Query and Computational Complexity of Combinatorial Auctions

Jan Vondrák

IBM Almaden Research Center
San Jose, CA

Algorithmic Frontiers, EPFL, June 2012
Vickrey (2nd price) auction

Suppose we are selling 1 item in an auction:

- Assume agent i’s true valuation of the item is v_i.
- We ask the agents to submit their bids v'_i and announce that the highest bidder will get the item at the 2nd highest price.
Suppose we are selling 1 item in an auction:

- Assume agent i’s true valuation of the item is v_i.
- We ask the agents to submit their bids v'_i and announce that the highest bidder will get the item at the 2nd highest price.

This satisfies 3 properties:

1. A rational agent knows that the best strategy is to submit $v'_i = v_i$
2. Computing the outcome is easy
3. The item goes to the agent who benefits the most
Auctions with multiple items

Meta-question:

Is there such a mechanism for auctions with multiple (related) items?
Auctions with multiple items

Meta-question:
Is there such a mechanism for auctions with multiple (related) items?

Examples:

- **Google AdWords:**
 agents = potential advertisers
 items = ads associated with search keywords.

- **FCC spectrum auctions:**
 agents = wireless communication companies
 items = licences to use certain frequencies in certain areas.
Problem: \(|M| = m\) items are to be sold to \(n\) agents with (monotone) valuations \(v_i : 2^M \to \mathbb{R}_+\).
Combinatorial auctions [Lehman, Lehman, Nisan ’01]

Problem: $|M| = m$ items are to be sold to n agents with (monotone) valuations $v_i : 2^M \to \mathbb{R}_+$.

How do we sell the items, so that

1. Agents are incentivized to reveal their true valuations
2. The mechanism is computationally efficient
3. The "social welfare" $\sum_{i=1}^n v_i(S_i)$ is close to optimal
Truthful mechanisms

What is a mechanism for combinatorial auctions?

- Agents submit their valuation functions $v_i : 2^M \rightarrow \mathbb{R}_+$
 (succinct description / oracle)
- Mechanism computes a (possibly random) allocation (A_1, \ldots, A_n)
 and payments (p_1, \ldots, p_n)
- Agent i pays p_i and receives set A_i.

Definition

A mechanism is universally truthful, if for every agent i, his true valuation v_i, reported valuation v_i' and others' reported valuations $v_i' - i$, with probability 1,
$$v_i(A_i(v_i, v_i' - i)) - p_i(v_i, v_i' - i) \geq v_i(A_i(v_i' - i, v_i' - i)) - p_i(v_i' - i, v_i' - i).$$

A mechanism is truthful in expectation, if
$$E[v_i(A_i(v_i, v_i' - i)) - p_i(v_i, v_i' - i)] \geq E[v_i(A_i(v_i' - i, v_i' - i)) - p_i(v_i' - i, v_i' - i)].$$
What is a mechanism for combinatorial auctions?

- Agents submit their valuation functions $v_i : 2^M \to \mathbb{R}_+$ (succinct description / oracle)
- Mechanism computes a (possibly random) allocation (A_1, \ldots, A_n) and payments (p_1, \ldots, p_n)
- Agent i pays p_i and receives set A_i.

Definition

A mechanism is *universally truthful*, if for every agent i, his true valuation v_i, reported valuation v'_i and others’ reported valuations v'_{-i}, with probability 1,

$$v_i(A_i(v_i, v'_{-i})) - p_i(v_i, v'_{-i}) \geq v_i(A_i(v'_i, v'_{-i})) - p_i(v'_i, v'_{-i}).$$

A mechanism is *truthful in expectation*, if

$$\mathbb{E}[v_i(A_i(v_i, v'_{-i})) - p_i(v_i, v'_{-i})] \geq \mathbb{E}[v_i(A_i(v'_i, v'_{-i})) - p_i(v'_i, v'_{-i})].$$
The Vickrey-Clarke-Groves mechanism:
Given reported valuations v_i, find an allocation (A_1, \ldots, A_n) maximizing the social welfare, $\sum_{i=1}^{n} v_i(A_i)$, and charge prices p_i that reflect the "damage" that agent i inflicts on the other agents by participating.

