In the first stage, we have t copies of each agent
of the instance I, with exactly the same valuation
function. The valuation function for each agent is
determined by the set system of I. The m items of
instance I arrive in an arbitrary order.

• After each stage, one copy of each agent is effec-
tively “deactivated”, in the sense that all subse-
quent items have zero value for her. The copy of
each agent that disappears is chosen by an adver-
sary.

• In stage t′ ∈ {1, . . . , t}, we have (t− t′+1)n “active
agents” remaining, who are still interested in the
remaining items. In each stage, m items of the
original instance arrive in an arbitrary order, but
now they are valuable only for the remaining active
agents. For these agents, the items are effectively
copies of the items that arrived in previous stages,
and they are represented by the same sets.

These instances were inspired by the 1− 1/e lower
bound for online matching [KVV90]. Essentially, we
take an instance of bipartite matching that is hard
for online algorithms and expand each incoming vertex
into an entire instance of welfare maximization with
coverage valuations, to impose the additional difficulty
of approximating an APX-hard problem at each stage.

We analyze this instance in a series of claims.

Claim 2.2. The offline optimum in the YES case is
tn|U |.

Proof. The offline optimum allocates all items in stage j
to those agents who will be deactivated at the end of this
stage. Since these are n agents whose valuations of the
items of this stage correspond exactly to the instance
I, in the YES case they can obtain optimal value n|U |
(since every agent can cover the universe U). Adding
up over all stages, the total value collected by all agents
is tn|U |.

Claim 2.3. Let the adversary choose a copy of each
agent to be deactivated after each stage independently
and uniformly at random from the remaining active
copies. Then the expected total number of items allo-
cated to the agents deactivated at the end of stage j is
at most m ln t

t−j .

Proof. Let Aj denote the agents deactivated right after
stage j; Aj contains exactly 1 copy of each agent.
Consider i ≤ j and condition on the set of agents active
in stage i. The choice of which agents will appear in
Aj will be made after stage j, independently of what
the algorithm does in stage i. Since the choice of
Aj is uniform in each stage j, each of the t − i + 1
copies of a given agent active in stage i has the same
probability ( 1

t−i+1 ) of appearing in Aj . The number of
items allocated in each stage is m, hence the expected
number of items allocated to Aj in stage i is m

t−i+1 . By
linearity of expectation, the number of items allocated
to Aj between stages 1 and j is

j∑
i=1

m

t− i+ 1
≤
∫ j

0

m

t− x
dx = m ln

t

t− j
.

Claim 2.4. For every ε′ > 0, there are ε, c0 > 0 and a
constant lower bound on k (parameters of the Max k-
cover reduction) such that for every j ≤ (1 − ε′)t, the
expected value collected in the NO case by the agents
deactivated at the end of stage j is at most (j/t+ε′)n|U |.

Proof. Denote again by Aj the agents deactivated at
the end of stage j. By Claim 2.3, the expected number



of items allocated to Aj is at most m ln t
t−j . Let µ

denote the expected number of items allocated per agent
in Aj : we get µ ≤ m

n ln t
t−j = k ln t

t−j . Assuming

that j ≤ (1 − ε′)t, we have µ ≤ k ln 1
ε′ . Let us set

c0 = 1 + ln 1
ε′ , and let us denote by ν(`) the largest

value that an agent can possibly obtain from ` items.
By properties of the NO case, we know that for ` ≤ c0k,
we have ν(`) ≤ (1− (1− 1/k)` + ε)|U |. For ε = 1

2ε
′ and

k lower-bounded by some sufficiently large constant, we
can replace this bound by ν(`) ≤ (1− e−`/k + ε′)|U |.

A technical point here is that this bound holds
only for ` ≤ c0k, while the actual number of allocated
items is random and could be much larger. However,
we can deal with this issue as follows. Let us define
φ(x) = (1 − e−x/k + ε′)|U |. The derivative of φ at µ is
φ′(µ) = 1

ke
−µ/k|U |. Therefore, since the function φ(x)

is concave, we have φ(x) ≤ φ(µ) + φ′(µ)(x − µ), for
` ∈ [0, c0k]. Thus we obtain a (weaker) linear bound:

ν(`) ≤ φ(µ) + φ′(µ)(`− µ)

= (1− e−µ/k + ε′ +
1

k
e−µ/k(`− µ))|U |.