Theorem (VCG ’73)
The VCG mechanism is truthful.
VCG mechanism

The Vickrey-Clarke-Groves mechanism:
Given reported valuations v_i, find an allocation (A_1, \ldots, A_n) maximizing the \textit{social welfare}, $\sum_{i=1}^n v_i(A_i)$, and charge prices p_i that reflect the "damage" that agent i inflicts on the other agents by participating.

Theorem (VCG '73)

The VCG mechanism is truthful.

Is the problem solved?

1. it is truthful
2. it optimizes the social welfare $\sum_{i=1}^n v_i(A_i)$
3. it is computationally efficient - NO!

Social welfare optimization is NP-hard in most non-trivial settings...
Let’s relax our requirements: we want
1. a truthful mechanism (maybe in expectation)
2. computationally efficient
3. optimizing $\sum_{i=1}^{n} v_i(A_i)$ approximately, for some class of valuations
Let’s relax our requirements: we want

1. a truthful mechanism (maybe in expectation)
2. computationally efficient
3. optimizing $\sum_{i=1}^{n} v_i(A_i)$ \textit{approximately}, for some class of valuations

\textit{Without truthfulness}, such approximation algorithms are known:

- $3/4$ for budget-additive valuations [Chakrabarty, Goel ’08]
- $1 - 1/e$ for coverage valuations [Dobzinski, Schapira ’07]
- $1 - 1/e$ for submodular valuations [V. ’08]

(For general valuations, the problem is inapproximable within $m^{\epsilon^{-1/2}}$.)
Submodular functions

Submodularity = property of *diminishing returns.*

Let the *marginal value* of element j be $f_S(j) = f(S + j) - f(S)$.

Definition: f is submodular, if j cannot add more value to T than S.

\[f_S(j) \geq f_T(j) \]
Submodular functions

Submodularity = property of *diminishing returns*.

Let the *marginal value* of element j be $f_S(j) = f(S + j) - f(S)$.

Definition: f is submodular, if j cannot add more value to T than S.

$$f_S(j) \geq f_T(j)$$

Representation: in general by an *oracle* (e.g. value oracle: $f(S) = ?$), some subclasses can be succinctly represented (poly-size encoding $e(f) +$ efficient procedure to evaluate $f(S)$, given $(e(f), S)$).
Coverage functions:

Given $C_1, \ldots, C_m \subseteq \mathcal{U}$,

$$f(S) = \left| \bigcup_{j \in S} C_j \right|.$$
Subclasses of submodular functions

Coverage functions:
Given $C_1, \ldots, C_m \subset \mathcal{U}$,

\[f(S) = |\bigcup_{j \in S} C_j| \].

Budget-additive functions:

\[f(S) = \min\{ \sum_{j \in S} a_j, B \} \]
Greedy algorithm: allocate each item to an agent of maximum marginal value $\Rightarrow \frac{1}{2}$-approximation [Fisher,Nemhauser,Wolsey '78]
How to optimize social welfare? (without truthfulness)

Greedy algorithm: allocate each item to an agent of maximum marginal value $\Rightarrow \frac{1}{2}$-approximation [Fisher, Nemhauser, Wolsey ’78]

Continuous greedy algorithm: allocate items greedily in a fractional fashion, with respect to the multilinear extension $F : [0, 1]^{m \times n} \rightarrow \mathbb{R}$:

- $F(x) = \sum_{i=1}^{n} \mathbb{E}[v_i(\hat{x}_i)]$, where \hat{x}_i is obtained by rounding each x_{ij} randomly to 0/1 with probabilities x_{ij}.

constrained by the assignment polytope:

- $P = \{x \in [0, 1]^{m \times n} : \forall j; \sum_i x_{ij} \leq 1\}$.

$\Rightarrow (1 - 1/e)$-approximation [V. ’08], optimal unless $P = NP$ [Khot, Lipton, Markakis, Mehta ’05]

Jan Vondrák (IBM Almaden)
How to optimize social welfare? (without truthfulness)

Greedy algorithm: allocate each item to an agent of maximum marginal value ⇒ $\frac{1}{2}$-approximation [Fisher,Nemhauser,Wolsey ’78]

Continuous greedy algorithm: allocate items greedily in a fractional fashion, with respect to the multilinear extension $F : [0, 1]^{m \times n} \to \mathbb{R}$:

- $F(x) = \sum_{i=1}^{n} \mathbb{E}[v_i(\hat{x}_i)]$, where \hat{x}_i is obtained by rounding each x_{ij} randomly to 0/1 with probabilities x_{ij}.

constrained by the assignment polytope:

- $P = \{x \in [0, 1]^{m \times n} : \forall j; \sum_i x_{ij} \leq 1\}$.

⇒ $(1 - 1/e)$-approximation [V. ’08],

optimal unless $P = NP$ [Khot,Lipton,Markakis,Mehta ’05]

But these algorithms do not have any truthfulness properties.
Problem: \(\max \{ F(x) : x \in P \} \); we know \(\frac{\partial F}{\partial x_i} \geq 0, \frac{\partial^2 F}{\partial x_i \partial x_j} \leq 0 \).

For each \(x \in P \), define \(v(x) \) by maximizing \(v \cdot \nabla F \) over \(v \in P \).

Define a curve \(x(t) \):

\[
y(0) = 0 \\
\frac{dx}{dt} = v(x)
\]

Run this process for \(t \in [0, 1] \) and return \(x(1) \).

Claim: This algorithm gives a \((1 - 1/e) \)-approximation.
Central Question of Algorithmic Mechanism Design

Is it possible to achieve an (approximately) optimal solution under the requirements of

1. truthfulness
2. polynomial running time

when each can be achieved separately?

Known answer: NO - for the problem of combinatorial public projects and universally truthful mechanisms [Papadimitriou, Schapira, Singer '08].

Combinatorial auctions? Truthful-in-expectation mechanisms?
Central Question of Algorithmic Mechanism Design

Is it possible to achieve an (approximately) optimal solution under the requirements of

1. truthfulness
2. polynomial running time

when each can be achieved separately?

Known answer: NO - for the problem of combinatorial public projects and universally truthful mechanisms [Papadimitriou, Schapira, Singer ’08].

Combinatorial auctions?
Truthful-in-expectation mechanisms?
Some known results for combinatorial auctions

On the positive side:
- There is a truthful $O(1 / \log m \log \log m)$-approximation for submodular valuations (with "demand queries") [Dobzinski ’07]

On the negative side:
- Any non-trivial "VCG-based" mechanism for submod. valuations would require exponential communication [Dobzinski, Nisan ’07]
- Any non-trivial "VCG-based" mechanism for budget-additive or coverage valuations would imply $NP \subseteq P/poly$ [BDFKMPSSU ’10]
Some known results for combinatorial auctions

On the positive side:
- There is a truthful $O(1/ \log m \log \log m)$-approximation for submodular valuations (with "demand queries") [Dobzinski ’07]

On the negative side:
- Any non-trivial "VCG-based" mechanism for submod. valuations would require exponential communication [Dobzinski, Nisan ’07]
- Any non-trivial "VCG-based" mechanism for budget-additive or coverage valuations would imply $NP \subseteq P/poly$ [BDFKMPSSU ’10]

What is "VCG-based"? A mechanism which optimizes social welfare over some subset of possible allocations.

In some settings, all truthful mechanisms are known to be VCG-based. But not for combinatorial auctions!
Recent progress

1. [Dobzinski ’11] proved that if valuations are submodular and the only access to them is through a value oracle, then no universally truthful mechanism gives $m^{\epsilon^{-1/2}}$-approximation for $\epsilon > 0$.

2. [Dughmi, Roughgarden & Yan ’11] a truthful-in-expectation $(1 - 1/e)$-approximation for coverage valuations.

<table>
<thead>
<tr>
<th>Valuations</th>
<th>Without truthfulness</th>
<th>Truthful-in-expectation</th>
<th>Univ. truthful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>$1 - 1/e$</td>
<td>$1 - 1/e$</td>
<td>???</td>
</tr>
<tr>
<td>Submodular (succinct rep.)</td>
<td>$1 - 1/e$</td>
<td></td>
<td>???</td>
</tr>
<tr>
<td>Submodular (value oracle)</td>
<td>$1 - 1/e$</td>
<td></td>
<td>$m^{o(1)-1/2}$</td>
</tr>
</tbody>
</table>

Jan Vondrák (IBM Almaden)
Recent progress

1. [Dobzinski ’11] proved that if valuations are submodular and the only access to them is through a value oracle, then no universally truthful mechanism gives $m^{\epsilon^{-1/2}}$-approximation for $\epsilon > 0$.

2. [Dughmi, Roughgarden & Yan ’11] a truthful-in-expectation $(1 - 1/e)$-approximation for coverage valuations.