Furthermore, we always have the trivial bound ν(`) ≤
|U |, for any `. This bound is anyway stronger than the
one above for ` ≥ c0k, because we have c0k ≥ µ + k.
Therefore, we obtain the following bound for all ` ≥ 0:

ν(`) ≤ min{|U |, (1− e−µ/k + ε′ +
1

k
e−µ/k(`− µ))|U |},

and this (piecewise linear) bound is still concave. Since
the expected number of items per player is E[`] = µ,
the worst case is that each agent in Aj indeed receives
µ items (deterministically), and her value is ν(µ) ≤
(1 − e−µ/k + ε′)|U |. Using our bound µ ≤ k ln t

t−j , we
obtain that the expected value collected per agent in Aj
is at most (1− t−j

t + ε′)|U | = ( jt + ε′)|U |.

Proof. [Theorem 2.1] Let us assume now that there
is a ( 1

2 + δ)-competitive algorithm for online welfare
maximization with coverage valuations. We set ε′ = δ/4
and the parameters c0, ε accordingly to this value of ε′

(see Claim 2.4). Given an instance I of Max k-cover, we
can also assume that k is sufficiently large as required by
Claim 2.4; otherwise all parameters of the Max k-cover
instance are constant, and we can solve it by exhaustive
search. If k is sufficiently large, we run the presumed
online algorithm on the random instance I(t) that we
constructed above.

In the NO case, denote by Vj the expected value
collected by agents deactivated after stage j. By
Claim 2.4, we have Vj ≤ ( jt + ε′)n|U | for j ≤ (1 − ε′)t.
The value collected by the agents deactivated in each of
the last ε′t stages is Vj ≤ n|U |, because every agent

can possibly get value at most |U |. Adding up the
values of agents over all stages, we obtain that the online
algorithm returns a solution of expected value

t∑
j=1

Vj ≤
(1−ε′)t∑
j=1

(
j

t
+ ε′

)
n|U |+ ε′tn|U |

≤ t

2
n|U |+ 2ε′tn|U | =

(
1

2
+ 2ε′

)
tn|U |.

In contrast, the offline optimum in the YES case is
tn|U | (by Claim 2.2) and hence the ( 1

2 + δ)-competitive
algorithm must return expected value at least ( 1

2 +
δ)tn|U | = ( 1

2 +4ε′)tn|U |, a constant fraction better than
the NO case. Since the possible values returned by the
algorithm are in the range [0, tn|U |], we can distinguish
the two cases with constant two-sided error.

In fact, we can make the error one-sided as follows.
If some agent receives ` ≤ c0k items (c0 as in the proof
of Claim 2.4) whose value is more than (1− (1−1/k)`+
ε)|U |, we answer YES, otherwise we answer NO. Note
that by the proof of Claim 2.4, in the YES case, we will
answer YES with probability Ω(1), because otherwise
the solution is almost always bounded by the same
analysis as in the NO case, and the expected value of
the solution would be less than ( 1

2 + 4ε′)tn|U |, which
cannot be the case. In the NO case, we always answer
NO, because there are no ` ≤ c0k items of value more
than (1− (1−1/k)`+ ε)|U |. Thus we can solve the Max
k-cover decision problem with constant one-sided error,
which implies NP = RP .

3 Online budget-additive allocation

In this section we prove that no online algorithm can
obtain a better than 0.612 approximation with respect
to the standard LP in the budget-additive case. We now
define the budgeted allocation problem[CG08].

Definition 3.1. Let Q be a set of m indivisible items
and A a set of n agents, respectively, where agent a
is willing to pay bai for item i. Each agent a has
a budget constraint Ba, and on receiving a set S ⊆
Q of items pays min{Ba,

∑
i∈S bai}. An allocation

Γ : A → 2Q is a partitioning of the items Q into
disjoint subsets Γ(1), . . . ,Γ(n). The maximum budgeted
allocation problem, or simply MBA, is to find the
allocation which maximizes the total revenue, that is∑
a∈A min

{
Ba,

∑
i∈Γ(a) bai

}
.