NEW RESULTS: [Dughmi, V. ’11], [Dobzinski, V. ’12]

<table>
<thead>
<tr>
<th>Valuations</th>
<th>Without truthfulness</th>
<th>Truthful-in-expectation</th>
<th>Univ. truthful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>$1 - 1/e$</td>
<td>$1 - 1/e$</td>
<td>???</td>
</tr>
<tr>
<td>Submodular (succinct rep.)</td>
<td>$1 - 1/e$</td>
<td>NEW: $n^{-\Omega(1)}$</td>
<td>NEW: $m^{o(1)-1/2}$</td>
</tr>
<tr>
<td>Submodular (value oracle)</td>
<td>$1 - 1/e$</td>
<td>NEW: $m^{-\Omega(1)}$</td>
<td>$m^{o(1)-1/2}$</td>
</tr>
</tbody>
</table>
Our new results

Theorem (Dughmi, V. ’11)

There is $\gamma > 0$ such that no truthful-in-expectation mechanism for submodular valuations in the value oracle model achieves a better than $m^{-\gamma}$-approximation.
Our new results

Theorem (Dughmi, V. ’11)
There is $\gamma > 0$ such that no truthful-in-expectation mechanism for submodular valuations in the value oracle model achieves a better than $m^{-\gamma}$-approximation.

Theorem (Dobzinski, V. ’12)
There is a class of succinctly represented submodular valuations such that unless $\text{NP} \subseteq \text{P/poly}$,

- No deterministic truthful mechanism achieves $m^{\epsilon-1/2}$-approximation, for any $\epsilon > 0$.
- No truthful-in-expectation mechanism achieves $n^{-\gamma}$-approximation, for some $\gamma > 0$.

I.e. we identify a variant of combinatorial auctions where computational efficiency and truthfulness (even in expectation) are incompatible.
How do we prove this?

Some notable points:

- **We do not** give any characterization of truthful-in-expectation mechanisms for combinatorial auctions.
Some notable points:

- We do not give any characterization of truthful-in-expectation mechanisms for combinatorial auctions.
- We do not appeal to the "complexity of the range" of the mechanism (e.g. VC-dimension), like some previous work.
How do we prove this?

Some notable points:

- We **do not** give any characterization of truthful-in-expectation mechanisms for combinatorial auctions.
- We **do not** appeal to the "complexity of the range" of the mechanism (e.g. VC-dimension), like some previous work.
- Rather, we use the **symmetry gap** technique to prove the existence of a certain sequence of distributions possibly output by the mechanism, which leads to a contradiction.
How do we prove this?

Some notable points:

- We do not give any characterization of truthful-in-expectation mechanisms for combinatorial auctions.
- We do not appeal to the "complexity of the range" of the mechanism (e.g. VC-dimension), like some previous work.
- Rather, we use the symmetry gap technique to prove the existence of a certain sequence of distributions possibly output by the mechanism, which leads to a contradiction.
- To prove a computational hardness result, we encode the valuations succinctly using list decodable codes.
Let’s start from the mechanism of Dughmi, Roughgarden & Yan:

The discrete allocation problem is replaced by a concave optimization problem, which can be solved optimally.

Solutions correspond to distributions over allocations.

For any such algorithm, VCG payments can be defined so that the resulting mechanism is truthful in expectation.
Continuous optimization problem:
\[
\max \left\{ \sum_{i=1}^{n} \tilde{V}_i(x_i) : \sum_{i=1}^{n} x_i = (1, 1, \ldots, 1) \right\}, \text{ where}
\]
\[
\tilde{V}_i(x_i) = \text{expected utility of agent } i \text{ if he receives } C_j \text{ independently with prob. } \tilde{x}_{ij} = 1 - e^{-x_{ij}}.
\]

Lemma:
If \(v_i \) is a coverage function, then \(\tilde{V}_i \) is a concave function.

Proof:
\[
\Pr \left[a \in \bigcup_{j \in A} C_j \right] = 1 - \prod_{j : a \in C_j} e^{-x_{ij}} = 1 - e^{-\sum_{j : a \in C_j} x_{ij}}.
\]

\[\Rightarrow \text{the continuous optimization problem can be solved exactly and everything works!}\]
DRY mechanism: more details

Continuous optimization problem:
\[
\max \left\{ \sum_{i=1}^{n} \tilde{V}_i(\tilde{x}_i) : \sum_{i=1}^{n} \tilde{x}_i = (1, 1, \ldots, 1) \right\}, \text{ where}
\]

\[\tilde{V}_i(\tilde{x}_i) = \text{expected utility of agent } i\]
if he receives \(C_j\) independently with prob. \(\tilde{x}_{ij} = 1 - e^{-x_{ij}}\).

Lemma: If \(v_i\) is a coverage function, then \(\tilde{V}_i\) is a concave function.

Proof: \(\Pr[a \in \bigcup_{j \in A_i} C_j] = 1 - \prod_{j: a \in C_j} e^{-x_{ij}} = 1 - e^{-\sum_{j: a \in C_j} x_{ij}}\).

\(\Rightarrow\) the continuous optimization problem can be solved exactly and everything works!
Continuous optimization problem:

\[
\max \{ \sum_{i=1}^{n} \tilde{V}_i(\tilde{x}_i) : \sum_{i=1}^{n} \tilde{x}_i = (1, 1, \ldots, 1) \},
\]

where \(\tilde{V}_i(\tilde{x}_i) \) is the expected utility of agent \(i \) if he receives \(C_j \) independently with prob. \(\tilde{x}_{ij} = 1 - e^{-x_{ij}} \).

Lemma: If \(v_i \) is a coverage function, then \(\tilde{V}_i \) is a concave function.

Proof: \(\Pr[a \in \bigcup_{j \in A_i} C_j] = 1 - \prod_{j : a \in C_j} e^{-x_{ij}} = 1 - e^{-\sum_{j : a \in C_j} x_{ij}} \).

\(\Rightarrow \) the continuous optimization problem can be solved exactly and everything works! So why not for submodular functions?
Stage 1: why the DRY mechanism fails

Lemma

In the value oracle model, solving the optimization problem
\[
\max \{ \sum_{i=1}^{2} \tilde{V}_i(\tilde{x}_i) : \sum_{i=1}^{2} \tilde{x}_i = 1 \}
\]
for submodular functions even within factor 0.9 would require exponentially many value queries.
Stage 1: why the DRY mechanism fails

Lemma

In the value oracle model, solving the optimization problem $\max\{\sum{i=1}^{2} \tilde{V}_i(\bar{x}_i) : \sum_{i=1}^{2} \bar{x}_i = 1\}$ for submodular functions even within factor 0.9 would require exponentially many value queries._

Approach: We use the following valuation functions $v(S)$:

$$v(S) = 1 - (1 - \alpha |S \cap A|)_+ (1 - \alpha |S \cap B|)_+,$$

the extension $\tilde{V}(\bar{x})$ is _not concave_, and in particular there is a gap of 0.9 between _symmetric_ and _asymmetric_ solutions.
Stage 1: the symmetry gap argument

The technique of symmetry gap [V. ’09] implies:
For a suitable perturbation of \(v(S) \), the partition \((A, B)\) cannot be found using poly-many value queries
\(\implies\) only symmetric solutions can be found efficiently.

\[
\max \left\{ \sum_{i=1}^{n} \tilde{V}_i(\bar{x}_i) : \sum_{i=1}^{n} \bar{x}_i = 1 \right\}
\]
cannot be solved better than within 0.9.
Stage 2: ruling out all T.I.E. mechanisms

High-level sketch: we combine several ingredients:

1. The construction of symmetric valuation functions from Step 1.
3. An inductive argument, boosting the hardness factor from a constant to a polynomial m^γ.

From [Dobzinski '11]:

Taxation principle: For any truthful mechanism, if we fix the valuations v_i of agents i $\neq i$, the mechanism must maximize $E[v_i(S) - p_S]$ over the “menu” of all distributions of set S and price p_S, possibly allocated to i.

Rich menu: If the menu is sufficiently complicated, it is hard for a mechanism to figure out what is the best distribution to return.
Stage 2: ruling out all T.I.E. mechanisms

High-level sketch: we combine several ingredients:

1. The construction of symmetric valuation functions from Step 1.
3. An inductive argument, boosting the hardness factor from a constant to a polynomial m^γ.

From [Dobzinski ’11]:

- **Taxation principle:** For any truthful mechanism, if we fix the valuations v_{-i} of agents $i' \neq i$, the mechanism must maximize $\mathbb{E}[v(S) - p_S]$ over the "menu" of all distributions of set S and price p_S, possibly allocated to i.