Note that one can assume without loss of generality that
bai ≤ Ba, ∀a ∈ A, i ∈ Q. Indeed, if bids are larger
than budget, decreasing them to the budget does not
change the value of any allocation. We now introduce
the standard LP relaxation of the maximum budgeted



allocation problem [CG08]:

max
∑

a∈A,i∈Q
baixai :

∀a ∈ A,
∑
i∈Q

baixai ≤ Ba;

∀i ∈ Q,
∑
a∈A

xai ≤ 1;

∀a ∈ A, i ∈ Q, xai ≥ 0.

(3.1)

It was shown in [CG08] that the integrality gap of
LP (3.1) is exactly 3/4. We now show that no online
algorithm can obtain value better than a factor 0.612
of this LP. Thus, if a (1 − 1/e)-competitive algorithm
exists, it has to use other techniques, perhaps a stronger
LP relaxation.

Our basic building block will be an instance with
agents A = {a1, a2} with budgets Ba1 = Ba2 = 3 and
items I = {i1, i2, i3} such that baj ,ik = 2 for all j = 1, 2
and k = 1, 2, 3. Note that the value of the standard LP
on this instance is 6, while the maximum allocation is
5 since an agent that gets two items can only pay 1 for
the second item that is allocated to him.

We now use the small instance that we just de-
scribed to construct an online instance similarly to Sec-
tion 2. Denote the set of agents in the system by A.
We will have |A| = 2t and Ba = 3 for all a ∈ A. Items
will arrive in t stages. It will be convenient to use a
partition A =

⋃t
s=1A

(s) of A into disjoint sets of size 2.
The agents will gradually drop out of the system, i.e.,
agents who drop out at time j will not be interested in
items that arrive after j. As before, for each j = 1, . . . , t
we refer to the set of agents that did not drop out be-
fore time j as active at time j, and refer to the other
sets of agents as deactivated at time j. Initially all sets
A(s), s = 1, . . . , t are active. After each stage, A(s) for
s uniformly random among the remaining active sets is
deactivated. We denote the set deactivated after stage
j by Aj .

In each stage j = 1, . . . , t a set of items Ij arrives,
where |Ij | = 3 and bai = 2 for all a ∈ A that are active
in stage j. Note that the value of the standard LP for
our instance is 3t: for each j = 1, . . . , t allocate 2/3 of
each item in Ij to each agent in the set Aj .

We now upper bound the value of any allocation
that an online algorithm can obtain. Let

(3.2) g(x) =

 2x, if x ≤ 1
x+ 1 if 1 ≤ x ≤ 2

3 o.w.

We first prove:

Claim 3.2. Let a ∈ A denote an agent and let X
denote the (random) number of items allocated to a.
Then the expected value obtained by a for these items is
upper bounded by g(E[X]), where g(·) is given by (3.2).

Proof. This follows from concavity of

min
{
Ba,

∑
i∈Γ(a) bai

}
. Let x = E[X]. Then if

x < 1, the maximum is achieved if exactly one item
is allocated to a with probability x, yielding value 2x.
If 1 ≤ x ≤ 2, then the maximum is achieved if 1 item
is always allocated to a at the price of 2, and then a
second item is allocated with probability x at the price
of 1, yielding value 2 + (x − 1) = x + 1. Otherwise if
x ≥ 2, the payoff cannot be larger than the budget of
a, i.e. 3.

We can now prove:

Theorem 3.3. No online (randomized) algorithm for
the budgeted allocation problem can achieve (in expecta-
tion) more than a 0.612-fraction of the optimal value of
the linear program (3.1).

Proof. We first upper bound the expected number of
items allocated to agents Aj (recall that Aj is the set of
agents deactivated after stage j). Let X1

j , X
2
j denote the

(random) number of items allocated to the two agents in
Aj . By the same argument as in the proof of Claim 2.3,
which we do not repeat here, we have that each agent
that is active at time i = 1, . . . , j appears in Aj with
probability 1

t−i+1 . Since three items arrive in each stage,
we have

E[X1
j +X2

j ] ≤
j∑
i=1

3

t− i+ 1
≤ 3

∫ j

0

1

t− x
dx

= 3 ln

(
t

t− j

)
.

Now by Claim 3.2 together with convexity of the
function g(·) we get that the value obtained by the
online algorithm is upper bounded by

t∑
j=1

[
g(E[X1

j ]) + g(E[X2
j ])
]
≤

t∑
j=1

2g

(
3

2
ln

(
t

t− j

))

≤ t
∫ 1

0

2g

(
3

2
ln

(
1

1− x

))
dx.

(3.3)

We now split the interval [0, 1] as [0, 1] = [0, x1] ∪
[x1, x2] ∪ [x2, 1], where 3

2 ln
(

1
1−x1

)
= 1 and

3
2 ln

(
1

1−x2

)
= 2, i.e., x1 = 1− e−2/3 and x2 = 1− e4/3.



We get by (3.2) that the RHS of (3.3) is equal to

t

∫ 1−e−2/3

0

3 ln

(
1

1− x

)
dx

+ t

∫ 1−e−4/3

1−e−2/3

[
3

2
ln

(
1

1− x

)
+ 1

]
dx+ 3t · e−4/3

< 0.612 · 3t.

Recalling that the value of the standard LP on our
instance is 3t completes the proof.

4 Stochastic allocation in the i.i.d. model

The i.i.d. stochastic model. Here we consider a
model where items arrive from some (possibly known
or unknown) distribution D over a fixed collection of
items M . In each step, an item is drawn independently
at random from D and we must allocate it irrevocably
to an agent. The total number of items can be either
known or unknown.

In this model, we compare to the expected offline
optimum, OPT = E[OPT (M)] where M is the random
multiset of items that appear on the input. We say
that an algorithm is c-competitive if it achieves at least
c · OPT in expectation over the random inputs (and
possibly its own randomness).

4.1 Diminishing returns on multisets In this sec-
tion, we would like to consider the class of submodular
valuations and its extension to multisets. Submodular
valuations on {0, 1}m express the property of dimin-
ishing returns, and this has indeed been the primary
motivation for their modeling power as valuation func-
tions. However, considering the stochastic setting with
i.i.d. samples, we should clarify how we deal with pos-
sible multiple copies of an item. In other words, we
need to consider valuation functions f : Zm+ → R. An
extension of submodularity to the Zm+ lattice that has
been used in the literature is the following condition:
f(x∨y)+f(x∧y) ≤ f(x)+f(y), where ∨ and ∧ are the
coordinate-wise max/min operations. Unfortunately,
this condition does not quite capture the property of di-
minishing returns as it does in the case of {0, 1}m: note
that in particular it does not impose any restrictions
on f(x) if the domain is 1-dimensional, x ∈ Z+. Con-
sidering the property of diminishing returns, we would
like the condition to imply that f is concave in this 1-
dimensional setting. Therefore, we define the following
property.

Definition 4.1. A function f : Zm+ → R has the
property of diminishing returns, if for any x ≤ y
(coordinate-wise) and any unit basis vector ei =

(0, . . . , 0, 1, 0, . . . , 0), i ∈ [m],

f(x+ ei)− f(x) ≥ f(y + ei)− f(y).

Note that when restricted to {0, 1}m, this prop-
erty is equivalent to submodularity. Also, note that
a simple way to extend a monotone submodular func-
tion f : {0, 1}m → R to f̃ : Zm+ → R, by declaring
that additional copies of any item bring zero marginal
value (i.e. f̃(x) = f(x∧ 1)), satisfies the property of di-
minishing returns. In particular, coverage valuations on
multisets interpreted in a natural way (multiple copies
of the same set do not cover any new elements), have
the property of diminishing returns. In some sense, we
believe that this is the “right extension” of submodu-
larity to multisets, at least for applications related to
combinatorial auctions and welfare maximization.

We also consider the following natural notion of
monotonicity.

Definition 4.2. A function f : Zm+ → R is monotone,
if f(x) ≤ f(y) whenever x ≤ y.