- **Rich menu:** If the menu is sufficiently complicated, it is hard for a mechanism to figure out what is the best distribution to return.
Step 2: existence of distributions on the menu \mathcal{M}_i

At level j, we use $(A_i^{(j)}, B_i^{(j)})$, $|A_i^{(j)}| = |B_i^{(j)}| = m/2^j$:

\[\tilde{V}(A_i^{(j)}) \]
\[\tilde{V}(B_i^{(j)}) \]
\[\tilde{V}(S) \]

- **Idea:** Assume (by induction) that there is a distribution $\mathcal{D} \in \mathcal{M}_i$ that allocates (in expectation) a good portion of $A_i^{(j)}$ to agent i.

- But the sets $(A_i^{(j)}, B_i^{(j)})$ cannot be found efficiently.

- So the mechanism must return a distribution $\mathcal{D}' \in \mathcal{M}_i$ that does not depend on $(A_i^{(j)}, B_i^{(j)})$ and still beats \mathcal{D} in expected profit!

- Such a distribution must be "bigger / cheaper" than \mathcal{D}.

Jan Vondrák (IBM Almaden) Combinatorial auctions 22 / 28
Stage 2: how to combine everything

Sketch of the proof ruling out all T.I.E. mechanisms:

1. If the mechanism provides a \(c \)-approximation, there must be an agent \(i^* \) and a choice of valuations (a basic instance) such that agent \(i^* \) receives a \(c \)-fraction of a random set \(A_{i^*}^{(\ell)} \) of size \(m/2^\ell \).
Stage 2: how to combine everything

Sketch of the proof ruling out all T.I.E. mechanisms:

1. If the mechanism provides a c-approximation, there must be a agent i^* and a choice of valuations (a basic instance) such that agent i^* receives a c-fraction of a random set $A_{i^*}^{(\ell)}$ of size $m/2^\ell$.

2. By the inductive boosting argument + 2-dim convex separation argument (to deal with prices), there are distributions on the menu allocating larger and larger sets to agent i^*, at decreasing prices.
Stage 2: how to combine everything

Sketch of the proof ruling out all T.I.E. mechanisms:

1. If the mechanism provides a c-approximation, there must be a agent i^* and a choice of valuations (a *basic instance*) such that agent i^* receives a c-fraction of a random set $A_{i^*}^{(\ell)}$ of size $m/2^\ell$.

2. By the inductive boosting argument + 2-dim convex separation argument (to deal with prices), there are distributions on the menu allocating *larger and larger sets* to agent i^*, at *decreasing prices*.

3. Eventually, we prove the existence of a distribution on the menu of agent i^* that would be more profitable to him in the basic instance, than what he receives when reporting truthfully

\Rightarrow **CONTRACTION**.
What is the issue: imagine we want to present the function

\[v(S) = 1 - (1 - \alpha|S \cap A|)(1 - \alpha|S \cap B|) \]

explicitly on the input. We can encode it by specifying \((\alpha, A, B)\). However, then it’s easy to determine the "desired set" \(A\) (or \(B\))!
Stage 3: oracle hardness \Rightarrow computational hardness

What is the issue: imagine we want to present the function

$$v(S) = 1 - (1 - \alpha|S \cap A|) + (1 - \alpha|S \cap B|)$$

explicitly on the input. We can encode it by specifying (α, A, B). However, then it’s easy to determine the "desired set" A (or B)!

Solution:

- (A, B) is determined by the solution of a computationally difficult problem (i.e. SAT).
- Rather than (A, B), the encoding contains a SAT instance ϕ.
- **HOWEVER:** this encoding must allow us to evaluate the function!
Stage 4: encoding by list-decodable codes

Encoding:
We encode a valuation by a set C, a Unique-SAT formula ϕ on t variables, $\alpha > 0$, and a list-decodable code $E : \{0, 1\}^t \rightarrow \{0, 1\}^C$.

Interpretation: (C, ϕ, α, E) encodes a perturbed function $\tilde{v}(S)$ that we actually use in our hardness proof:

$$
\tilde{v}(S) \approx 1 - \left(1 - \alpha \left|S \cap A\right|\right) + \left(1 - \alpha \left|S \cap B\right|\right),
$$

where $A = C \setminus B = E(x^*)$, and $x^* = \text{unique satisfying assignment to } \phi$.