4.2 Our results We prove that in the i.i.d. stochastic
model with valuations satisfying the property of dimin-
ishing returns, the best one can achieve is a (1 − 1/e)-
competitive algorithm. In fact, the factor of 1 − 1/e
is achieved by the same greedy algorithm that gives
a 1/2-approximation in the adversarial online model
[FNW78, LLN06].

Greedy algorithm: Suppose the multisets as-
signed to the n agents before item j arrives are
(T1, . . . , Tn). Then assign item j to the agent who max-
imizes wi(Ti + j)− wi(Ti).

We remark that this algorithm obviously does not
need to know the distribution or the number of items in
advance.

Theorem 4.3. The greedy algorithm is (1 − 1/e)-
competitive for welfare maximization with valuations
satisfying the property of diminishing returns in the
stochastic i.i.d. model.

Theorem 4.4. Unless NP = RP , there is no (1 −
1/e+ δ)-competitive polynomial-time algorithm for wel-
fare maximization with coverage valuations in the
i.i.d. stochastic model, for fixed δ > 0.

Since coverage valuations satisfy the property of di-
minishing returns, we conclude that 1 − 1/e is the op-
timal factor in the stochastic i.i.d. model for coverage
valuations as well as any valuations satisfying diminish-
ing returns.



4.3 Analysis of the greedy algorithm for
stochastic input Here we prove Theorem 4.3. Our
proof is a relatively straightforward extension of the
analysis of [DJSW11] in the budget-additive case. First,
we need a bound on the expected optimum.

Lemma 4.1. The expected optimum in the stochastic
model where m items arrive independently, item j with
probability pj, is bounded by

LP = max
∑
i,S

xi,Swi(S) :

∀j;
∑
i,S

xi,Scj(S) ≤ pjm;

∀i;
∑
S

xi,S = 1;

∀i, S;xi,S ≥ 0

where wi is the valuation of agent i, S runs over all
multisets of at most m items, and cj(S) ≥ 0 denotes
the number of copies of j contained in S.

Proof. Consider the optimal (offline) solution OPT (M)
for each realization of the random multisetM of arriving
items. Let xi,S denote the probability that the multiset
allocated to agent i in the optimal solution is S. Then
the expected value of the optimum is E[OPT (M)] =∑
i,S xi,Swi(S). Also, each multiset S contains cj(S)

copies of item j, so the expected number of allocated
copies of item j is

∑
i,S xi,Scj(S). On the other hand,

this cannot be more than the expected number of copies
of j in M , which is E[cj(M)] = pjm. Therefore, xi,S is
a feasible solution of value OPT = E[OPT (M)].

Lemma 4.2. Assume that wi are monotone valuations
with the property of diminishing returns. Condition on
the partial allocation at some point being (T1, . . . , Tn).
Then the expected gain from allocating the next random
item is at least 1

m (LP −
∑
i wi(Ti)).

Proof. Let xi,S be any feasible LP solution and let
yij =

∑
S xi,Scj(S). Recall that cj(S) denotes the

number of copies of j contained in S. Note that by
the LP constraints,

∑
i yij ≤ pjm. We use the notation

Ti + S to denote the union of multisets (adding up
the multiplicities of each item). By the property of
diminishing returns, we have

wi(Ti + S)− wi(Ti) ≤
∑
j

cj(S)(wi(Ti + j)− wi(Ti)).

Adding up these inequalities multiplied by xi,S ≥ 0, we

get ∑
i,S

xi,S(wi(Ti + S)− wi(Ti))

≤
∑
i,j,S

xi,Scj(S)(wi(Ti + j)− wi(Ti))

=
∑
i,j

yij(wi(Ti + j)− wi(Ti)).

Since
∑
S xi,S = 1 by the LP constraints, and wi(Ti +

S) ≥ wi(S) by monotonicity, we obtain
(4.4)∑
i,S

xi,Swi(S)−
∑
i

wi(Ti) ≤
∑
i,j

yij(wi(Ti+j)−wi(Ti)).

Now consider a hypothetical allocation rule (depending
on the fractional solution): If the incoming item is j,
we allocate it to agent i with probability

yij
pjm

. (By the

LP constraints, these probabilities for a fixed j add up
to at most 1.) Since item j appears with probability
pj , overall we allocate item j to agent i with probability
yij
m . By (4.4), the expected gain of this randomized

allocation rule is

E[random gain] =
∑
i,j

yij
m

(wi(Ti + j)− wi(Ti))

≥ 1

m

∑
i,S

xi,Swi(S)−
∑
i

wi(Ti)

 .