Key point: $\tilde{v}(S)$ depends on the partition (A, B) only if S is "unbalanced" w.r.t. (A, B), in which we are able to determine (A, B) using the list decodable code.
Stage 4: encoding by list-decodable codes

Encoding:
We encode a valuation by a set C, a Unique-SAT formula ϕ on t variables, $\alpha > 0$, and a list-decodable code $E : \{0, 1\}^t \to \{0, 1\}^C$.

Interpretation: (C, ϕ, α, E) encodes a perturbed function $\tilde{v}(S)$ that we actually use in our hardness proof:

$$
\tilde{v}(S) \simeq 1 - (1 - \alpha |S \cap A|)_+(1 - \alpha |S \cap B|)_+
$$

where $A = C \setminus B = E(x^*)$, and x^* = unique satisfying assignment to ϕ.

Key point: $\tilde{v}(S)$ depends on the partition (A, B) only if S is "unbalanced" w.r.t. (A, B), in which we are able to determine (A, B) using the list decodable code.
Stage 4: evaluating $v(S)$ using this representation

Case 1: If $|S \cap A| - |S \cap B| > \beta$, we find $x^* = E^{-1}(A)$ as one of the codewords obtained by list-decoding S. Evaluating $\phi(x^*)$ confirms that A is the correct set.

Case 2: If $|S \cap B| - |S \cap A| > \beta$, we find $x^* = E^{-1}(A)$ again by list-decoding S.

Case 3: If $|S \cap A| - |S \cap B| \in [-\beta, +\beta]$, we are not able to determine A and B. But $v(S)$ in this case depends only on $|S|$, so we can still evaluate $v(S)$.

\[v(A) \]
\[v(B) \]
\[v(S) \]
\[-\beta \]
\[+\beta \]
Overview of techniques

List-decodable codes

Computational hardness for TIE mechanisms
[Dobzinski-V., EC’12]

Oracle hardness for TIE mechanisms
[Dughmi-V., FOCS ’11]

Oracle hardness for truthful mechanisms
[Dobzinski, STOC ’11]

Non-concave behavior of submodular functions

Computational hardness for submodular optimization
[Dobzinski-V., STOC ’12]

Oracle hardness for submodular optimization
[Vondrak, FOCS ’09]

Symmetry gap

Direct hardness
Summary of results

<table>
<thead>
<tr>
<th>Valuations</th>
<th>Without truthfulness</th>
<th>Truthful-in-expectation</th>
<th>Univ. truthful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>$1 - 1/e$</td>
<td>$1 - 1/e$</td>
<td>???</td>
</tr>
<tr>
<td>Submodular (explicit)</td>
<td>$1 - 1/e$</td>
<td>$n^{-\Omega(1)}$</td>
<td>$m^{o(1)-1/2}$</td>
</tr>
<tr>
<td>Submodular (value oracle)</td>
<td>$1 - 1/e$</td>
<td>$m^{-\Omega(1)}$</td>
<td>$m^{o(1)-1/2}$</td>
</tr>
</tbody>
</table>

Some open questions:
- Hardness for more natural valuation functions?
- Stronger oracle models?
- Communication complexity lower bounds?
- Or positive results for more special classes: budget-additive?
Summary of results

<table>
<thead>
<tr>
<th>Valuations</th>
<th>Without truthfulness</th>
<th>Truthful-in-expectation</th>
<th>Univ. truthful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>$1 - \frac{1}{e}$</td>
<td>$1 - \frac{1}{e}$</td>
<td>???</td>
</tr>
<tr>
<td>Submodular (explicit)</td>
<td>$1 - \frac{1}{e}$</td>
<td>$n^{-\Omega(1)}$</td>
<td>$m^{o(1)} - \frac{1}{2}$</td>
</tr>
<tr>
<td>Submodular (value oracle)</td>
<td>$1 - \frac{1}{e}$</td>
<td>$m^{-\Omega(1)}$</td>
<td>$m^{o(1)} - \frac{1}{2}$</td>
</tr>
</tbody>
</table>

Some open questions:
- Hardness for more natural valuation functions?
- Stronger oracle models?
 (demand queries: $\max_S (\nu(S) - \sum_{j \in S} p_j) = ?$)
- Communication complexity lower bounds?
- Or positive results for more special classes: budget-additive?