However, the greedy allocation rule gives each item to
the agent maximizing her gain. Therefore, the greedy
rule gains at least as much as the randomized allocation
rule, for any feasible solution xi,S . This implies

E[greedy gain] ≥ max E[random gain]

≥ 1

m

(
LP −

∑
i

wi(Ti)

)
.

Now we can prove Theorem 4.3.

Proof. [Proof of Theorem 4.3] Denote the alloca-

tion obtained after allocating t items (T
(t)
1 , . . . , T

(t)
n ).

Lemma 4.2 states that conditioned on (T
(t)
1 , . . . , T

(t)
n ),

the expected value after allocating 1 random item will
be

E
[∑

i

wi(T
(t+1)
i ) | T (t)

1 , . . . , T (t)
n

]
≥
∑
i

wi(T
(t)
i ) +

1

m

(
LP −

∑
i

wi(T
(t)
i )

)
.



Taking an expectation over the partial allocation

(T
(t)
1 , . . . , T

(t)
n ), we obtain

E
[∑

i

wi(T
(t+1)
i )

]
≥ E

[∑
i

wi(T
(t)
i )
]

+
1

m
E
[
LP −

∑
i

wi(T
(t)
i )
]
.

Let us denote W (t) = E[
∑
i wi(T

(t)
i )]. The last inequal-

ity states W (t+ 1) ≥W (t) + 1
m (LP −W (t)), or equiv-

alently LP − W (t + 1) ≤ (1 − 1
m )(LP − W (t)). By

induction, we obtain

LP −W (t) ≤
(

1− 1

m

)t
(LP −W (0)) ≤ e−t/mLP.

The expected value of the solution found by the greedy

algorithm after m items is W (m) = E[
∑
i wi(T

(m)
i )]; we

conclude that W (m) ≥ (1− 1/e)LP ≥ (1− 1/e)OPT .

4.4 Optimality of 1 − 1/e in the stochastic
i.i.d. model Here we prove Theorem 4.4. We prove
essentially that the stochastic online problem cannot be
easier than the offline problem. However, the reduction
is not quite black-box and we need some properties of
the hard coverage instances that we discussed in Sec-
tion 2.

Proof. Recall the instance I of welfare maximization
with coverage valuations (Section 2), for which it is
NP-hard to achieve approximation better than 1− 1/e.
We transform it into an instance I [t] in the stochastic
i.i.d. model as follows. We pick a parameter t = poly(m)
and produce t identical copies of each agent in I. If
the number of items in I is m, we let tm i.i.d. items
arrive from the uniform distribution on the m items
of I. By Chernoff bounds, with high probability the
number of copies of each item on the input will be
t±O(

√
t logm) = t±O(

√
t log t).

Consider the YES case. The items of I can
be allocated so that each of the n agents covers the
universe. Since we have at least t − O(

√
t log t) =

(1−o(1))t copies of each item with high probability, they
can be allocated to (1 − o(1))tn agents of the instance
I [t] so that these agents get full value |U |. Thus the
expected offline optimum is at least (1− o(1))tn|U |.

On the other hand, in the NO case, any agent
in I who gets ` ≤ c0m/n items has value at most
(1− (1−n/m)`+ ε)|U |. Since the total number of items
on the input of I [t] is tm and the number of agents is
tn, an agent can only get m/n items on average. As
the bound on the value as a function of the number of

items is concave (and we can deal with the fact that
this bound works only up to ` ≤ c0m/n, similarly to
Section 2), the optimum value is achieved if each agent
receives m/n items. Then the total value collected
is (1 − (1 − n/m)m/n + ε)tn|U |, which can be made
arbitrarily close to (1− 1/e)tn|U |. Note that this holds
with probability 1, irrespective of the randomness on
the input.

If we had a (1 − 1/e + δ)-competitive algorithm in
the stochastic i.i.d. model, we could distinguish these
two cases with constant one-sided error, which would
imply NP = RP .
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